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Abstract: The discretionary damage of mental suffering in fatal car accident cases in Taiwan is
subjective, uncertain, and unpredictable; thus, plaintiffs, defendants, and their lawyers find it
difficult to judge whether spending much of their money and time on the lawsuit is worthwhile and
which legal factors judges will consider important and dominant when they are assessing the mental
suffering damages. To address these problems, we propose k-nearest neighbor, classification and
regression trees, and random forests as learning algorithms for regression to build optimal predictive
models. In addition, we reveal the importance ranking of legal factors by permutation feature
importance. The experimental results show that the random forest model outperformed the other
models and achieved good performance, and “the mental suffering damages that plaintiff claims”
and “the age of the victim” play important roles in assessments of mental suffering damages in fatal
car accident cases in Taiwan. Therefore, litigants and their lawyers can predict the discretionary
damages of mental suffering in advance and wisely decide whether they should litigate or not, and
then they can focus on the crucial legal factors and develop the best litigation strategy.

Keywords: discretionary damages of mental suffering; fatal car accident cases; legal judgment
prediction; mental suffering damages; relevant legal factors

1. Introduction

In cases where a victim is killed in a car accident, the father, mother, sons, daughters,
and spouse of the deceased may claim for reasonable mental suffering damages in accor-
dance with Article 194 of the Taiwan Civil Code. However, the mental suffering damages
that come with losing someone are often difficult to calculate, and no standard formula
exists [1]; therefore, judges need to consider numerous legal factors which have been
indicated by the Taiwan Supreme Court to assess a specific dollar amount on the mental
suffering damages [2]. In other words, the assessment of reasonable mental suffering
damages is very subjective and unpredictable, and it will cause many serious problems.
To begin with, two parties might find it difficult to predict the discretionary damages of
mental suffering made by judges; thus, they will wonder whether spending much of their
money and time on the lawsuit is worthwhile. Even though they decide to engage in a
lawsuit, it is impossible for them to prepare evidentiary documents and materials about
relevant legal factors, because they do not know which legal factors judges will consider
important and dominant when they are assessing the mental suffering damages, so they
might focus their efforts on irrelevant legal factors rather than relevant legal factors. Even
professional lawyers who are familiar with past cases may be frustrated by those problems
because they are suffering from the shortcomings of human reasoners [3]. Specifically,
these serious problems may prevent two parties from dealing with their controversies by
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the due process of law and make them choose illegal ways to do so. Furthermore, those
problems might make plaintiffs abandon their rights in civil affairs and compensation for
damages. In summary, it is important and necessary to use machine learning techniques to
predict the discretionary damages of mental suffering in fatal car accident cases in Taiwan
and reveal the importance ranking of legal factors so that those problems and difficulties
can be solved once and for all.

Recently, there have been many studies on legal judgment predictions based on
machine learning (ML) techniques. Some studies have used structuring textual data, which
often implement natural language processing (NLP) techniques. For example, Li et al.
used the conditional random field (CRF) method to fetch legal factor labels of robbery and
intimidation cases and proposed an additive regression model to predict the sentencing
in such cases [4]. In addition, Aletras et al. used N-gram to obtain features from the
European Court of Human Rights judgments and proposed a support vector machine
(SVM) with linear kernel to predict whether a case violated an article of the Convention
on Human Rights [5]. A similar study obtained N-gram features from the case text for
the Supreme Court of the United States and the United States Circuit Court and built ML
and deep learning (DL) models to predict those appellate affirm or reverse decisions, and
a convolutional neural network (CNN) model for district-to-circuit reversal prediction
outperformed other models [6]. In addition, Li et al. used NLP techniques to build a
knowledge extraction engine and obtain a database, proposing a Markov logic network
to predict the judicial decision of divorce cases [7]. Furthermore, Jiang et al. used a deep
reinforcement learning method to extract rationales from input text and implemented a
charge prediction task [8]. Moreover, Chen et al. established a legal graph network to fuse
complete charge information into a unified legal graph and used an attention-based neural
network for charge prediction [9]. In addition, Zhang et al. used bidirectional encoder
representations from transformers (BERTs) to label the sentences of legal factors in the
judgments and proposed CNN, long short-term memory (LSTM), and a gated recurrent
unit (GRU) to extract features and predict the sentencing class [10].

In contrast, several studies have used features available directly from established
datasets rather than textual documents to implement legal judgment prediction; thus, they
did not use NLP techniques to extract features. For example, Katz et al. used a dataset
from the Supreme Court database and proposed random forests (RFs) to predict the voting
behavior of the Court and its Justices [11]. In addition, Huang et al. focused on child
custody cases after divorce in Taiwan and used a tabular dataset made by legal experts to
propose artificial neural networks (ANNs), decision trees, and gradient boosting to predict
whether the father or the mother should receive custody. Moreover, they also demonstrated
some specific features that judges considered important [12–14]. In addition, Franca et al.
used a private database provided by an energy supply company and proposed tree-based
gradient boosting to predict the outcomes of energy market lawsuits [15].

Despite these efforts in legal judgment prediction based on ML techniques, most
previous studies mainly focused on classification tasks instead of regression tasks, and
there has been no research using ML techniques to predict the discretionary damages of
mental suffering in fatal car accident cases in Taiwan and unveil the importance ranking of
legal factors by permutation feature importance. In order to solve the above challenges,
in this study, we propose three basic but well-known learning algorithms to predict the
discretionary damages of mental suffering in fatal car accident cases in Taiwan, including
k-nearest neighbor (KNN), classification and regression trees (CART), and RF, to determine
whether basic and popular ML algorithms are good enough to address our prediction task
and define future work according to the final results. In addition, we used permutation
feature importance to reveal the importance ranking of legal factors. In addition, there was
no need to implement NLP techniques, because we used a dataset made by legal experts,
which contained features extracted by them.

However, we faced two major difficulties in our work. To start with, many judges
refuse to unveil the true values of legal factors due to the protection of rights to privacy,
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which strictly limited the amount of data in our dataset. Moreover, the range of discre-
tionary damages of mental suffering in our dataset was very wide, i.e., from 15 to 500 in
TWD ten thousand, which might have affected the model learning and decrease model
performance. In addition, we hypothesized that the RF model should outperform other
models, because the RF belonged to ensemble learning, which is often considered to be
more robust than a single base learner [16]. Furthermore, we infer that “the mental suffer-
ing damages that plaintiff claims” should have higher importance because it represents
the disposition principle that all Taiwanese judges must abide by when they are assessing
mental suffering damages.

To summarize, the experimental results show that the RF model outperformed other
models and achieved good performance; therefore, litigants and their lawyers could predict
the discretionary damages of mental suffering in advance, and they can easily break the
uncertainty of judicial outcomes and wisely decide whether they should litigate or not.
Furthermore, we have successfully revealed the importance ranking of legal factors, so
legal actors can focus on the crucial factors and develop the best litigation strategies. For
example, they can concentrate on finding evidentiary documents and materials about the
most important or dominant legal factors instead of wasting their precious time and money
on irrelevant legal factors. On the other hand, this methodology can be applied to other
types of mental suffering damages prediction tasks in Taiwan with minor and suitable
adjustments, including mental suffering from physical injuries or pain, humiliation, privacy
infringements, and divorces. Moreover, people can claim mental suffering damages and
judges need to consider several factors such as the circumstances of illegal infringement
and earning capability of two parties, in accordance with the Interpretation of the Supreme
People’s Court on Problems regarding the Ascertainment of Compensation Liability for
Emotional Damages in Civil Torts [17], which is similar to the assessment of mental
suffering damages in Taiwan; thus, our methodology could be applied to the region of
mainland China after suitable adjustments.

This study proceeds as follows. In Section 2, we discuss the dataset and the approaches
we used in this research. Section 3 presents the experimental results and discussion. Finally,
in Section 4, we provide the conclusions and future work of this research.

2. Materials and Methods

The overall goal of this study was to build the optimal model to predict the discre-
tionary damages of mental suffering in fatal car accident cases in Taiwan and reveal the
importance ranking of legal factors. In order to achieve these goals, our approach involved
the following steps. First, we implemented data preprocessing, including feature encoding,
imputing missing values, feature scaling, and feature selection. Next, we used three basic
and classic ML algorithms for regression to train predictive models, and then implemented
hyperparameter tuning. Finally, we calculated the importance ranking of legal factors
based on those three models by permutation feature importance.

In this study, we used the scikit-learn package (version 0.24.2) in Python language [18]
to implement machine learning tasks and all steps involved.

2.1. Dataset

The Taiwan Judicial Yuan Law and Regulations Retrieving System was used to search
and collect judgments from 2006 to 2020 in Taiwan Taichung District Court, and irrelevant
judgments, such as judgments against the plaintiff (without assessing the mental suffering
damages), were removed. Furthermore, this study only focused on judgments with one
victim and one defendant, excluding judgments with more than one victim or defendant.

Next, we took one plaintiff as one data unit [2], extracted the legal factors from the
judgments, and used them as features in the dataset, as seen on Figure 1. Apart from
the legal factors which judges considered while assessing mental suffering damages, we
added some extra features which we deemed important and relevant to the assessment
of mental suffering damages. For example, we added some features that might affect the
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discretionary damages, including “the total number of plaintiffs who are victim’s parents
in the same case”, “the total number of plaintiffs who are victim’s children in the same
case”, and “the total number of plaintiffs in the same case”.

Figure 1. An example of how we extracted legal factors from the judgment documents.

Subsequently, we extracted discretionary damages from the judgments and treated
them as the target values (y vector) in the dataset. Finally, there were some features in
the dataset lacking the unified unit; therefore, we determined the unified unit for those
feature columns. Above all, we eliminated the name of plaintiffs, defendants, and judges to
protect their privacy, and we also covered the number of judgments for fear that someone
might find out their personal information and violate their right to information privacy
by surfing the Taiwan Judicial Yuan Law and Regulations Retrieving System website. In
summary, the dataset contained 34 features, which are shown in Table 1.

In the total 483 observations in the dataset, the range of the predicted values was
from 15 to 500 in TWD ten thousand, and we created a 70/30 train–test split of the dataset,
i.e., we randomly split the dataset into a training set with 338 samples and a test set with
145 samples. Furthermore, we set the random_state parameter of the train_test_split to 0 in
order to randomly shuffle the data before splitting.

The whole dataset we used in this research is available from the following link:
https://zenodo.org/record/5565766#.YW0X19lBwnV (accessed on 3 November 2021).

2.2. Data Preprocessing

In the data preprocessing part, we implemented feature encoding and imputed miss-
ing values, and then used standardization and feature selection to achieve feature scaling
and dimensionality reduction.

2.2.1. Feature Encoding, Imputing Missing Values, and Feature Scaling

The categorical features in the dataset were not numeric; therefore, we needed to
turn them into numbers [19]. For the ordinal categorical features such as “the plaintiff’s
educational background” and “the defendant’s educational background”, ordinal coding
was used, which meant that each category was assigned an integer number [20] based on
the prior information [21]. For the nominal categorical features such as “the victim is in
poor health”, “the plaintiff is in debt”, and “the defendant is in debt”, one-hot encoding [19]
was used. In theory, one-hot encoding takes each of the categories as a feature: a categorical
feature with k categories is encoded as a feature vector of length k [19]. However, all
nominal categorical features in our dataset shown in Table 1 were encoded as a feature
vector of length 1, because those features were all binary categorical features.

https://zenodo.org/record/5565766#.YW0X19lBwnV
https://zenodo.org/record/5565766#.YW0X19lBwnV
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Table 1. The description of features in dataset.

Serial Number Feature Type

1 The total number of plaintiffs who are the victim’s parents in the same case Numerical

2 The total number of plaintiffs who are the victim’s spouse in the same case Numerical

3 The total number of plaintiffs who are the victim’s children in the same case Numerical

4 The total number of plaintiffs in the same case Numerical

5 The age of the victim Numerical

6 The victim is the only child of the plaintiff Nominal categorical

7 The victim is in poor health Nominal categorical

8 The plaintiff is the victim’s parents Nominal categorical

9 The plaintiff is the victim’s spouse
(including the duration of marriage) Ordinal categorical

10 The plaintiff is the victim’s child
(including the plaintiff is the only child of the victim) Ordinal categorical

11 The number of children that the plaintiff raises Numerical

12 The number of relatives that the plaintiff needs to support Numerical

13 The plaintiff’s educational background Ordinal categorical

14 The plaintiff’s occupation Nominal categorical

15 The plaintiff’s income Numerical

16 The amount of real estate that the plaintiff possesses Numerical

17 The number of automobiles that the plaintiff possesses Numerical

18 The number of motorcycles that the plaintiff possesses Numerical

19 The number of investments that the plaintiff holds Numerical

20 The plaintiff is in debt Nominal categorical

21 The plaintiff belongs to disadvantaged and vulnerable groups Nominal categorical

22 The number of children that the defendant raises Numerical

23 The number of relatives that the defendant needs to support Numerical

24 The defendant’s educational background Ordinal categorical

25 The defendant’s occupation Nominal categorical

26 The defendant’s income Numerical

27 The amount of real estate that the defendant possesses Numerical

28 The number of automobiles that the defendant possesses Numerical

29 The number of motorcycles that the defendant possesses Numerical

30 The number of investments that the defendant holds Numerical

31 The defendant is in debt Nominal categorical

32 The defendant belongs to disadvantaged and vulnerable groups Nominal categorical

33 The sum of mental suffering damages that all plaintiffs claim in the same case
(in TWD ten thousand) Numerical

34 The mental suffering damages that plaintiff claims
(in TWD ten thousand) Numerical
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Next, it was required to handle the missing values problem with imputation methods,
because most learning algorithms are, in general, unable to deal with missing values [22].
We imputed the missing values of the categorical features with the most common feature
value [23] and replaced the missing values of the numerical features with the mean of the
feature [24]. However, we imputed features related to two parties’ personal property such
as “the amount of real estate that plaintiff possesses”, “the number of automobiles that
plaintiff possesses”, and “the number of motorcycles that plaintiff possesses”, with 0 based
on the inferences that judges often omit the description of personal property if they know
that the number of personal properties is 0 [25].

In addition, we used standardization to implement feature scaling on the dataset for
KNN, because it is very sensitive to the scale of features. Specifically, standardization can
assign features in the dataset a mean of 0 and variance of 1 [26], and it is defined as [16]:

x(i)std =
x(i) − µx

σx
(1)

where x(i)std is the standard score of the ith sample in feature x, x(i) is the original value of
the ith sample in feature x, µx is the mean of the feature x, and σx is the standard deviation
of the feature x [16]. However, we did not implement standardization on the datasets
which were used to train the tree-based models, because tools such as CART and RF are
not sensitive to the scale of the features [19].

2.2.2. Feature Selection

We used feature selection to reduce the dimensionality of the original dataset and
select the most appropriate feature subset with relevant features [27]. Specifically, we
implemented feature selection with wrapper feature selection algorithms, because they
can evaluate the candidate feature subsets on the learning algorithm and keep the feature
subset that performs best [27]. In other words, the learning algorithm itself is used as part
of the evaluation function [28].

To begin with, we used sequential forward selection (SFS) and sequential backward
selection (SBS) as selection algorithms to implement feature selection for KNN and CART.
SFS starts with an empty set, and it adds one feature which achieves the best performance
to the empty set and forms the current subset. Then, it adds another feature which achieves
the best performance from the remaining features to the current subset and forms a new
current feature subset. This procedure is repeated until the stopping criterion is reached [29].
On the other hand, the SBS starts with the complete feature subset with all features, and it
eliminates one feature whose elimination improves the performance the most. This process
is repeated until the stopping criterion is reached [29].

Furthermore, we used 10-fold cross-validation and R-squared (R2) as validation
methods, and metrics of the evaluation function to evaluate the candidate feature subsets.
However, we did not set any stopping criterion; as a result, the best feature subset with the
best cross-validation score could be selected. After the best feature subsets were chosen
through SFS and SBS, the two feature subsets were evaluated on the independent test
set [28], and the best one was selected as the final feature subset.

Moreover, we used recursive feature elimination with cross-validation (RFECV) to
implement feature selection for RF instead of using SFS and SBS, as the combination of
sequential feature selection and RF could increase the computational complexity and cost.
RFECV trains the model on the initial set of features and computes the importance of each
feature. Then, it finds the feature with the smallest ranking criterion and eliminates it
from the feature set so as to create a new feature subset [30]. After creating a new feature
subset, RFECV will use cross-validation to evaluate the model which is trained on the new
feature subset. If cross-validation shows that the performance of the model improves after
eliminating the feature with the smallest ranking criterion, RFECV will continue to the
next loop. This procedure is repeated until cross-validation shows that the performance of
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the model becomes worse after eliminating the feature with smallest ranking criterion [21].
Furthermore, the measure of ranking criterion we used was the impurity importance based
on the mean decrease in impurity which was computed on the RF model [31,32], and
we used 10-fold cross-validation and R2 as a validation method and metric for RFECV.
However, we did not set any stopping criterion; as a result, the best feature subset with the
best cross-validation score could be selected.

Finally, we mainly used the default values of the learning parameters in the scikit-learn
package while implementing feature selection. However, random_state parameters of the
DecisionTreeRegressor and RandomForestRegressor were set to popular integer 42 in order
to produce the same results across different calls [31], and the max_features parameters of
the RandomForestRegressor were set to the square root of the number of features according
to the typical value of that hyperparameter [26].

2.3. Regression Models

This study was concentrated on the regression task; therefore, we employed three
basic and classic ML algorithms for regression to build predictive models and examine
whether those basic and popular ML algorithms are good enough to address our prediction
task.

2.3.1. K-Nearest Neighbor

The KNN algorithm is used for memory-based and instance-based learning; therefore,
there is no model needing to be fitted [33]. To begin with, we need to choose the distance
metric in order to measure all distances between the test sample and the training samples
in the feature space. The common distance metric measures are the Euclidean distance and
Manhattan distance, and they are defined as [34]:

Euclidean distance =

√
(x− p)2 (2)

Manhattan distance = |x− p| (3)

where x is a training sample and p is the test sample [34].
Next, we needed to select the value of k to find the k closest training samples (neigh-

bors) that were closest in distance to the test sample; then, we could compute the predicted
value for regression by returning the average value of the k neighbors [35]. However, the
predicted value mentioned above does not take into account the distance weighting; as a
result, the k neighbors have equal influence. On the other hand, we could choose distance
weighting, allowing the neighbor which is closer to have more importance or influence
[34]. In a word, the KNN algorithm can achieve good results in practice, and it is very
simple [33].

2.3.2. Classification and Regression Trees

CART is a tree-based algorithm, and it can be used for both classification and re-
gression [36]. In other words, CARTs contain classification trees and regression trees [35].
However, we only focused on regression trees because this study aimed to predict continu-
ous values.

To begin with, a CART is typically constrained to construct binary trees in the con-
sideration of computational cost [35]. Specifically, CARTs will grow by means of binary
recursive partitioning, i.e., the parent node will always be split into two child nodes, and
then each child node will become a parent node and will be split into two child nodes. This
process will continue until the node is a terminal node [37].

Moreover, CARTs will search all possible features and all possible values (split-point)
to find the best split which can achieve the maximum homogeneity of the two child nodes.
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In other words, choosing the best split is equivalent to the maximization of the change in
impurity function, which is defined as [38]:

∆i(t) = i
(
tp
)
− Pl i(tl)− Pri(tr)

arg max
xj≤xR

j , j=1, ..., M

[
i
(
tp
)
− Pl i(tl)− Pri(tr)

]
(4)

where ∆i(t) is the maximization of the change in impurity function, i() is the impurity
function, tp, tl , and tr are the parent node, left node, and right node, respectively, Pl and Pr
are probabilities of the left node and right node, xj is feature j, xR

j is the best split value of
feature j, and M is the number of features [38]. After the best split is chosen, the samples
whose value are greater than the split-point will be assigned to the right node, whereas the
rest will be assigned to the left node [26].

In addition, the common impurity functions (splitting criteria) for regression trees
are the mean squared error criterion and mean absolute error criterion, which are defined
as [31]:

ym = 1
Nm

∑
y∈Qm

y

mean squared error criterion = H(Qm) =
1

Nm
∑

y∈Qm

(y− ym)
2 (5)

mean absolute error criterion H(Qm) =
1

Nm
∑

y∈Qm

|y−median(y)m| (6)

where Qm is the set of samples in node m, Nm is the number of samples in node m, H() is
the impurity function, y is the target values in vector y, ym is the mean of y, and median(y)m
is the median of y [31].

If we take the mean squared error criterion, the predicted value can be computed as
the average of all samples in the terminal node. However, the predicted value is computed
as the median of all samples in the terminal node when we take the mean absolute error
criterion [31]. In summary, the key advantage of the CART algorithm is its robustness to
outliers and being able to isolate outliers in an individual node or nodes [38]. Moreover, its
great interpretability can fully describe the feature space partition [26].

2.3.3. Random Forests

RFs involve ensemble learning, i.e., the RF is the ensemble of CART and can be used
for classification and regression problems [39]. This research aimed to predict continuous
values; therefore, we only paid attention to the regression forests. Specifically, the RF
combines many trees, and each tree is built with a bootstrap sample which is randomly
chosen from the training samples by sampling with a replacement. At each node of the trees,
a subset of features is randomly chosen from the original feature set by sampling without
replacement, and the best split is found only within the random subset of features [40]. In
addition, the size of the random subset of features should be less than or equal to that of
the original feature set [26].

Moreover, all trees in the forest are unpruned, i.e., they are so-called maximal trees or
fully grown trees [41]. After growing a given number of trees in the regression forests, we
can compute the predicted value by determining the mean predicted values of all trees in
the regression forests [42].

In short, RFs are very popular and robust in practice due to the randomization of
bootstrap samples and the random subsets of features [41].

2.4. Hyperparameter Tuning

It is very important to tune the hyperparameters of learning algorithms because the
optimal hyperparameters can help to build the optimal model [43]; thus, we used grid
searches to implement hyperparameter tuning and introduced the hyperparameter spaces
of KNN, CART, and RF.
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2.4.1. Grid Search

A grid search is an exhaustive search, and it can choose the best hyperparameter
combination from a defined hyperparameter space [43]. Furthermore, we used 10-fold cross-
validation and R2 as an evaluation method and metric to evaluate the performance of all
hyperparameter combinations and selected the one with the best cross-validation score [43].
In addition, we limited the search space by specifying the range of each hyperparameter
with minimal value, maximal value, and number of steps [43].

2.4.2. The Hyperparameter Space

To begin with, we tuned the hyperparameters of KNN, including the distance metric,
the value of k, and the distance weighting. The reasons why we tuned these hyperparame-
ters are as follows. First, different distance metrics mean different ways to calculate the
distance between the training samples and test point. Second, the KNN will be sensitive to
noise if the value of k is too small. However, on the other hand, the accuracy will reduce if
the value of k is too large, because it considers datapoints that are too far away [35]. Finally,
distance weighting is used to determine in which the datapoints are treated [44].

To sum up, Table 2 shows the hyperparameter space of KNN in detail.

Table 2. The hyperparameter space of KNN.

Hyperparameter Hyperparameter Candidates

Distance metric
Euclidean distance

Manhattan distance

The value of k

minimal value: 1

maximal value: 338
(the number of training samples)

numbers of steps: 1

Distance weighting
uniform weights

(each neighbor is weighted equally)

weighting by the inverse of neighbors’ distance

Next, we tuned the hyperparameters of CART, including the splitting criterion, the size
of the tree, and the minimum node size. The reasons why we tuned these hyperparameters
are as follows. First, using different splitting criterions such as mean squared error criterion
or mean absolute error criterion might build different CART models, and those criterions
will set different predicted values of the terminal nodes [31]. In addition, the size of the tree
can affect the CART model’s complexity [26], and it can prevent the tree from becoming a
fully grown tree or maximal tree and stop the tree from overfitting [37]. Furthermore, the
minimum node size refers to the minimum number of samples required to split an internal
node, i.e., the tree will grow until a given minimum node size is reached; thus, the CART
model can be pruned to an optimal size with this hyperparameter [37]. In practice, the
minimum node size is often set to 10% of the number of training samples [38].

In short, Table 3 shows the hyperparameter space of CART in detail.
Furthermore, we tuned the hyperparameters of RF, including the number of trees in

the forest, the size of the random subset of features, the splitting criterion, the size of the
tree, and the minimum node size. The reasons why we tuned these hyperparameters are as
follows.
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Table 3. The hyperparameter space of CART.

Hyperparameter Hyperparameter Candidates

Splitting criterion
mean squared error criterion

mean absolute error criterion

The size of the tree

minimal value: 2

maximal value: 17
(the size of maximal tree)

numbers of steps: 1

Minimum node size

minimal value: 2

maximal value: 33
(10% of the number of training samples)

numbers of steps: 1

In general, the larger the number of trees, the better the performance will be. However,
the performance will stop improving when the number of trees increases beyond a critical
number [31]. Although the size of the bootstrap sample is often set to the number of original
training samples [16], it is important to tune the size of the random subset of features,
because they can control the degree of the randomization and reduce the variance [41].
In practice, the size of the random subset of features is usually set to the square root of
the number of features [26,35] or the number of features divided by three [39]. In order to
achieve the best performance, the hyperparameters of CART should be tuned, including
the splitting criterion, the size of the tree, and the minimum node size [42].

As mentioned above, Table 4 shows the hyperparameter space of RFs in detail.

Table 4. The hyperparameter space of RFs.

Hyperparameter Hyperparameter Candidates

The number of trees

minimal value: 100

maximal value: 300

numbers of steps: 100

The size of the random subset of features

the number of features

the square root of the number of features

log base 2 of the number of features

Splitting criterion
mean squared error criterion

mean absolute error criterion

The size of the tree

minimal value: 2

maximal value: 17
(the size of maximal tree)

numbers of steps: 1

Minimum node size

minimal value: 2

maximal value: 33
(10% of the number of training samples)

numbers of steps: 1

2.5. Evaluation Methods and Metrics

We used 10-fold cross-validation on the training set and R2 as an evaluation method
and metric to implement feature selection and hyperparameter tuning, and we evaluated
the model performance with mean squared error (MSE), root mean squared error (RMSE),
and R2 on the test set.
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2.5.1. Tenfold Cross-Validation

The k-fold cross-validation process randomly splits the dataset into k roughly equal-
sized folds and combines k− 1 folds into one training set for training model, while one
fold is used as the validation set to test the model. This procedure is repeated k times, each
time using a different fold as a validation set. Then, the result of the k-fold cross-validation
is the average of values computed in the k iterations [21,26,35]. Furthermore, the typical
values of k are 5 or 10 [45,46]. In short, we set the k value as 10, i.e., we used 10-fold
cross-validation while implementing feature selection and hyperparameter tuning.

2.5.2. Evaluation Metrics

In our experiment, we evaluated the model performance with MSE, RMSE, and R2,
which are defined as [21]:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 =
√

MSE (8)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 = 1− MSE

MST
(9)

where n is the number of samples, yi is the true value of the ith sample, ŷi is the predicted
value of the ith sample, y is the mean value of the target vector, and MST is mean total sum
of squares [21].

Specifically, the MSE and RMSE will have a value of 0 if the regression model fits the
data perfectly [47], and the higher the values of MSE and RMSE, the worse the model will
be [21]. Furthermore, the R2 will have a value of 1 if the regression model fits the data
perfectly, and the positive values of R2 range from 0 to 1 [47], i.e., the closer to value 1, the
better the model [21]. However, the R2 will have negative value if the regression model
performs poorly. As mentioned above, the best value and worst values of MSE, RMSE, and
R2 are shown in Table 5 [47].

Table 5. The best values and worst values of MSE, RMSE, and R2.

Metrics Best Value Worst Value

MSE 0 +∞

RMSE 0 +∞

R2 +1 −∞

To summarize, an R2 value of 0.8 clearly indicates very good regression model perfor-
mance, and R2 values such as 0.756 or 0.535 indicate good results [47].

2.6. Permutation Feature Importance

The permutation feature importance breaks the relationship between a feature and
the target; therefore, it can be used to calculate the feature importance from the decrease
in the model score. When the values of a feature are randomly shuffled, the link between
the feature and the target is broken [39]. Furthermore, the permutation feature importance
can be computed several times with different random permutations of a feature [31]. The
permutation feature importance is defined as [31]:

ij = s− 1
K

K

∑
k=1

sk,j (10)
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where ij is the permutation feature importance of feature f j, s is the score of the model
m which is trained on the dataset D, K is the number of different random permutations,
and sk,j is the score of the model m on data D̃k,j (data D̃k,j is generated by the randomly
shuffling feature f j of the dataset D) [31].

In summary, we used R2 as a metric to evaluate the score of the model, and the
number of times to permute a feature was set to 100. Finally, we implemented the permuta-
tion feature importance on the test set, and the random_state parameter of the permuta-
tion_importance was set to 0.

3. Results and Discussion
3.1. Results of Feature Selection

Table 6 shows that the feature subset found by SFS was a lot better than the feature
subset found by SBS. It improved the performance and reduced the dimensionality of
the original dataset (from 34 to 7); therefore, we chose it to be the final feature subset
for the KNN algorithm. However, the feature subset found by SBS failed to improve
the performance, so we inferred that some relevant features might be eliminated in early
iterations, which means that once those features are excluded, they cannot be included
later, even though those features might possibly increase the performance [48]. After all,
SBS has no guarantee of finding the optimal feature subset [27].

Table 6. Results of feature selection using KNN.

Feature Set Model Performance
(R2) Number of Features

Original feature set 0.3838 34

The best feature subset found by SFS 0.5709 7

The best feature subset found by SBS 0.3683 13

As shown in Table 7, the feature subset found by SFS is much better than the feature
subset found by SBS. It improved the performance and reduced the dimensionality of the
original dataset (from 34 to 7). Thus, we chose it to be the final feature subset for CARTs.

Table 7. Results of feature selection using CARTs.

Feature Set Model Performance
(R2) Number of Features

Original feature set 0.5354 34

The best feature subset found by SFS 0.7173 7

The best feature subset found by SBS 0.6140 3

As seen in Table 8, the best feature subset found by RFECV successfully improved
the performance and reduced the dimensionality of the original dataset (from 34 to 13);
therefore, it was selected to be the final feature subset for the RF.

Table 8. Results of feature selection using RF.

Feature Set Model Performance
(R2) Number of Features

Original feature set 0.6713 34

The best feature subset found by RFECV 0.7201 13
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Table 9 shows all feature subsets selected after feature selection using different learning
algorithms. Although the relevant features of those feature subsets are different, there are
some common relevant features, including “the mental suffering damages that plaintiff
claims” and “the age of the victim”, which were selected by all of them. In addition, “the
total number of plaintiffs who are victim’s parents in the same case”, “the total number of
plaintiffs who are victim’s children in the same case”, “the defendant’s income”, and “the
sum of mental suffering damages that all plaintiffs claim in the same case” were selected
by two of them. Therefore, we can infer that those relevant features are crucial to the
assessment of mental suffering damages in fatal car accident cases in Taiwan.

Table 9. The best feature subsets based on different learning algorithms.

Serial Number KNN CART RF

1
The total number of plaintiffs

who are the victim’s spouse in the
same case

The total number of plaintiffs
who are the victim’s parents in

the same case

The total number of plaintiffs
who are the victim’s parents in

the same case

2 The age of the victim
The total number of plaintiffs

who are the victim’s children in
the same case

The total number of plaintiffs
who are the victim’s children in

the same case

3 The number of relatives that the
plaintiff needs to support The age of the victim The total number of plaintiffs in

the same case

4 The number of motorcycles that
the plaintiff possesses

The number of children that the
defendant raises The age of the victim

5 The defendant’s income The number of investments that
the defendant holds The plaintiff is the victim’s parent

6
The defendant belongs to

disadvantaged and
vulnerable groups

The sum of mental suffering
damages that all plaintiffs claim

in the same case

The plaintiff’s educational
background

7 The mental suffering damages
that plaintiff claims

The mental suffering damages
that plaintiff claims The plaintiff’s income

8 The amount of real estate that the
plaintiff possesses

9 The defendant’s educational
background

10 The defendant’s income

11 The amount of real estate that the
defendant possesses

12
The sum of mental suffering

damages that all plaintiffs claim
in the same case

13 The mental suffering damages
that the plaintiff claims

3.2. Results of Hyperparameter Tuning

Table 10 shows that the generalization performance of KNN and RF improved after
hyperparameter tuning, but the generalization performance of CART remains unchanged,
which means that the combination of hyperparameters before tuning was already the best
hyperparameter combination of CART. In addition, the best hyperparameter combinations
of KNN, CART, and RF are listed in Table 11.
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Table 10. Results of hyperparameter tuning using KNN, CART, and RF.

Model Performance MSE RMSE R2

KNN
Before tuning 1138.5934 33.7430 0.5709

After tuning 762.1359 27.6068 0.7128

CART
Before tuning 750.0399 27.3868 0.7173

After tuning 750.0399 27.3868 0.7173

RF
Before tuning 742.6653 27.2518 0.7201

After tuning 728.9268 26.9986 0.7253

Table 11. The best hyperparameter combinations of KNN, CART, and RF.

Model Hyperparameter Value of Hyperparameter

KNN

Distance metric Manhattan distance

The value of k 5

Distance weighting weighting by the inverse of
neighbors’ distance

CART

Splitting criterion mean absolute error criterion

The size of tree 17

Minimum node size 2

RF

The number of trees 200

The size of the random subset of features the square root of the number
of features

Splitting criterion mean squared error criterion

The size of the tree 16

Minimum node size 2

3.3. Final Performance Evaluation

As seen in Table 12, the optimal KNN model performed very well on the training
data, but the generalization performance of the optimal KNN model was worse than the
performance on the training set. Therefore, it obviously suffered from overfitting. However,
it cannot be denied that the optimal KNN model achieved a good R2 score of 0.7128.

Table 12. The performance of the optimal KNN model.

Model Performance MSE RMSE R2

Training error 77.8977 8.8259 0.9785

Testing error (generalization performance) 762.1359 27.6068 0.7128

As shown in Table 13, the optimal CART model performed well on the training set,
whereas the generalization performance of the optimal CART model was not as good as the
performance on the training data. Thus, it apparently suffered from overfitting. However,
it cannot be denied that the optimal CART model achieved a good R2 score of 0.7173.

Table 13. The performance of the optimal CART model.

Model Performance MSE RMSE R2

Training error 87.2880 9.3428 0.9759

Testing error (generalization performance) 750.0399 27.3868 0.7173
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Table 14 shows that the best RF model performed well on the training set; however,
the generalization performance of the best RF model was not as good as the performance
on the training set. Therefore, it suffered from overfitting. However, it cannot be denied
that the best RF model achieved a good R2 score of 0.7253.

Table 14. The performance of the optimal RF model.

Model Performance MSE RMSE R2

Training error 122.6508 11.0747 0.9661

Testing error (generalization performance) 728.9268 26.9986 0.7253

Overall, Table 14 shows that the optimal RF model performed best and with the
slightest overfitting among those optimal models, and the rankings of MSE, RMSE, and R2

in Table 15 identically show that the optimal RF model was in the first position and was the
top performing learning algorithm, as we expected at first. After all, ensemble learning is
often considered to be more robust than a single base learner in practice [16]. Therefore, we
choose it to be the final predictive model for plaintiffs, defendants, and lawyers, serving
as a robust tool to predict the potential outcomes of judgments regarding discretionary
damages of mental suffering in fatal car accident cases.

Table 15. The generalization performance and ranking of optimal KNN, CART, and RF models.

Model MSE RMSE R2

KNN 762.1359 27.6068 0.7128

CART 750.0399 27.3868 0.7173

RF 728.9268 26.9986 0.7253

Rankings

1st RF RF RF

2nd CART CART CART

3rd KNN KNN KNN

On the other hand, the optimal CART model and KNN model were ranked in second
position and last position, respectively, although their performances were only slightly
worse than that of the optimal RF model; therefore, these two models clearly show some
potential in predicting discretionary damages for mental suffering in fatal car accident
cases.

3.4. Feature Importance Evaluation

As seen in Figures 2–4 and Table 16, the most important feature is “the mental suffering
damages that plaintiff claims”, as we expected at first, and it corresponds with the results
of feature selection, i.e., “the mental suffering damages that plaintiff claims” was selected
by all models. In fact, this feature represents the disposition principle that all judges in
Taiwan must abide by while assessing mental suffering damages, i.e., the assessment of
mental suffering damages must be limited to the mental suffering damages that plaintiff
claims. In a word, the final discretionary damages of mental suffering can only be equal to
or lower than the mental suffering damages that the plaintiff claims. Therefore, the ML
algorithms and permutation feature importance seem to be very clever and useful, because
they automatically learn from the dataset and successfully reveal the important disposition
principle in Taiwan without being taught by humans.
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Figure 2. Feature importance using permutation on the KNN model.

Figure 3. Feature importance using permutation on the CART model.
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Figure 4. Feature importance using permutation on the RF model.

Table 16. Comparison of important features.

Feature KNN CART RF

The mental suffering damages that the plaintiff claims 0.8105 1.1063 0.3327

The age of the victim 0.3685 0.2432 0.0447

The defendant’s income 0.3205 - 0.0577

The sum of mental suffering damages that all plaintiffs
claim in the same case - 0.2680 0.0712

The total number of plaintiffs who are the victim’s
parents in the same case - 0.0647 0.0343

The total number of plaintiffs who are the victim’s
children in the same case - 0.0793 0.1254

Next, we focus on “the age of the victim”, because it was selected by all models, and
the ranking of that feature was high in the KNN and CART models. In practice, some
judges indicate that the age of the victim will affect the level of mental suffering, and some
studies have ascertained that the older the victim is, the lower the discretionary damages
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of mental suffering will be [2]. Therefore, we may infer that the judges will consider the
level of mental suffering to be slighter if the victim is older. In general, the death of a
young person is often considered to be a pity according to public opinion, but the death
of an older person, especially at a great age, is often considered to be a “happy death” or
“enough”, according to public opinion.

Moreover, “the defendant’s income” was selected and found to be important by the
KNN model, and it was also selected by the RF model; thus, we can infer that this fea-
ture will have a major effect on the discretionary damages of mental suffering. However,
whether the defendant’s income or earning capacity should be considered while assessing
the mental suffering damages gives rise to much controversy. Some studies have estab-
lished that the defendant’s income or earning capacity is completely irrelevant to mental
suffering damages [49], whereas some other studies have discerned that the defendant’s
income or earning capacity is completely relevant to the mental suffering damages and
should be considered, pointing out that the higher the defendant’s income or earning
capacity, the higher the discretionary damages of mental suffering should be [17]. It is clear
that judges in Taiwan may take the view and opinion of the latter, according to the ranking
of feature importance we revealed.

Finally, “the total number of plaintiffs who are victim’s parents in the same case”, “the
total number of plaintiffs who are victim’s children in the same case”, and “the sum of
mental suffering damages that all plaintiffs claim in the same case” were selected by the
CART and RF models; they were found to be important by the RF model, but only slightly
important by the CART model. The reason why we built these features was to find out
whether judges will reduce the discretionary damages of mental suffering in order to ease
the burden on the defendant when there are multiple plaintiffs in the same case. Therefore,
we may infer that our hypothesis is true.

In summary, “the mental suffering damages that plaintiff claims” and “the age of
the victim” are key legal factors while assessing the mental suffering damages in fatal
car accident cases in Taiwan. Apart from those features, “the defendant’s income”, “the
total number of plaintiffs who are victim’s parents in the same case”, “the total number of
plaintiffs who are victim’s children in the same case”, and “the sum of mental suffering
damages that all plaintiffs claim in the same case” clearly indicate that judges are mainly
concerned with whether the defendant is able to pay the mental suffering damages while
assessing the mental suffering damages in fatal car accident cases in Taiwan.

4. Conclusions

To begin with, we successfully built an optimal regression model based on RF and
achieved good performance, which can serve as a robust and professional tool for litigants
and their lawyers, to predict the discretionary damages of mental suffering in advance;
they can easily break the uncertainty of judicial outcome and wisely decide whether they
should litigate or not. In addition, we revealed the importance ranking of legal factors, so
legal actors can focus on the crucial factors such as “the mental suffering damages that
plaintiff claims” and “the age of the victim” in order to develop the best litigation strategy.
For example, they can concentrate on finding the evidentiary documents and materials
concerning the most important or dominant legal factors instead of wasting precious time
and money on irrelevant legal factors. Moreover, we also found that judges will reduce the
discretionary damages of mental suffering in order to ease the burden on the defendant
when there are multiple plaintiffs in the same case, and judges are mainly concerned
with whether the defendant is able to pay the costs while assessing the mental suffering
damages in fatal car accident cases in Taiwan. However, it cannot be denied that a good
predictive model might possibly replace human judges, because it can easily make precise
predictions about discretionary damages of mental suffering and maintain the coherence of
discretionary damages of mental suffering. Similarly, the importance of lawyers might be
lost because people can easily predict the potential outcomes of judgments and develop the
best litigation strategy by themselves with the help of predictive models and the ranking
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of legal factors, i.e., they can access high-quality and professional legal consulting services
without expensive payment.

On the other hand, this methodology could be applied to other types of mental suffer-
ing damages prediction tasks in Taiwan with minor and suitable adjustments, including
mental suffering from physical injuries or pain, humiliation, privacy infringements, and
divorce. Moreover, people can claim mental suffering damages and judges need to consider
several factors such as circumstances of illegal infringement and the earning capability of
two parties in accordance with the Interpretation of the Supreme People’s Court on Prob-
lems regarding the Ascertainment of Compensation Liability for Emotional Damages in
Civil Torts [17], which is similar to the assessment of mental suffering damages in Taiwan;
thus, our methodology could be applied to the region of mainland China after suitable
adjustments, such as replacing the existing features with suitable legal factors.

Despite the achievements, there is still some work that can be done to make this
research more significant. First of all, the dataset we used was too simple; therefore, we
need to increase the amount of data. In addition, that dataset was made by legal experts
and was full of quantitative features; it would be worthwhile extracting the features from
the original judgment documents by NLP techniques to build a new dataset and examine
whether the results can be improved or not. Although the optimal regression model based
on RF achieved good performance with an R2 = 0.7253, it is still far from “a very good
performance with R2 = 0.8”. Therefore, these basic and classic ML algorithms (KNN,
CART, and RF) apparently failed to overcome the obstacle to “a very good regression
model with R2 = 0.8”; thus, it is essential to experiment with advanced ML and DL
algorithms such as SVM, gradient boosting, ANN, CNN, or an adaptive network-based
fuzzy inference system (ANFIS) so that we might develop a very good regression model.

Above all, this study has successfully applied ML techniques to the prediction of
discretionary damages of mental suffering in fatal car accidents in Taiwan and offers a very
useful and handy tool to people and actors in the legal domain, as well as successfully
solving long-standing problems and achieving good results. In addition, it also reveals the
thinking and preferences ongoing in judges’ minds.
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Abbreviations

ANN artificial neural network
ANFIS adaptive network-based fuzzy inference system
BERT bidirectional encoder representations from transformer
CNN convolutional neural network
CRF conditional random field
DL deep learning
GRU gated recurrent unit
KNN k-nearest neighbor
LSTM long short-term memory
ML machine learning
MSE mean squared error
MST mean total sum of squares
NLP natural language processing
R2 R-squared
RFECV recursive feature elimination with cross-validation
RMSE root mean squared error
SBS sequential backward selection
SFS sequential forward selection
SVM support vector machine
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