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Abstract: The theory of dynamical systems and their widespread applications involve, for example,
the Lane–Emden-type equations which are known to arise in initial- and boundary-value problems
with singularity at the time t = 0. The main objective of this paper is to make use of some mathemat-
ical analytic tools and techniques in order to numerically solve some reaction–diffusion equations,
which arise in spherical catalysts and spherical biocatalysts, by applying the Chebyshev spectral
collocation method. The proposed scheme has good accuracy. The results are demonstrated by means
of illustrative graphs and numerical tables. The accuracy of the proposed method is verified by a
comparison with the results which are derived by using analytical methods.

Keywords: reaction–diffusion models; dynamical system involving the Lane–Emden-type equations;
spherical catalyst; Lane–Emden problem; spherical biocatalyst; spectral collocation method; shifted
chebyshev polynomials

1. Introduction

The Lane–Emden-type equations are known to arise in initial- and boundary-value
problems with singularity at the time t = 0. Analytical solutions in the neighbourhood of
t = 0 are always possible to find (see [1,2]), such as those given in [3–6]:

v′′ (t) +
γ

t
v′(t) + g(v(t)) = 0, 0 ≤ t ≤ 1, γ > 0 (1)

with the following boundary conditions:

v′(0) = b1 and v(1) = b2 (2)

Here, v(t) denotes the unknown function on [0, 1], v′(0) denotes the derivative of v(t)
at time t = 0, and b1 and b2 are constants.

Equation (1) arises in astrophysics and many other branches of science such as physics,
chemistry and bio-mathematics (see, for example, [7–11]).
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1.1. Spherical Catalyst Model

The Lane–Emden boundary value problem (BVP) models the chemical species dimen-
sionless concentration within a spherical catalyst and is given in [12] as follows:

v′′ (t) +
2
t

v′(t)− ρ2v(t) exp
(

αµ(1− v(t))
1 + µ(1− v(t))

)
= 0 (3)

with the following boundary conditions:

v′(0) = 0 and v(1) = 1 (4)

The effectiveness factor τ is defined by:

τ =
3
ρ2

dv
dt

∣∣∣∣
t=1

1.2. Mathematical Model of the Spherical Biocatalyst Equation

The chemical species dimensionless concentration within a spherical biocatalyst is
modelled by the Lane–Emden equation and is written as follows (see [13]):

v′′ (t) +
2
t

v′(t)− ρ2 (1 + µ)v(t)
1 + µv(t)

= 0 (5)

together with following boundary conditions:

v′(0) = 0 and v(1) = 1 (6)

Here, in this article, we consider spherical catalytic and spherical biocatalyst pellets,
in which non-isothermal single reactions take place.

In refs. [14,15], analytical techniques are used to solve these models. In the year 2017,
Wazwaz [16] used a variational iteration method to solve these models. Subsequently,
in the year 2018, the OHAM technique was used to solve these spherical models (see,
for details, [17]). By using the third-order approximation, these models were solved
numerically in [18]. Furthermore, in [14], these spherical models are solved by using a
numerical technique.

Here, in our present investigation, we propose a spectral collocation method by using
the shifted Chebyshev polynomials for finding the approximate solutions of the spherical
catalyst and spherical biocatalyst models. In this method, we approximate the unknowns
by using the shifted Chebyshev polynomials and truncate then to a finite dimension. Then,
by the use of approximations, the spherical catalyst and spherical biocatalyst models are
changed into a system of simpler equations whose solution leads to the approximate
solution of the spherical catalyst and spherical biocatalyst models. The spectral collocation
method has been used by many authors in order to analyse mathematical models, including
fractional-order models, with applications in physical and engineering sciences and in
many other fields (see [19–38]). Detailed applications of fractional calculus in science and
engineering can be found in [39]. Some applications of iterative and spectral methods to
solve real-world problems can be seen in [40–43]. The results, which we have found in this
article, are demonstrated numerically and illustrated graphically. The main finding of this
paper is that the proposed technique is easy for computation purposes and timesaving. The
results will be helpful for researchers working on applied chemistry. We have performed
all computations on the programming software MATLAB R2018b.
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2. Preliminaries

The third-kind Chebyshev polynomials are defined by the following equivalent
forms [44,45]:

Vm(t) =
cos
(

m + 1
2

)
θ

cos θ
2

=
22m(
2m
2

)P(− 1
2 , 1

2 )
m (t) (7)

where t = cos θ, θ ∈ [0, π] and P(α, β)
m (t) is the Jacobi polynomial of degree m.

The equivalent analytical form of shifted Chebyshev polynomials of the third kind
(α = − 1

2 , β = 1
2 ) is given by

Vi(t) =
i

∑
k=0

(−1)i−k Γ
(
i + 3

2
)
Γ(i + k + 1)

Γ
(
k + 3

2
)
Γ(i + 1)(i− k)!k!

tk (8)

The shifted Chebyshev polynomials of the third kind are orthogonal in the interval
[0, 1] with respect to the following weight function:

w(t) =
√

t
1− t

and have their orthogonality property as follows:

∫ 1

0
Vn(t)Vm(t)w(t)dt =

{
π
2 , n = m
0, n 6= m

(9)

A function f ∈ L2
w(t)[0, 1], with | f ′′ (t)| ≤ Q, can be written as follows:

f (t) = lim
n→∞

n

∑
i=0

ciVi(t), (10)

where

ci = 〈 f (t), Vi(t)〉 =
2
π

w
1∫

0

f (t)Vi(t)w(t)dt (11)

The finite-dimensional approximation for Equation (6) is given by

f ∼=
m

∑
i=0

ciVi(t) = CTλm(t), (12)

where
C = [c0, c1, . . . ., cm]

Tand λm(t) = [V0, V1, . . . ., Vm]
T (13)

Theorem 1. If λm(t) = [V0, V1, . . . ., Vm]
Tdenotes the shifted Chebyshev vector and if v > 0, then:

IvVi(t) = I(v)λm(t), (14)

where I(v) = (ε(i, j)) is the (m + 1)× (m + 1) operational matrix of integral of order v and its
(i, j)th entry is given by

ε(i, j)

=
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ( 1

2 )Γ(i+ 3
2 )Γ(i+k+1)Γ(j+l+1)Γ(v+k+l+ 3

2 )(2j+1)j!
(i−k)!(j−l)!(l)! Γ(k+ 3

2 )Γ(i+1)Γ(v+k+1)Γ(j+ 1
2 )Γ(l+ 3

2 )Γ(k+l+v+2)
.

(15)
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Proof. Please see [28].
In this paper, we will use this matrix for v = 1, 2. �

3. Outline of the Proposed and Used Method

In this section, we give an outline of our proposed method. Models with undetermined
constants as an intermediate step in the determination of the non-linear BVP are written
as follows:

v′′ (t) +
2
t

v′(t)− ρ2v(t) exp
(

αµ(1− v(t))
1 + µ(1− v(t))

)
= 0 (16)

v′′ (t) +
2
t

v′(t)− ρ2 (1 + µ)v(t)
1 + µv(t)

= 0 (17)

with
v(0) = β, v′(0) = 0 and v(1) = 1 (18)

where v(0) = β represents an undetermined constant.
We first choose the following approximation:

v′′ (t) = CTλn(t) (19)

Then, by the first-order integration of Equation (18), we obtain

v′(t) = CT I(1)λn(t) + PTλn(t) (20)

Taking the first-order integration of Equation (19), we find that

v(t) = CT I(2)λn(t) + PT I(1)λn(t) + QTλn(t) (21)

where
v′(0) = PTλn(t) and v(0) = QTλn(t) (22)

We now take
1 = DTλn(t) (23)

3.1. The Spherical Catalyst Equation

Combining Equations (15) and (17)–(22), we obtain

CTλn(t) +
2
t

(
CT I(1) + PT

)
λn(t)− ρ2

(
CT I(2) + PT I(1) + QT

)
λn(t) exp

 αµ
(

DT −
(

CT I(2) + PT I(1) + QT
))

λn(t)

(DT + µ(DT − (CT I(2) + PT I(1) + QT)))λn(t)

 = 0 (24)

For Equation (23), the residual is defined by

Rn(t) = CTλn(t) +
2
t

(
CT I(1) + PT

)
λn(t)− ρ2

(
CT I(2) + PT I(1) + QT

)
λn(t) exp

 αµ
(

DT −
(

CT I(2) + PT I(1) + QT
))

λn(t)

(DT + µ(DT − (CT I(2) + PT I(1) + QT)))λn(t)

 (25)

Collocating Equation (24) at n− 1 points, which are given by

ti =
i
n

, i = 1, 2, . . . , n− 1

we have

Rn(ti) = CTλn(ti) +
2
ti
(CT I(1) + PT)λn(ti)− ρ2(CT I(2) + PT I(1) + QT)λn(ti) exp

 αµ
(

DT −
(

CT I(2) + PT I(1) + QT
))

λn(ti)

(DT + µ(DT − (CT I(2) + PT I(1) + QT)))λn(ti)

. (26)
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The corresponding initial and boundary conditions can be written as follows:(
CT I(2) + PT I(1) + QT

)
λn(0) = β(

CT I(2) + PT I(1) + QT
)

λn(1) = 1
(27)

From Equations (25)–(27), we obtain a system of n + 1 equations. Solving this system,
we obtain our solution for the spherical catalyst model.

3.2. The Spherical Biocatalyst Equation

Combining Equations (16)–(22), we obtain

CTλn(t) +
2
t

(
CT I(1) + PT

)
λn(t)− ρ2

(1 + µ)
(

CT I(2) + PT I(1) + QT
)

λn(t)(
DT + µ

(
CT I(2) + PT I(1) + QT

))
λn(t)

= 0 (28)

For Equation (28), the residual is defined by

Rn(t) = CTλn(t) +
2
t

(
CT I(1) + PT

)
λn(t)− ρ2

(1 + µ)
(

CT I(2) + PT I(1) + QT
)

λn(t)(
DT + µ

(
CT I(2) + PT I(1) + QT

))
λn(t)

(29)

Collocating Equation (28) at n− 1 points which are given by

ti =
i
n

, i = 1, 2, . . . , n− 1

we find that

Rn(ti) = CTλn(ti) +
2
ti

(
CT I(1) + PT

)
λn(ti)

−ρ2 (1+µ)(CT I(2)+PT I(1)+QT)λn(ti)

(DT+µ(CT I(2)+PT I(1)+QT))λn(ti)

(30)

The corresponding initial and boundary conditions can be written as follows:(
CT I(2) + PT I(1) + QT

)
λn(0) = β (31)((

CT I(2) + PT I(1) + QT
)

λn(1) = 1 (32)

From Equations (30)–(32), we obtain a system of n + 1 equations. Solving this system,
we obtain our solution for the spherical biocatalyst model.

4. Convergence Analysis

Theorem 2. Let d2v(t)
dt2 ∈ L2

w(t)[0, 1] and
(

d2v(t)
dt2

)
n

be the nth approximation of it obtained by

(n + 1) shifted Chebyshev polynomials of the third kind. Additionally, let
∣∣∣ d4v(t)

dt4

∣∣∣ < M for a

positive constant M. Then, as n→ ∞ , the approximated value
(

d2v(t)
dt2

)
n

converges to the exact

value d2v(t)
dt2 with the following inequality for the expansion coefficients of d2v(t)

dt2 :

|cn| <
M
n2 (33)

Proof. Let
d2v(t)

dt2 =
∞

∑
i=1

ciVi(t) (34)
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Taking the nth approximation of the above equation, we obtain(
d2v(t)

dt2

)
n
=

n

∑
i=1

ciVi(t) (35)

By subtracting Equation (35) from Equation (34), we find that(
d2v(t)

dt2

)
−
(

d2v(t)
dt2

)
n
=

∞

∑
i=n+1

ciVi(t) (36)

The coefficients in Equation (36) are given by

cn = 2
π

1∫
0

(
d2v(t)

dt2

)
Vn(t)w(t)dt

cn = 2
π

1∫
0

(
d2v(t)

dt2

)
Vn(t)

√
t

1−t dt
(37)

If we set 2t− 1 = cos y, then we have

cn =
2
π

π∫
0

(
d2v
dy2

(
1 + cos y

2

)
) cos

(
y +

1
2

)
y cos

(y
2

)
dy (38)

Integrating Equation (38), we obtain

cn =
1

4π

π∫
0

(
d4v
dy4

(
1 + cos y

2

)
)ξn(y)dy (39)

where ξn(y) = sin y
[

1
n

(
sin(n−1)y

n−1 − sin(n+1)y
n+1

)
+ 1

n+1

(
sin ny

n − sin(n+2)y
n+2

)]
.

We now observe that

|ξn(y)| =
∣∣∣sin y

[
1
n

(
sin(n−1)y

n−1 − sin(n+1)y
n+1

)
+ 1

n+1

(
sin ny

n − sin(n+2)y
n+2

)]∣∣∣
=
∣∣∣[ 1

n

(
1

n−1 −
1

n+1

)
+ 1

n+1

(
1
n −

1
n+2

)]∣∣∣
≤
∣∣∣[ 1

n

(
1

n−1 + 1
n+1

)
+ 1

n+1

(
1
n + 1

n+2

)]∣∣∣ < 1
n2

(40)

Furthermore, from Equation (40), we can write

|cn| =

∣∣∣∣∣∣ 1
4π

π∫
0

(
d4x
dy4

(
1 + cos y

2

))
ξn(y)dy

∣∣∣∣∣∣ (41)

Thus, from the given condition, we obtain

|cn|≤
F

4π

∫ π

0
|ξn(y)|dy

which, in view of Equation (40), yields

|cn| <
M

πn2

π∫
0

dy

that is,

|cn| <
M
n2

for a given positive constant M.
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So, in Equation (36), if we proceed to the limit as n→ ∞ , we obtain(
d2v(t)

dt2

)
n
→ d2v(t)

dt2

�

5. Error Estimation

Theorem 3. Let d2v(t)
dt2 ∈ L2

w(t)[0, 1] and
(

d2v(t)
dt2

)
n

be the nth approximation of it obtained by

(n + 1) shifted Chebyshev polynomials of the third kind. If
∣∣∣ d4v(t)

dt4

∣∣∣ < M for some positive constant
M, then the following error estimate holds true:

E2
n, d2v(t)

dt2

≤ πM2

12
G3(n + 1) (42)

where

E
n, d2v(t)

dt2
=

 1∫
0

∣∣∣∣(d2v(t)
dt2

)
−
(

d2v(t)
dt2

)
n

∣∣∣∣2w(t)dt


1
2

and Gn(y) is a Poly-Gamma function given by

Gn(y) = (−1)n+1n!
∞

∑
j=0

1

(y + j)n+1

Proof. The error term is given by

E
n, d2v(t)

dt2
=

(
1∫

0

∣∣∣( d2v(t)
dt2

)
−
(

d2v(t)
dt2

)
n

∣∣∣2w(t)dt

) 1
2

=

(
1∫

0

∣∣∣∣ ∞
∑

i=n+1
ciVi(t)

∣∣∣∣2w(t)dt

) 1
2

(43)

By using the orthogonality property of the third-kind Chebyshev polynomials in
Equation (43), we obtain

E
n, d2v(t)

dt2
=
(π

2 ∑∞
i=n+1|ci|2

) 1
2

and

E2
n, d2v(t)

dt2

≤ πP2

2 ∑∞
i=n+1

1
i4

, (44)

where ∣∣∣∣d4v(t)
dt4

∣∣∣∣ < M

for some positive constant M.
Since

∑∞
i=n+1

1
i4

=
1
6

G3(n + 1) (45)
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we find from Equations (32) and (33) that

E2
n, d2v(t)

dt2

≤ πM2

12
G3(n + 1) (46)

�

6. Numerical Simulations and Discussion

In this section, numerical simulations of our results are presented by using illustrative
figures and numerical tables. We show the effect of the parameters µ, α and ρ on the
concentration of the substance.

6.1. Results for the Spherical Catalyst Model

We first show the effect of the parameters µ, α and ρ on the concentration of the sub-
stance in a spherical catalyst model. Figure 1 illustrates the behaviour of the concentration
v(t; α, µ, ρ) of the substance for different values of α at µ = 1 and ρ = 1.
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Figure 1. Behaviour of the concentration at different values of the parameter.

Figure 2 illustrates the behaviour of the concentration v(t; α, µ, ρ) of the substance
for different values of ρ at µ = 1 and α = 1. From Figures 1 and 2, we can see that
the concentration of the substance shows a continuous behaviour with the values of the
parameters α and ρ.

In Table 1, the results are compared between those derived here by the proposed
method and by the method which was used in [16] for different choices of α and µ = 1 and
ρ = 1.
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Table 1. Comparison of the results with different values of the parameter α.

t Present Method
(α = 0.5)

Method in
[16] (α = 0.5)

Present
Method (α = 1)

Method in
[16] (α=1)

Present Method
(α = 1.5)

Method in
[16] (α = 1.5)

0.0 0.83946 0.83946 0.82874 0.82874 0.81965 0.81965

0.1 0.84301 0.84100 0.83376 0.83040 0.82499 0.82143

0.2 0.84901 0.84562 0.84102 0.83539 0.83276 0.82676

0.3 0.85710 0.85336 0.84995 0.84372 0.84231 0.83565

0.4 0.86801 0.86425 0.86171 0.85542 0.85487 0.84813

0.5 0.88193 0.87834 0.87656 0.87055 0.87069 0.86421

0.6 0.89893 0.89572 0.89458 0.88916 0.88980 0.88393

0.7 0.91917 0.91646 0.91591 0.91132 0.91234 0.90732

0.8 0.94270 0.94067 0.94058 0.93711 0.93825 0.93443

0.9 0.96960 0.96847 0.96858 0.96663 0.96747 0.96530

1.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

In Table 2 below, the results are compared between those derived here by our proposed
method and by the method used in [16] for different choices of ρ and µ = 1 and α = 1.

In Table 3 below, the effectiveness factor (τ) for different choices of the parameters are
listed. From Table 3, we can see that τ increases with the increase in α and decreases with
the increase in ρ.
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Table 2. Comparison of the results with different values of the parameter ρ.

t Present Method
(ρ = 0.5)

Method in
[16] (ρ = 0.5)

Present Method
(ρ = 1.5)

Method in
[16] (ρ = 1.5)

0.0 0.95541 0.95541 0.64719 0.64719

0.1 0.95708 0.95586 0.65480 0.65039

0.2 0.95924 0.95719 0.66754 0.66003

0.3 0.96164 0.95940 0.68476 0.67623

0.4 0.96473 0.96251 0.70812 0.69918

0.5 0.96858 0.96651 0.73814 0.72918

0.6 0.97322 0.97141 0.77515 0.76657

0.7 0.97868 0.97720 0.81960 0.81179

0.8 0.98496 0.98389 0.87175 0.86535

0.9 0.99206 0.99149 0.93181 0.92786

1.0 1.00000 1.00000 1.00000 1.00000

Table 3. Comparison of the effectiveness factor τ with different choices of the parameters.

β α ρ µ Present Method Method in [16]

0.8394623 0.5 1 1 0.9656645 1.003207

0.8287498 1.0 1 1 1 0 0.9943650 1.059701

0.8196580 1.5 1 1 1.0253210 1.098859

0.9554170 1 0.5 1 1.0041781 1.075815

0.8287498 1 1.0 1 0.9943650 1.059701

0.6471921 1 1.5 1 0.9637729 1.029147

In Table 4, we have listed CPU time of computations for different dimensions of basis.

Table 4. CPU time taken in computation for different values of n at β = 0.9554170509, α = 1, µ = 1
and ρ = 0.5.

n Time (s)

4 8.201

7 18.034

10 60.819

6.2. Results for the Spherical Biocatalyst Model

We show here the effect of the parameters µ, α and ρ on the concentration of the sub-
stance in a spherical biocatalyst model. Figure 1 shows the behaviour of the concentration
v(t; α, µ, ρ) of the substance for different values of ρ at µ = 2. From Figure 3, we can see
that the concentration of the substance shows a continuous behaviour with the values of ρ.
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In Table 5 below, the results are compared between those derived here by the proposed
method and those by the method used in [16] for different choices of ρ and µ = 2.

Table 5. Comparison of the results with different choices of the parameter ρ.

t Present
Method (ρ = 1)

Method in
[16] (ρ= 1)

Present
Method (ρ = 2)

Method in
[16] (ρ = 2)

Present
Method (ρ = 3)

Method in
[16] (ρ = 3)

0.0 0.79644 0.79644 0.48206 0.48206 0.21426 0.21426

0.1 0.83673 0.80322 0.50437 0.49965 0.21819 0.23594

0.2 0.86367 0.80322 0.50437 0.49965 0.21819 0.23594

0.3 0.84955 0.81262 0.52743 0.52202 0.24253 0.26447

0.4 0.86303 0.82544 0.55976 0.55404 0.28121 0.30696

0.5 0.87859 0.84227 0.60219 0.59640 0.33626 0.36575

0.6 0.89653 0.86338 0.65556 0.64999 0.41109 0.44360

0.7 0.91761 0.88914 0.72092 0.71586 0.50969 0.54338

0.8 0.94184 0.92005 0.79932 0.79522 0.63704 0.66792

0.9 0.96914 0.95674 0.89191 0.88944 0.79866 0.81958

1.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

In Table 6, the τ values for different choices of parameters are listed. From Table 6, we
can see that τ decreases with the increase in ρ.
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Table 6. Comparison of the effectiveness factor τ with different choices of the parameters.

β ρ µ Present Method Method in [16]

0.7964472 1 1 0.9848465 1.4057760

0.4820697 2 1 0.9468011 0.8943578

0.2142606 3 1 0.7432604 0.6501860

7. Conclusions

In this article, we have studied the behaviour of the concentration of the pellets at the
spherical origin t = 0. The main advantages of the technique, which we have proposed
and used here, are that it handles the singularity at the origin remarkably easily and it
provides an accurate solution at the origin and in the neighbourhood of the origin. Our
proposed method is easy to handle because both of the mathematical models, which
we have considered in this article, are converted into a system of non-linear algebraic
equations. From the illustrative figures and numerical tables, the accuracy and efficiency
of the proposed method are sufficiently clear. It is also observed that the desired accuracy
is achieved by using a lower number of the basis elements. In our future communications,
we can use a different class of polynomials and wavelets in order to possibly achieve a
better accuracy.
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Notations and Abbreviations

CA Concentration inside the pellet
CAs Concentration at the surface of pellet
D Effective diffusivity
E Activation energy
∆H Heat of reaction
K Inside effective thermal conductivity
Kre f Reference reaction constant
r Radial distance
Rg Universal gas constant
rA Arrhenius reaction rate
R Spherical catalytic pellet radius
Ts Temperature at the surface
T Temperature inside the pellet.
v Radial-direction dimensionless concentration
t Dimensionless distance
α Dimensionless heat of reaction
µ Dimensionless activation energy
τ Effectiveness factor
ρ Thiele modulus
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