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Abstract: The ultimate strength of composite columns is a significant factor for engineers and,
therefore, finding a trustworthy and quick method to predict it with a good accuracy is very important.
In the previous studies, the gene expression programming (GEP), as a new methodology, was trained
and tested for a number of concrete-filled steel tube (CFST) samples and a GEP-based equation was
proposed to estimate the ultimate bearing capacity of the CFST columns. In this study, however, the
equation is considered to be validated for its results, and to ensure it is clearly capable of predicting
the ultimate bearing capacity of the columns with high-strength concrete. Therefore, 32 samples with
high-strength concrete were considered and they were modelled using the finite element method
(FEM). The ultimate bearing capacity was obtained by FEM, and was compared with the results
achieved from the GEP equation, and both were compared to the respective experimental results. It
was evident from the results that the majority of values obtained from GEP were closer to the real
experimental data than those obtained from FEM. This demonstrates the accuracy of the predictive
equation obtained from GEP for these types of CFST column.

Keywords: confinement of concrete; CFST composite column; artificial intelligence; gene-expression
programming; hybrid techniques; finite element method (FEM)

1. Introduction

Analysis of previous experimental tests reveals that there are some key parameters
impacting both performance and strength of concrete-filled steel tube (CFST) columns
which are length to diameter ratio, wall thickness, and the interaction between steel
tube and concrete [1–3]. In recent years, applying artificial intelligence (AI) techniques
such as artificial neural network (ANN), genetic programming (GP), and gene expression
programming (GEP) to predict and optimize engineering problems, has become very
popular. Usually, this is because the AI approaches are faster and with less complexity in
comparison with the finite element analysis (FEA). The external and local imperfections,
boundary conditions, and residual stresses could be perfectly simulated by FEA. It provides
load-deflection curves and determines the strain and stress at each stage; however, the
accuracy of prediction by FE models is highly impacted by input elements, some of which
cannot be modelled thoroughly [4]. Artificial intelligence (AI) techniques and particularly
the gene expression programming (GEP) trump the FEA methods in terms of ease and
speed of analysis, and better accuracy in predictions and optimizations specifically in
obtaining the ultimate bearing capacity of CFST columns [5–7].

In CFST columns, concrete provides a radial lateral pressure to the steel tube. Besides,
the steel tube supports concrete from spalling by means of confinement. In addition, the
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concrete core avoids inward buckling of the steel. Therefore, ductility and strength of these
columns are usually high. Furthermore, the confinement of concrete in circular columns
is more efficient compared to other types of sections which results in a better interaction
and less slip between steel tube and concrete. It is consequently can lead to a higher axial
strength and a better structural integrity [8,9].

There is a few research which focused on the analysis of the CFST composite columns
using artificial intelligence (AI) techniques. In the previous study [10] an extensive data col-
lection was performed and they were analyzed by GEP. A valuable equation was generated
to estimate the ultimate strength of the CFST columns and it was optimized afterwards [1].
Most studies in civil engineering are based on experimental work and numerical analysis
using the finite element method (FEM). Normally, using an equation-based analysis is less
time consuming and less costly than the laboratory tests and computational modelling and
analysis. Therefore, this study tried to ensure that the proposed GEP-based equation could
be reliable to be used in prediction of the bearing capacity of CFST composite columns.
Furthermore, in order to show fidelity of the results from the GEP equation, in addition
to comparison of them with the finite element analysis (FEA), the outcomes were also
compared with the experimental ones in the literature.

In previous research [1,10], 303 samples of CFST columns were collected from literature
and they were trained and tested using GEP. The assessment was performed five times
and each time led to an equation. The equations were classified based on the coefficient of
determination (R2) and the one with the closest R square to 1 was picked up for the further
analysis. Then the GEP prediction equation has been optimized using AI optimization
techniques. In this research, however, 32 different samples of those were collected in the
previous research are considered with high-strength concrete but still within the range of
the previous study. They are numerically modelled and analyzed to obtain their ultimate
bearing capacity for the comparison purpose

FEM is a tool for numerical analysis which can model different types of composite
columns. It could be a useful method in many of such cases specifically in the prediction
of ultimate bearing capacity. However, after applying AI techniques for the composite
columns [11–14], these novel methods were presented more promising results compared
with the results of the FEA. Recently, AI techniques such as ANN and GEP are widely being
used in the civil engineering to predict and optimize various criteria in this regard [15–21].
Following this, conventional mechanical calculations and also numerical analysis can be op-
timized by these intelligent methods following trends observed from recent reports [22–37].
Nevertheless, there is lack of research in the prediction of load bearing capacity or the com-
pressive strength of composite columns specifically CFST columns with the AI approaches.

2. A Brief Background of Gene Expression Programming (GEP) and Finite Element
Analysis (FEA)

Recently, GEP has gained recognition among civil engineers. In fact, it has shown
a good capability in prediction of some engineering problems with an acceptable accu-
racy [38]. Table 1 indicates a list of recent studies using AI approaches together with
the numbers of samples and the analyzed parameters. In solving structural engineering
problems, AI has become quite popular recently, specifically in prediction of the ultimate
bearing capacity of composite columns [39–41].

GEP benefits from two main chromosomes, and the expression tree (ET) provides
solutions for removing the limitations of two older algorithms. The codifications are
shown in the form of a string in GEP, which is in fact obtained from Karva programing
language and can present a behavior like ETs. One of the interesting functions of GEP is
that it can present its own models using mathematical equations. In fact, mathematical
equations create relation between independent parameters. The GEP modeling process
begins with the random creation of chromosomes for determined numbers, which follows
Karva language (Karva is a symbolic language to introduce chromosomes). These symbolic
chromosomes should be then defined as trees with different size and shapes (expression
trees). These points are investigated by the functions that are responsible for controlling
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models and their adaptability. These functions have different types that can be defined by
different criteria [10,19,38].

Table 1. Review studies for application of artificial intelligence (AI) for the composite columns.

Technique Input Output Description Reference

GEP D, t, fy, fc, L, tf,ff, Ef P 92 FRP-CFST columns [39]
ANN D, t, fy, fc, L P 633 CCFST columns [40]
GEP D, t, fy, fc, L P 314 CCFST columns [21]
ANN D, t, fy, fc, L P 272 CCFST columns [33]
ANN D, t, fy, fc, L P 205 CFST columns [42]
SVM B, t, fy, fc, L, Ec, Es P 180 SCFST columns [34]

ANFIS-GA; ANFIS-PSO D, t, tp, fy, fc, L P 57 steel Y-section columns [35]
ANN fc, L, D, tf, Ef, εfu, εcc P 465 FRP-CCFST columns [36]

GP fc, L, D, tf, Ef P 832 FRP-CCFST columns [37]

D:diameter; t: thickness; fy: yield stress of steel tube; fc: concrete compressive strength; L: length; tf: thickness of ply multiplied by FRP
layers; ff: tensile strength of FRP; Ef: modulus of elasticity for FRP, B: width; Ec: concrete modulus of elasticity; Es: steel modulus of
elasticity; tp: thickness of the plate εfu: ultimate strain of FRP sheet; εcc: strain of confined column; GEP: gene expression programming;
ANN: artificial neural network; SVM: support vector machine; ANFIS: adaptive neuro-fuzzy inference system; GA: genetic algorithm; PSO:
particle swarm optimization.

On the other hand, a lot of scholars applied numerical methods to model and assess
the mechanical behavior of CFST columns since experimental investigations are costly and
time-consuming, and also have some limitations such as materials preparation [4,43–45].
In some of these studies, comparisons were made between the results of ultimate bearing
capacity achieved from the FEA and the outcome reached by the experimental tests. They
indicated a good agreement with the results obtained by FEA methods [46,47]. Neverthe-
less, it is believed that the GEP equation, generated from the previous study [10], is able to
predict the maximum strength of CFST columns with a better accuracy compared to the
FEA. Therefore, this study presents a valuable comparison between the methods which
can be beneficial for the engineers to calculate the ultimate load bearing capacity faster and
more accurately.

3. Prediction of Bearing Capacity of Concrete-Filled Steel Tube (CFST) Columns by
Finite Element Analysis (FEA)
3.1. Brief Introduction

The accuracy of prediction from FEA is significantly impacted by input parameters,
specifically selection of appropriate concrete model [4]. Moreover, there could be slip
between two connected materials with different properties although a fully shear connec-
tion has to be assumed and simulated. In order to demonstrate the superior accuracy of
predictions based on the GEP equation (Equation (1)) [10], 32 CFST columns were collected
from recent literature and numerically modelled using FEA. Figure 1 shows a summary
of the process of this modelling. As is evident, first of all, the data were collected for
modelling and then, in order to achieve trustworthy results, convergence and mesh studies
were performed for each column separately and after that the models were analyzed using
ABAQUS [48].

Pexp = (
√

d0 × (2 × d1) + (d4 × (
√

d1 − (6.219 − d3))) + [(8.078 × d4) + (0.626 × d2)]/tanh(−2.831) (1)

where: d(0) = fC(MPa), d(1) = D (mm), d(2) = L (mm), d(3) = t (mm),d(4) = fy (MPa).
Even though tremendous effort was previously made to model concrete-filled steel

tubular column using FEA, this methodology may not be helpful in specific cases, par-
ticularly while assuming quick development and usage of thin-walled steel tube or the
high-strength concrete [4,49,50]. FEA is performed according to the circular CFST (CCFST)
specimens from the numbers of studies [51–56] which carry different geometries, material
properties, boundary and support conditions, and loading functions. However, for the AI
investigation, all of them were considered to be in the range of selected parameters. For the
ultimate strength of the CFST columns, 1242.2 kN to 9187 kN was considered and, 36.2 MPa
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to 193.3 MPa was chosen for the concrete compressive strength. For the columns’ length
and diameter, 200 mm to 756 mm and 114.3 mm to 219.1 mm were considered respectively.
In addition, the range of 2.5 mm to 10 mm was selected for the thickness, and the yield
stress of steel tube is considered as 227 MPa to 428 MPa.
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Figure 1. Diagram of finite element analysis (FEA) of the concrete-filled steel tube (CFST) columns.

3.2. FE Modelling and Analysis

Thirty-two CFST samples from literature [51–60] were collected and their specifications
summarized in Table A1 (Appendix A). As is obvious from Table A1, different parameters
such as diameter (D), length (L), thickness (t), length to diameter ratio (L/D), diameter
to thickness ratio (D/t), yield stress of the steel tube (fy), and the concrete compressive
strength (fc), the modulus of elasticity of concrete (Ec), the modulus of elasticity of the
steel tube (Es), and the Poisson’s ratio (υ) were considered. Developing new techniques to
analyze, assess, and predict the behaviour of composite columns is usually challenging for
the engineers [51,61]. For the modelling purpose in FEA, different types of elements were
used; in order to model concrete, a 3D deformable solid element and for the steel tube,
the shell element, were applied. Furthermore, for the end plates, a solid element C3D8R
was applied. For the plastic behaviour of concrete, concrete damage plasticity model is
considered and the specifications are assumed according to the previous similar studies
which led to acceptable results in analysis [43–47,56]. For simulation of the boundary
conditions of models, the reference point was pinned which means the displacement
assumed zero but rotation was free (U1 = U2 = U3 = 0). In addition, for the bottom
end plate, it was assumed that there is no movement in x and y direction (U1 = U2 = 0).
However, in the z direction the column was free to move upwards or downwards to
simulate the loading condition.

In the FE modelling and in order to achieve better simulation of the interaction
between the steel tube and the concrete, the gap element was applied to achieve more
accurate results. This is an element in ABAQUS software which can be inserted and
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adjusted for a better simulation of interaction specifically between two different materials.
The gap element allows the simulation of slip in the way that it prevents the penetration
of one node into the node next to it. The shear stress can be simulated through a friction
coefficient assigned to the gap element [58,59]. Therefore, in order to simulate more
accurately, the interaction between materials was introduced to the system using the
option of “allow separation after contact” and for this purpose, three different contacts
were applied; (1) contact between steel tube and concrete with free normal and tangential
separation; (2) contact between endplate and concrete, which is considered as normal
interaction; and (3) contact between endplate and steel tube, which was applied as the tie
connection to act like solid welding. Considering all processing data, boundary conditions,
interaction between concrete and steel, and the modelling procedures, the final results were
obtained and verified; afterwards they were compared with the artificial intelligence (AI)
results generated from Equation (1).

3.3. The Results of FE Simulation

Some of the CFST samples which were modelled by the finite element method (FEM)
are indicated in Figure 2a,b. In all of the cases, the column was subjected to axial loading
in the center of the column along the Y axis. In this study, different columns with various
L/D and D/t were modelled and their ultimate bearing capacity was obtained accordingly.
The results were compared to the corresponding experimental results and the outcome
is summarized in Table 2. The Pexp shows the experimental load-bearing capacity of the
circular CFST columns while the PFE indicates the result of the FE analysis for the ultimate
bearing capacity of the column. The last column of Table 2 is a comparison between
the experimental results and the finite element results which is reported as an error in
percentage. In some cases, such as model Nos. 4, 5, 10–12, 14–18, 20–24, and 32, the bearing
capacity predicted by FE was less than the measured experimental value of the bearing
capacity. As is evident from Table 2, the ultimate bearing capacity from the experimental
tests and those obtained from the numerical analysis are in good agreement and acceptable
range with the maximum difference equal to or less than 15%.

In the model Nos. 3, 9, 19, 26, 27, the error is equal or even less than 5%; nevertheless,
in the model Nos. 1, 2, 4–6, 8, 10, 12, 13, 15, 17, 21–24, 28, 30–32, the error is between
10–15% which are still in the acceptable range based on previous studies in the literature.
In addition, Figures 3–8 show the axial strength of each finite element model versus the
time which is 1 h for the model numbers 1–31 as they are normal columns and reacted to
loading earlier, and 10 h for the Model No. 32 as it is considered as a huge, tall column
which was taken more time to start reactions. As is evident from Figures 3–8, the maximum
bearing capacity of each model is less than 10,000 kN; however, the running time to reach
the ultimate bearing capacity is different for each model. The 32 FE models were divided
into different groups based on the range of axial load bearing capacity of the column, the
modes of failure, and the running time of the operation of the analysis. For this reason,
model numbers 1–9 have been categorized as one group; model numbers 10–12 and 14
have been put as another group; model numbers 15–20, model numbers 21–25, and model
numbers 26–28 have been categorized as three separated groups. This is due to a different
running time and different range of ultimate axial strength which were resulted from each
model. Nevertheless, the results of the above groups were taken into consideration on a
1-hour basis while the model number 13 and model numbers 29–32 have been indicated in
a separated group and their performance was analyzed within 10 h of running as shown in
Figure 8.



Appl. Sci. 2021, 11, 10468 6 of 15

 

 

(a) 

 

 

(b) 

Figure 2. (a) FE modelling of Model No. 1 with PFE 3171 kN; Model No. 2 with PFE 2640 kN; (b) FE modelling of Model
No. 3 with PFE 7919 kN; Model No. 4 with PFE 7928 kN.
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Table 2. Comparison of the experimental results and FE results.

No. Pexp (kN) PFE (kN) Error (FE) (%)

1 2866 3171 11
2 2314 2640 14
3 7837 7919 1
4 9085 7928 13
5 9187 7994 13
6 6915 7946 15
7 7407 8032 8
8 6838 7791 14
9 7569 7890 4
10 1771 1554 12
11 3339 3037 9
12 3501 3050 13
13 4837 4320 11
14 4216 3850 9
15 4330 3812 12
16 4751 4313 9
17 4930 4379 11
18 5254 4738 10
19 2160 2184 1
20 2250 2092 7
21 1242.2 1100 11
22 1425.3 1225 14
23 1637.9 1432 13
24 1943.4 1672 14
25 2866 3088 8
26 2550 2642 4
27 3150 3195 1
28 3400 3926 15
29 3850 4073 6
30 5400 5993 11
31 3338 3854 15
32 8648 7694 11

Figure 2. (a) FE modelling of Model No. 1 with PFE 3171 kN; Model No. 2 with PFE 2640 kN;.(b) FE modelling of 
Model No. 3 with PFE 7919 kN; Model No. 4 with PFE 7928 kN;. 

 

 

 

 

Figure 3. Axial strength versus time for model numbers 1–9. 
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Figure 4. Axial strength versus time for model numbers 10–12 and 14. 
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Figure 5. Axial strength versus time for model numbers 15–20. 
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Figure 7. Axial strength versus time for model numbers 26–28. 

 

 

 

 

Figure 7. Axial strength versus time for model numbers 26–28.
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Figure 8. Axial strength versus time for model numbers 13, 29–32. 

 

Figure 8. Axial strength versus time for model numbers 13, 29–32.

4. Results, Comparison, and Discussion of the GEP Equation Outcomes with the
FEA Results

In this section, the data of those 32 samples were input into Equation (1) and the
results were compared with those obtained from the FEA and the outcome summarized in
Table 3. The last two columns in Table 3 present the error between the bearing capacity
obtained from the FEA and the GEP equation with the experimental results. As is evident,
in most of the cases, the ultimate bearing capacity achieved from the GEP equation is
closer to the real data obtained from the experimental test. In five samples (3, 9, 23, 27,
30), FE results were manifest a better prediction of the maximum bearing capacity which
could be due to specific conditions of the composite columns such as lower L/D ratio,
slenderness rate, and the strength of the materials. Therefore, in these special cases, the
prediction from the GEP equation may not be good enough due to wide ranges of input
datasets. Nevertheless, more than 85% of the predictions by Equation (1) showed very
good agreement with the experimental results. This proves the feasibility of this equation
and the GEP approach for estimation of the maximum bearing capacity of such composite
columns. If the maximum and minimum strength of the CFST columns resulting from
the experimental work and their corresponding values from FEA and GEP are taken into
consideration, it can be seen that the column sample No. 5 with the maximum experimental
bearing capacity of 9187 kN has the closest predicted value of 8929.05 kN from the GEP
equation. On the other hand, the column No. 21 with the minimum experimental bearing
capacity of 1242.2 kN also has the most accurate value of 1242.01 kN from its corresponding
GEP equation result. Therefore, the GEP-based equation yields very good results compared
to those from the FEA.

Furthermore, according to the Table 3, model numbers 3, 9, 23, 27, and 30 presented a
closer value of ultimate bearing capacity to the corresponding experimental outcome in the
FEA instead of AI analysis using the GEP equation. In fact, this is because these models
are short columns, stub columns, or composite column with a low or a very high strength
materials, or they are the columns subjected to a kind of impact loading; Therefore, the
prediction by the GEP equation led to less accuracy compared to the FEA. Nevertheless, as
can be clearly inferred, the GEP equation results for 27 models out of 32 models indicated
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more accurate prediction and this shows that the generated prediction equation from GEP
is sufficiently capable to predict the ultimate bearing capacity of such columns.

Table 3. Comparison of the GEP equation results and the FEA results with the experimental
test results.

No. Pexp (kN) PFE (kN) PGEP (kN) Error (FE) (%) Error (GEP) (%)

1 2866 3171 3151.69 11 9.9
2 2314 2640 2113.89 14 8.6
3 7837 7919 6894.05 1 12.0
4 9085 7928 8798.49 13 3.2
5 9187 7994 8929.05 13 2.8
6 6915 7946 6637.38 15 4.0
7 7407 8032 6849.84 8 7.5
8 6838 7791 6391.7 14 6.5
9 7529 7890 6834.93 4 9.7
10 1771 1554 1815.07 12 2.5
11 3339 3037 3086.68 9 7.6
12 3501 3050 3331.11 13 4.9
13 4837 4320 4438.7 11 8.2
14 4216 3850 4098.37 9 2.8
15 4330 3812 4549.91 12 5.1
16 4751 4313 4587.73 9 3.4
17 4930 4379 4808.45 11 2.5
18 5254 4738 5756.6 10 9.6
19 2160 2184 2160.52 1 0.0
20 2250 2092 2143.02 7 4.8
21 1242.2 1100 1242.01 11 0.0
22 1425.3 1225 1625.42 14 14
23 1637.9 1432 2022.22 13 23
24 1943.4 1672 2213.29 14 13.9
25 2866 3088 3077.52 8 7.4
26 2550 2642 2465.14 4 3.3
27 3150 3195 2852.55 1 9.4
28 3400 3926 3031.56 15 10.8
29 3850 4073 3672.81 6 4.6
30 5400 5993 4703.31 11 12.9
31 3338 3854 3569.71 15 6.9
32 8648 7694 8870 11 2.6

5. Concluding Remarks

Prediction of the bearing capacity of CFST columns is always important for the
engineers. Due to some limitations in analysis by means of FEA, much efforts have been
expended in attempts to find some other feasible and less time-consuming methods for
prediction of the maximum capacity that CFST columns can withstand, and among them
using AI techniques are widely being considered. This is because AI approaches such
as GEP in most of the cases have shown better results in comparison with the FEA. In
this study, 32 CFST columns, in the acceptable specification range of the AI-GEP analysis,
were modeled and analyzed using the FEM. The results obtained from ABAQUS software
were compared with the outcomes achieved from the GEP-based equation (Equation (1)).
According to the results:

• A very good agreement is evident between the experimental outcomes and the GEP
equation results with a less than 14% difference of the estimated bearing capacity for
the majority of the cases;

• More than 85% of the results from Equation (1) were in accordance with the experimen-
tal results which proves the suitability and workability of this GEP-based equation for
the prediction of the ultimate bearing capacity of the CFST columns;

• Only five models showed considerable differences in predicted values by GEP com-
pared to the experimental data which could be because of the specific conditions of
the composite columns such as low L/D ratio, slenderness rate, use of very high or
very low strength for materials and the application of heavy loads to the columns.
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It is possible to further study the CFST columns with the special conditions as ex-
plained above and find a more suitable GEP-based equation for those columns by training
and testing more data. For this reason, it is recommended to set limitations on the specifi-
cations of the CFST columns to provide an equation with better prediction in comparison
with the experimental results.
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Appendix A

Table A1. Specification of the samples for the FEA.

No. Ref.
No D (mm) L (mm) t

(mm) L/D D/t fy
(MPa)

Es
(GPa)

f’c
(MPa)

Ec
(GPa) υ

1 [25] 114.3 210 6.3 1.84 18.14 428 209 173.5 63 0.3
2 [25] 114.3 250 3.6 2.19 31.75 403 213 184.2 63 0.3
3 [25] 219.1 600 5 2.74 43.82 380 205 185.1 66 0.3
4 [25] 219.1 600 10 2.74 21.91 381 212 185.1 66 0.3
5 [25] 219.1 600 10 2.74 21.91 381 212 193.3 67 0.3
6 [25] 219.1 600 6.3 2.74 34.78 300 202 163 62 0.3
7 [25] 219.1 600 6.3 2.74 34.78 300 202 175.4 58 0.3
8 [25] 219.1 600 6.3 2.74 34.78 300 202 148.8 54 0.3
9 [25] 219.1 600 6.3 2.74 34.78 300 202 174.5 56 0.3

10 [6] 168.6 645 3.9 3.83 43.23 363 206 36.2 33 0.3
11 [6] 168.6 645 3.9 3.83 43.23 363 206 95.8 33 0.3
12 [6] 164.2 652 2.5 3.97 65.68 377 206 158.46 33 0.3
13 [6] 189 756 3 4.00 63.00 398 206 158.46 33 0.3
14 [6] 168.6 648 3.9 3.84 43.23 363 206 165.49 33 0.3
15 [6] 169 645 4.8 3.82 35.21 399 206 167.87 33 0.3
16 [6] 168.7 645 5.2 3.82 32.44 405 206 158.75 33 0.3
17 [6] 168.8 650 5.7 3.85 29.61 452 206 151.91 33 0.3
18 [6] 168.1 645 8.1 3.84 20.75 409 206 158.75 33 0.3
19 [6] 165 500 2.81 3.03 58.72 350 212 67.94 67 0.3
20 [6] 165 500 2.76 3.03 59.78 350 212 67.94 67 0.3
21 [6] 114.3 342.9 3.35 3.00 34.12 287.33 212 86.21 67 0.3
22 [6] 114.3 342.9 6 3.00 19.05 342.95 212 56.99 67 0.3
23 [6] 114.3 342.9 6 3.00 19.05 342.95 212 86.21 67 0.3
24 [6] 114.3 342.9 6 3.00 19.05 342.95 212 102.43 67 0.3
25 [6] 114.3 200 6.3 1.75 18.14 428 212 164.35 67 0.3
26 [7] 200 600 1.945 3.00 102.83 227 212 52.7 67 0.3
27 [7] 200 600 1.945 3.00 102.83 227 212 67.7 67 0.3
28 [7] 200 600 1.945 3.00 102.83 227 205 74.4 58 0.3
29 [7] 260 780 1.945 3.00 133.68 227 205 52.7 58 0.3
30 [7] 260 780 1.945 3.00 133.68 227 205 85.4 58 0.3
31 [14] 299 848 1.68 2.84 177.98 267.5 205 47.2 58 0.3
32 [26] 273 4195 10 15.37 27.30 412 205 180 58 0.3
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