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Abstract: The great commitment in different areas of computer science for the study of computer
networks used to fulfill specific and major business tasks has generated a need for their maintenance
and optimal operability. Distributed denial of service (DDoS) is a frequent threat to computer
networks because of its disruption to the services they cause. This disruption results in the instability
and/or inoperability of the network. There are different classes of DDoS attacks, each with a different
mode of operation, so detecting them has become a difficult task for network monitoring and control
systems. The objective of this work is based on the exploration and choice of a set of data that
represents DDoS attack events, on their treatment in a preprocessing phase, and later, the generation
of a model of sequential neural networks of multi-class classification. This is done to identify and
classify the various types of DDoS attacks. The result was compared with previous works treating
the same dataset used herein. We compared their classification method, against ours. During this
research, the CIC DDoS2019 dataset was used. Previous works carried out with this dataset proposed
a binary classification approach, our approach is based on multi-classification. Our proposed model
was capable of achieving around 94% in metrics such as precision, accuracy, recall and F1 score. The
added value of multiclass classification during this work is identified and compared with binary
classifications using the models presented in the previous.

Keywords: computer networks; data preprocessing; DDoS attack; machine learning; neural networks

1. Introduction

Computer network systems have been deployed to achieve interconnectivity between
devices and carry out essential business tasks. However, this has created great dependence
on the main functions of an entity regarding its connection systems [1]. Main areas such as
banks, health entities and service providers are exposed to risks of instability because of
their strong and necessary dependence on computer networks. Because of this dependency,
it is essential to keep networks in an optimal state, specifically to maintain connectivity,
performance, and security. Network performance can be strongly affected by a security
failure, causing instability to the point of network inoperability [2].

To generate an anomaly in the network, different types of attacks have been used.
Among these, one of the main ones is the denial of service (DoS) attack. There has been an
increase in the number of such attacks in the last ten years, establishing them as a significant
threat to the stability of networks resulting from the alteration of various services [3].

A very common deployment mode of this attack is better known as distributed denial
of service (DDoS). This deploys a DoS attack simultaneously across a computer network. A
successful DDoS attack results in the exhaustion of bandwidth, routing device processing,
network or processing resources, memory, database, and bandwidth of server input and
output operations [4,5].
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There are measures to prevent these attacks. However, it is important to identify the
attack characteristics to take optimal actions to avoid its recurrence [6]. Unfortunately, the
characteristics of these attacks can vary considerably, so it is important to be able to identify
the type of alteration.

Network systems are in constant transformation, making dataset age an important
attribute at the time of their selection. Different datasets have been proposed. First
are DARPA’98 and ’99 [7], which have categorized information for intrusion detection.
However, their implementation dates are very old and there is a risk of not representing
current information correctly. On the other hand, there are the datasets provided by CAIDA,
which were captured with the most recent date in the year 2019. However, the information
is not categorized and cannot be used for supervised learning in ML [8].

The Canadian Institute for Cybersecurity (CIC) has generated a dataset called CIC
DDoS2019 [9]. This dataset was produced in 2019 and has around 25 GB of labeled
information, making it an ideal source of information for DDoS attack detection work.
Furthermore, the reason why we opted for CIC DDoS2019 dataset is due to its high
reliability and its similarity to real world attacks [9].

Different ML detection proposals using the CIC dataset have been used to detect DDoS
attacks, obtaining excellent results [10,11]. However, their detection models operate with
the training of one attack per model, resulting in a binary classification of flow detection,
i.e., benign and malignant.

This work proposes the implementation of a sequential ML model, a data processing
framework and its subsequent processing, which allow detection at a multiclass level of
attacks instantiated in the CIC dataset [9].

Previous works using the CIC DDoS2019 dataset are based on binary classification.
Our approach’s novelty is the implementation of a multi-classification model. This will
allow for a better solution in the scenario when a malign flow is detected due to the model’s
capability of outputting the type of attack present in the flow. Furthermore, we propose
to combine labels resulting into one label that succeeds at classifying two types of attack
given their similarities.

The paper presents a section of previous work that describes and analyzes advances
related to the detection of DDoS attacks using ML techniques. This is followed by a method-
ology section, which explains the various procedures performed during the research. These
steps include dataset selection, information preprocessing, and definition of the model
used. The third section includes an evaluation of the defined model and the results. Finally,
future work and conclusions of the research are addressed.

2. Previous Works

This section describes the latest work and progress in detecting DDoS attacks, as
well as a description of the deployments and data used to obtain the published results.
He et al. [12] obtained data from a simulation of four types of attacks: SSH brute force,
ICMP flooding, DNS reflection, and TCP SYN. Network traffic is generated by virtual
machines and in turn a monitoring system captures this traffic, which later feeds a dual
ML system. That system is made up of two layers. The first consists of an already trained
model and the second of a process that feeds that model at runtime to adjust it to values
evaluated during execution.

The ML system proposed by He et al. [12] is composed of a set of different methods
applied to the information collected. Each method is tested against a set of four attacks
generated and scores are compared between those methods. The methods applied by
He et al. were linear regression (LR); support vector machines (SVM; linear kernel, radial
basis function and poly); decision tree, naive Bayes (NB); random forest (RF), unsupervised
K-means and Gaussian expectation-maximization.

The results show that the best method of the compendium used by He et al. [12] for the
dataset generated is random forest because of its high precision during the evaluation stage.
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Aamir et al. [13] proposed a framework based on four main phases: obtaining the
dataset, feature engineering, evaluating the ML model, and results. The dataset is obtained
by systematically exploring published and validated datasets that contain evidence of
DDoS attacks. Once the dataset has been selected, feature engineering is carried out. In the
feature engineering stage, the dataset is analyzed in order to recognize its environment and
perform tasks of duplication and collinearity identification between different attributes.
Similarly, an adjustment is made to make it suitable for training the selected ML model.

Model evaluation includes a first stage of training, adjustment of hyperparameters
based on the results, and evaluation of the resulting model following its modifications.

Aamir et al. [13] evaluated five machine learning models: SVM, RF, artificial neural
network (ANN), NB, and knearest neighbors (KNN). The author highlighted the impor-
tance of the processes before deployment of the ML models and attributed the results
of precision, false positives and recall of the different methods to the established work
framework. Adjusting the hyper-parameters allows the model designer to fine tune cer-
tain settings which, depending on the qualities of the data, can significantly impact the
model’s result.

Elyased et al. [10] used the same dataset as the present investigation, i.e., that proposed
by the authors of the CIC [9]. This dataset is the same one used in our research. That work
implemented a method based on deep learning structured with a recurrent neural network
(RNN) and an autoencoder.

The method of Elyased et al. contains a data preprocessing stage in which certain
network attributes are not considered for model training. The training phase is carried out
to obtain a binary classification model. The model is trained in order to classify whether
a specific attack flow is malignant or benign by dividing the dataset by attack type and
feeding the model in this way.

The model is composed of an input layer and then, in the hidden layer, a RNN
is implemented with an autoencoder, ending with an output layer in which the binary
classification is performed. In the autoencoding phase, there is a reduction in the dimension
of the input information to then perform decoding, in which the coded attributes are
reconstructed to generate an output in the final layer that assimilates information belonging
to the label of the registry [14].

The result of the above research is a model called DDosNet that has high accuracy
in classifying benign and malignant flows. In their section on future works, Wang et al.
stressed that although it is important to identify whether the flow is malignant or benign,
it is also desirable to be able to detect the specific type of attack evidenced by the flows.
This implementation is proposed as work to be done in new DDoSNet implementations.

Li [11] used the CIC dataset, the same dataset used in our research. Li proposed
the evaluation of three models, which use concepts such as dense neural networks, self-
encoders, and Pearson’s correlation coefficient (PCC). Dense neural networks are made up
by layers whose neurons are fully connected be- tween each layer, i.e., each neuron in each
layer receives information from all neurons in the previous layer and sends information
to all neurons in the next layer [15]. In this case, the PCC attempts to measure linear
correlation between two attributes of the dataset. Once PCC is applied to the attributes, a
value is obtained between −1 and 1. There is no linear correlation if the value is 0, 1 if the
linear correlation is totally positive, and−1 if there is totally negative linear correlation [16].

In Li et al.’s work, five major processes were executed: analysis and engineering of
dataset attributes, dataset training, adjustments based on results of the training, testing with
information not previously seen, and comparison with traditional ML methods. The three
resulting models perform a binary classification of the flow, i.e., like Elyased et al. [10], the
model is limited to binary classification as benign or malignant. The composite models can
be understood as a disaggregation of the proposed steps. That is, the initial model is a dense
neural network, the second a dense neural network with an implemented autoencoder, and
the third a dense neural network with an autoencoder that receives information subsets as
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input data which through the PCC analysis does not include attributes that have strong
linear correlation.

In the third model from Li et al., the training is executed with a subset of the dataset
that only contains one type of attack and based on the PCC analyses, the attributes of the
subset that contain a PCC value greater than 0.9 and less than −0.9 are eliminated.

The three proposed models give different results depending on the attack classification
as malignant or benign. In general, the model constructed only with dense neural networks
generally attains the best score among the three proposed models, followed by the dense
neural network with autoencoding and, lastly, the dense neural network with autoencoder
and PCC analysis.

The limitations of the existing works relay on the classification score and its behavior
on each label. The models’ score tends to variate considerably between the labels with a
model’s scores varying between the 0.5 and 0.9 on average.

3. Methodology
3.1. Dataset Selection

Datasets constitute a main element in the ML field. When initiating any type of con-
ceptualization of a ML model, it is essential to obtain or develop a dataset that assimilates
realworld situations or events to be classified in order to conduct successful training and a
validation phase [17].

For the choice of dataset in our research, three sources of information were consid-
ered: “DDoS Attack 2007” [18]; “Anonymized Internet Traces” [19] provided by CAIDA;
“CICDDoS2019” [9] provided by CIC.

The two remaining datasets have very complete information on network traffic cap-
tures and both provide a compilation of information exceeding 20 GB. Therefore, the
amount of information is more than enough for ML model training. However, the data
from the Anonymized Internet Traces dataset lacks preprocessing and therefore labels in
its records. Consequently, training a model like the one used in the present work with this
information would involve an arduous phase of data labeling.

Based on the assessment and analysis of the datasets explored, we decided to use the
CIC dataset for training and validation of the model used.

The dataset provided by CIC is designed to provide reliable information for training
DDoS attack detection models. Unlike previously proposed datasets, CIC seeks to remedy
drawbacks of these, such as the lack of categorized information, attackers with implemen-
tation of simple-level intrusions, and a lack of generation of modern attacks such as NTP,
NetBIOS, and TFTP [9].

The attacks implemented in the CIC dataset were classified into two main branches,
Reflection-based DDoS and Exploitation-based DDoS.

• Reflection-based DDoS is a type of attack in which the attacker remains hidden during
its execution through the legitimate use of third-party components. The attacker sends
packets to reflecting servers with the source IP configured as the victim’s IP, thereby
overloading the victim with responses from these servers. The attacks evidenced
in this dataset can be subcategorized as TCP (MSSQL, SSDP), UDP (CharGen NTP,
TFTP), or TCP/UDP (DNS, LDAP, NetBIOS, SNMP, PortMap). That is, they can be
performed using both protocols [9].

• Exploitation-based DDoS, in concept, are similar to Reflection-based DDoS with the
difference that these attacks can be conducted through application-layer protocols
using transport-layer protocols. The attacks evidenced in this dataset can be subcate-
gorized as TCP (Syn-Flood) or UDP (UDP Flood, UDP-Lag) [9].

The taxonomy of attacks proposed by Sharafaldin et al. [9] is illustrated in Figure 1.
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The dataset is available in two formats, packet capture (PCAP) and comma-separated
values (CSV).

The PCAP files contain raw information captured by the network monitoring tool and
are not categorized. However, a table is provided that specifies the period of the attacks.
On the other hand, CSV files are categorized and processed to record in rows the flow of
information over the network. These files were generated from the PCAP files using the
CICFlowMeter [20] tool, which consists of the generation of traffic flow across the network.

Model training and evaluation was mainly done using the files already preprocessed
and offered by CIC. Based on information about the quality of these files, as set out by
Li [11] in reference to obtaining fewer invalid values (NaN, and infinite) in the new files
generated by CICFlowMeter, these new files generated by CICFlowMeter are in the CSV
format. However, this did not improve the accuracy of our model.

The total amount of information in the dataset is 28.1 GB in CSV extension files and
19.1 GB in PCAP extension, considered sufficient for model training and validation [21].

The CIC DDoS dataset contains 87 attributes, of which 83 were generated by the
CICFlowMeter application and four instantiated by Sharafalding et al. [9]. However,
network attributes were eliminated so the model can be deployed in future work in another
network structured differently than that in which the CIC data were captured. In total,
78 attributes were used. For an in-depth look at these attributes, refer to Sharafaldin et al.
table of attributes [9].

3.2. Data Preprocessing

It is possible to train the model with the data after removing certain unwanted at-
tributes, as mentioned above. However, deployment of a data preprocessing phase results
in more robust training and thereby a more accurate model [22].

First, each file belonging to the dataset is unified into an information instance. Each
file contains mostly one type of attack. Because the main objective is the implementation of
a model capable of classifying whether there was a benign or malignant flow and if the
flow is malignant to output the name of the attack, it is necessary to feed the model with
information that considers different labels.

The unified dataset contains values invalid for training. There are inputs of NaN and
infinite values, which are discarded to execute model training. About 3% of the data were
removed in this procedure.

The objective with the model is multiclass classification in the context of DDoS attacks.
To do this, an encoding procedure is necessary. For this procedure, it is necessary to
transform the dataset labels so they can be used by the model. In our research, we used
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One Hot Encoder (OHE). OHE processing assigns a new column for each label represented
in the dataset and a value of 1 if the record belongs to this category or 0 otherwise [23]. The
need for this encoding is based on the implementation of an output layer with a Softmax
activation function. The Softmax function transforms a vector of k real values to one of k
real values that add to unity [24].

In the next step of the data preprocessing, the data are normalized based on the L2
normalization. The use of L1 normalization was contemplated but results in the training
phase showed small values of the model’s accuracy metric. The L2 standard was applied
to each column. That is, the attributes of the dataset, with x being each occurrence of a
record, define the normalization Formula (1) as:

||x||2 =

√
n

∑
i=1
|xi|2, (1)

Normalizing the dataset records generally results in much faster training [25]. This
behavior is evidenced in our model. In addition to improvement in convergence during
the training phase, this normalization yielded better model accuracy owing to the handling
of a uniform range of dataset attributes.

We conducted transformation by quartiles after the data normalization. This method
transforms the attribute values of each dataset input in order to follow a uniform or normal
distribution. For the model used, we decided to follow a normal distribution because of
improvement in the accuracy metric compared to the uniform distribution.

In analyzing the information of the unified dataset, an imbalance of classes was
detected, which resulted in a classification biased to a certain class because of its high
frequency in the dataset. Table 1 presents the occurrence count according to the classes in
the dataset.

Table 1. Distribution of labels in the loaded dataset.

Tag Occurrences Percentage

TFTP 975,826 37.605%
DrDoS_SNMP 257,240 9.913%
DrDoS_DNS 245,654 9.467%

Syn 228,521 8.806%
DrDoS_MSSQL 220,052 8.480%

DrDoS_NetBIOS 198,815 7.662%
UDP 159,751 6.156%

DrDoS_SSDP 128,614 4.956%
DrDoS_LDAP 107,084 4.127%
DrDoS_NTP 59,736 2.302%

Portmap 8831 0.340%
BENIGN 4754 0.183%
UDPLag 91 0.004%

As seen in Table 1, the TFTP class has a strong presence in the dataset, whereas labels
of the BENIGN or UDPLag type had small percentages of occurrence. Therefore, balancing
the dataset is necessary for better training of the model.

In this research we propose the use of a fully balanced dataset, i.e., an equivalent
percentage between the classes. There are three ways of balancing: duplicity of the labels
to be balanced; elimination of label occurrences with the highest percentage in the dataset;
a synthetic minority oversampling technique (SMOTE) [26].

The first balancing method resulted in a successful training phase. However, in the
test phase, we validated a case of overfitting in the dataset used for training, because
the accuracy values of the predictions were small compared to those obtained in the
training phase.
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The second method, eliminating records belonging to strongly represented labels
in the dataset, was applied and tested. In this case, the training phase produced low
model precision. We conclude that the results of this technique are attributable to a
strong reduction of the dataset in order to find class balance. SMOTE was applied in our
model as a class balancing technique for the dataset. SMOTE was proposed in 2002 by
Chawla et al. [26] as an alternative to class balancing to generate synthetic information.

Because the generation operation is run in attribute space, use of the technique is
more general. The SMOTE mode of operation is based on identification of class records to
generate synthetic information and the union of these occurrences, equivalent to k close
neighbors of the same class, by means of lines. After this step, synthetic occurrences Ss are
generated by taking the difference between the vector of attributes S, i.e., an occurrence of
the class and closest neighbor Sn. The difference is multiplied by a random number r in the
range 0 to 1 and added to the vector of attributes S, resulting in the selection of a random
point on the line segments of two specific attributes (2) [26,27]:

Ss = S + r× (S− Sn), (2)

This method resulted in a better accuracy metric for both the training and testing phase,
unlike the two aforementioned techniques. It is important to note that this oversampling
technique was applied only to the training data and not the test data.

The dataset was split in two subsets resulting in one subset referring to information
for use in training, which was equivalent to 80% of the total information; 20% of the
information was used during the model testing phase.

3.3. Definition of Proposed Model

In this subsection, the model architecture proposed for this research is defined. First
is the definition of the model, which is made up of layers of densely connected neural
networks. The model has a sequential architecture with seven layers one input, five hidden,
and one output.

The initial layer, the input layer, has 78 neurons, which encapsulates the 78 attributes
of the dataset used. The hidden layers segment is defined by densely connected layers,
which can be understood as those in which each neuron receives an input from all the
neurons instantiated in the previous layer [28].

A rectified linear activation function (ReLU) is handled in each layer. ReLU evaluates
if the input is greater than 0. If so, the output is the same as the input; otherwise, it is
equal to 0. The decision to use ReLU as the main activation function of the model was a
consequence of its computational simplicity and its being an evaluation function of the
maximum between the input value and 0 [29].

In this model, a layer called Dropout was used. The function of this layer is to ignore
a rate of nodes in a random fashion. This in part represents an effect in which neurons can
modify the way in which they correct the errors of other neurons, which entails complex
co-adaptations that do not generalize unseen information, as raised by Srivastava et al. [30].

The model output layer is instantiated with a Softmax activation function. The choice
of this function is associated with the main task of the model, which is classification in
a multiclass context. This function will return a probability of the maximum value in an
array, which is interpretable as the most probabilistically accurate label for the sample
being evaluated [31].

The loss function used in the model is categorical cross-entropy [32], also known as
Softmax loss, and the instantiated optimizer is Adam [33]. A representative image of the
defined model is in Figure 2.
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4. Model Evaluation

The information is initially divided for training and testing, with training information
constituting 80% of the total information and 20% for testing. Of the 20% of the test
information, 10% is used for hyperparameter tuning and the other 10% is treated as
previously unseen information for the model.

For the evaluation, we considered three scenarios that focus on the labels used during
the training phase. The first scenario considers all the labels in the dataset. The second
considers 10 labels that do not present similarity in the attribute space. The third performs
a union of labels with strong similarity in the attribute space. The main reason for this sep-
aration of scenarios is because of the strong similarity between labels in terms of attributes
caused by the information generated by the attack and is captured by the instruments used
by Sharafaldin et al. [9].

For all three scenarios, the model structure remains largely constant with a modifica-
tion in the output layer due to the difference in number of classified labels. The metrics
used for evaluation of the hyperparameter selection and evaluation of the scenarios and, in
turn, the model metrics, are defined as follows:

accuracy =
tp + tn

number o f samples
(3)

precision =
tp

tp + fp
(4)

recall =
tp

tp + fn
(5)

f 1 score = 2× precision× recall
precision + recall

(6)

where tp = true positives, tn = true negatives, fp = false positives and fn = false negatives.
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4.1. Hyperparameter Tuning

Firstly, a tuning of the hyperparameters was done to determine the optimal settings for
model training. The hyperparameters were configured following a model of configuration,
testing, and selection of the best option for the configuration in question. We initially
selected the depth of the neural network, i.e., its number of layers. For this choice, a depth
in the hidden-layer block of 2, 3 and 4 is proposed. Based on the result, a depth of 3 was
chosen, owing to model accuracy and the time spent in its training.

The number of neurons instantiated in each layer was configured based on the choice
of best configuration candidate. During this procedure, about 10 different configurations
were evaluated, and the structure (128,256,512) was chosen, which refers to the number of
neurons of the 3 layers previously configured and belonging to the block of hidden layers.

The learning rate of the Adam optimizer is configured based on three candidate
rates, 1× 10−4, 1× 10−5, and 1× 10−6. Table 2 shows the results according to the learning
rate used.

Table 2. Performance evaluation for the training rate of the model.

Rate Accuracy Precision Recall F1 Score

0.001 0.9370 0.9389 0.9352 0.9370
0.0001 0.9421 0.9421 0.9403 0.9412

0.00001 0.9379 0.9400 0.9359 0.9379

Based on this test, we selected the learning rate corresponding to 1× 10−4 for configu-
ration of the Adam optimizer. As defined above, the dropout layer contains a rate of total
number of neurons to ignore.

For this model, we discovered that the rate of 0.3 gave the best tradeoff between
time of convergence of the model and its accuracy. Table 3 compares the rates used for
configuration of the Dropout layer. The training time in minutes (TTM) column represents
the maximum time that the accuracy metric did not vary by more than 0.0001 units.

Table 3. Performance evaluation of the different rates for dropout layer.

Rate Accuracy TTM Recall F1 Score

0.20 0.9259 25 0.9255 0.9260
0.30 0.9421 30 0.9403 0.9412
0.35 0.9366 33 0.9299 09360

4.2. Results of the Model

Before presenting the results of the model, Table 4 indicates the hyperparameters
chosen for the model. Hyperparameters like the number of epochs, batch size and neurons
per layer were configured using the same approach as the others hyper-parameters. In
other words, a set of configurations was tested, and the best performing setting was chosen.

Table 4. Hyperparameter settings for the proposed model.

Hyperparameter Configuration

Number of layers 3
Adam optimizer learning rate 1× 10−4

Dropout rate 0.30
Epochs 100

Batch size 128
Neurons per layer (layer #1 through layer #3) 128,256,512

In order to evaluate our model, we proposed three different scenarios. Each scenario
has a different experiment configuration. The differences are within the number of labels.
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The reason behind this methodology is to see how the model performs under different
condition and to evaluate which would be the best condition in which the model would
perform optimally.

The results presented were obtained via cross validation. The setting for the cross
validation was a 5-fold validation for scores such as: accuracy, precision, recall and F1 score.
These settings were maintained throughout the three different scenarios.

4.2.1. First Scenario

For this scenario, the model was trained to categorize 13 labels belonging to the dataset,
equivalent to those shown in Table 1. The model evaluation for this scenario resulted in
the following values for the metrics of accuracy, precision, recall, and F1 score presented in
Table 5.

Table 5. Model training results for the first scenario.

Accuracy Precision Recall F1 Score

0.8177 0.831 0.7995 0.8149

The confusion matrix resulting from the test is displayed in Figure 3. This matrix
provides more detailed information on the labels, for which the model had a precision less
than the average reflected in Table 5.
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In this scenario, the model exhibits confusion for the DrDoS DNS-DrDoS LDAP labels.
This confusion lies in the nature of the attacks and their similarity, as the information
captured by the network monitoring instrument is similar. The values reflected in the
dataset attributes will also have this similarity, thereby negatively affecting the metrics of
the model. The same behavior is observed for the Portmap, UDP, SSDP, and NetBios labels.

4.2.2. Second Scenario

For this scenario, the model was trained for the categorization of 10 labels: BENIGN,
DNS, MSSQL, NTP, NETBIOS, SNMP, SSDP, SYN, UDP-LAG, and TFTP. The attacks such
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as Portmap, UDP, and LDAP were removed from the testing subset, the training was made
using the same labels as scenario 1. Accuracy, precision, recall and F1 score metrics are
listed in Table 6. This is the result of model training in this scenario.

Table 6. Model training results for the second scenario.

Accuracy Precision Recall F1 Score

0.9457 0.9475 0.9438 0.9456

The confusion matrix of the model evaluation stage is shown in Figure 4.
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This matrix reveals a better result compared to Figure 3, owing to the non-consideration
of labels with values that are over-lapped in the attribute space. Although the scores in this
scenario are good, this scenario is mainly deployed to have a better idea on whether the
model is finding a high similarity in between the labels.

4.2.3. Third Scenario

In the development of the third scenario, it was decided to unify the attacks with
strong similarity in the attribute space. These new labels are composed of the names
of the attacks that show this similarity. The new labels are DrDoS DNS/LDAP, DrDoS
NetBIOS/Portmap, and DrDoS SSDP/UDP. The model was retrained under the newly
created mixed labels. Also, the testing subset possess the newly created labels instead of
the previous labels, bringing the total of labels to 10 and still maintaining the same number
of attacks. Table 7 demonstrates the similarity between the labels in attribute space. The
name of the subset is equivalent to the union of labels made; this subset contains only the
two labels that show strong similarity.
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Table 7. Summary of subsets created for labels with strong similarity.

Subset ACV AFR0, % ASAH, %

DNS/LDAP 12 24, 99.9 38, 96.8
NetBIOS/Portmap 12 31, 98.0 41, 98.3

SSDP/UDP 12 25, 99.9 32, 97.9

The abbreviation ACV refers to attributes with constant value, AFR0 encapsulates the
attributes with a high frequency (>98%) of zeros, and ASAH contains the attributes that
have a strong bias due to a strong homogeneity of their values (≥96%). AFR0 and ASAH
also contain the respective percentages according to the metric.

The results of training of this model are shown in Table 8.

Table 8. Model training results for the third scenario.

Accuracy Precision Recall F1 Score

0.9421 0.9421 0.9403 0.9412

The resulting confusion matrix from the testing phase is presented in Figure 5.
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5. Discussion

The main contribution of this work is a framework for data preprocessing and a
classification model in a multiclass context for DDoS attacks. Compared to previously
reviewed proposals in the literature, in addition to categorizing the flow as malignant
or benign, the present model provides the type of attack evidenced in the flow (if it
is malignant). This characteristic is relevant when developing a security strategy for
deployment in a network that has experienced or is at risk of a DDoS attack.

The proposed model for the categorization of DDoS attacks can be deployed in the appli-
cation layer within an SDN software-defined network, as proposed by Sharafaldin et al. [9]
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and based on the implementation in Alshamrani et al. [34]. The aim is to be able to block
malignant flows or route them to analyze the flow and feed the future training of the model
and increase its stability [35].

A summary table stating the contribution of this paper, approach, dataset, limitation
and metrics related to the proposed model is presented in Table 9.

Table 9. Result comparison with related works.

Author [Reference] Approach Average
(Precision, Recall, F1 Score)

Can et al. [36] 82 features + FS 91.16, 79.41, 79.43
Ferrang et al. [37] * DNN 70.00

RNN 70.00
CNN 66.46

Sharafaldin et al. [9] Naive Bayes 30.30, 17.51, 7.35
SVM 62.44, 57.97, 55.50

Decision Tree 61.15, 58.32, 55.15
Random Forest 50.76, 36.91, 39.57

Our approach DNN 94.21, 94.03, 94.12
* No distinction for the metrics is stated by the author.

In Table 9, we can see how our approach outperforms those presented by Can et al. [36]
Ferrang et al. [37] and Sharafaldin et al. [9], the latter being the benchmark. We attribute the
scores achieved by our model due to processing phase of the research and the combined
labels proposed previously.

Our proposed model is limited by the labels used in the training phase, meaning, it
will not be able to detect accurately whether a new attack is not present before is detected
in a malign flow. In the case an attack is present in a flow set to be evaluated by the model,
the model will classify as malign, but it will output an incorrect type of attack. This can be
solved by providing a new label during the training phase with the name NEW. This will
encapsulate a new attack and reduce the ambiguity of the output.

6. Conclusions and Future Work

In this work, a preprocessing stage and multiclass classification neural network model
are presented. During the preprocessing stage, various transformation techniques were
applied to the dataset. This improved the accuracy metrics and training time of the
proposed model.

Different datasets were evaluated for model training, and it was decided to conduct
this work with the dataset provided by researchers from the CIC. During the proposed
preprocessing stage, it was possible to perform a cleaning of NaN-type and null values.
Similarly, a data normalization and quantile transformation were performed on the dataset.
To obtain a balanced dataset in the context of classes, the SMOTE technique was applied
only to the sample used for model training.

The model was tuned based on a hyperparameter configuration. From the results of
model training and validation, the tuning was applied mainly to the number of hidden
layers, the rate used in the Dropout layer, and the learning rate. The model was trained
and evaluated in three different scenarios. The results, metrics, and confusion matrix were
presented for each scenario.

The results show the third scenario as the best. This analysis was based on the
performance metrics of the scenarios and number of labels used in the training phase.
Scenario 2 yielded a 94.57% accuracy, greater than Scenario 3 by 0.31%. However, it was
not trained with the 13 labels available in the dataset, unlike the third scenario, which was
trained with all labels. The added value of the proposed model consists in identifying
the type of attack evidenced in a flow, as compared with the binary classification of
recent works.
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As future work, we propose to deploy and evaluate the model in a computer network
that has a flow not previously seen by the model. This deployment will consist of a model
evaluation phase. Depending on the results, we propose to conduct a model training
phase with the captured data. Once the model has been trained and validated, it could be
instantiated as a network traffic manager whose objective is to reject or accept network
flows based on the evaluation performed. Furthermore, this could be deployed in an
intrusion-tolerant-system in order to prevent denial of service attacks, as proposed by
Kwon et al. [38].
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