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Abstract: New diseases constantly endanger the lives of populations, and, nowadays, they can spread
easily and constitute a global threat. The COVID-19 pandemic has shown that the fight against a
new disease may be difficult, especially at the initial stage of the epidemic, when medical knowledge
is not complete and the symptoms are ambiguous. The use of machine learning tools can help to
filter out those sick patients who do not need to be tested for spreading the pathogen, especially
in the event of an overwhelming increase in disease transmission. This work presents a screening
support system that can precisely identify patients who do not carry the disease. The decision of the
system is made on the basis of patient survey data that are easy to collect. A case study on a data
set of symptomatic COVID-19 patients shows that the system can be effective in the initial phase of
the epidemic. The case study presents an analysis of two classifiers that were tuned to achieve an
assumed acceptable threshold of negative predictive values during classification. Additionally, an
explanation of the obtained classification models is presented. The explanation enables the users to
understand the basis of the decision made by the model. The obtained classification models provide
the basis for the DECODE service, which could serve as support in screening patients with COVID-19
disease at the initial stage of the pandemic. Moreover, the data set constituting the basis for the
analyses performed is made available to the research community. This data set, consisting of more
than 3000 examples, is based on questionnaires collected at a hospital in Poland.

Keywords: data processing; data visualisation; classification; explainable artificial intelligence;
COVID-19

1. Introduction

The COVID-19 pandemic has shown how easily the virus can spread, and how it
can affect the health of communities and the global economy. The probability of a new
pandemic has not decreased, and the spread of new mutations of the SARS-CoV-2 virus
remains a threat. Therefore, it is worth drawing conclusions from the current situation in
order to be prepared for future threats. The procedures and tools developed now have the
potential to significantly support the fight against future pathogens.
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The initial phase of the COVID-19 pandemic showed that symptom-based screening
and diagnostics may be a challenge, especially when there are few obvious and unam-
biguous symptoms differentiating the disease from other infections. The list of symptoms
associated with COVID-19 in the spring of 2020 did not allow for an easy and unequivocal
distinction of COVID-19 from other influenza-like illnesses. In this case, the experience of
doctors plays an important role in the diagnosis of the disease, the acquisition of which
takes time and relies on the number of cases of the disease encountered.

The diagnosis of the patient’s condition requires experience supported by reliable and
unambiguous, straightforward diagnostic methods. Limited testing capacity is one of the
most significant problems faced by healthcare systems. The problem of the lack of efficient
and widespread testing may result from both the lack of infrastructure and the cost of a
single test. Table 1 illustrates the costs of the RT-PCR test in Poland during the pandemic.

Table 1. Costs of the RT-PCR test valuated by analytical laboratories and the Ministry of Health
in Poland.

Date
Valuation by Valuation by Daily Number

Laboratories (USD) the Ministry (USD) of Tests Performed

Min Max Mean Min Max Mean

April 2020 96 120 108 108 4382 14,482 9554
July 2020 100 137 103 63 15,464 35,127 23,178
June 2021 72 135 107 75 27,606 64,943 50,238

The lack of widespread experience of healthcare professionals in the early phase of the
epidemic and the cost of widespread testing, which could be significant and prohibitive in
some countries, motivated research to apply machine learning methods to initial screening.
Literature studies show that machine learning methods were verified and gave good results
for a number of diagnostic tasks [1]. Various types of classification models were studied in
the past for the diagnosis of patients with diseases such as Ebola virus disease [2], AIDS [3],
heart disease [4], cancer [5], or diabetes [6]. Referring to the listed applications of machine
learning in diagnostics, it can be concluded that prognostic models can provide a valuable
summary of clinical knowledge and can be useful when such expertise is unavailable [2].

The aim of this study is to show that, based on machine learning (ML) methods, it is
possible to create a system that allows for effective symptom-based screening, even for
diseases with ambiguous symptoms, as in the case of COVID-19. By creating such a system,
it can be demonstrated that, at an early stage of the epidemic, when knowledge about the
course of the disease is not common, the experiences available in major medical units can be
encapsulated in ML models and disseminated by means of a web application. Additionally,
the goal of this research is to present how such a system can be designed. Therefore, this
work provides the system architecture and workflow, as well as the description of the
analytical method generation process. In this way, this paper shows what components
and activities are required to create a screening solution allowing savings in testing and
ensuring acceptable quality from a medical point of view.

In this work, the assumptions for the proposed system are presented, as well as
a case study in which the method of generating, assessing, and explaining the created
classifier is shown in detail. Moreover, the performed analysis resulted in an online service
(https://decode.polsl.pl, accessed on 25 October 2021) available for anyone who needed
support in COVID-19 screening in the early stages of the pandemic. Due to the mutations
of the SARS-CoV-2 virus, the developed screening models, which are presented in this
paper and implemented on the online service, are no longer valid. However, if there was
such a need, new models could be generated according to the procedure presented in the
following sections.

The contribution of this work is manifold and it consists of the following elements:

https://decode.polsl.pl
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• the presentation of the architecture and workflow of the screening support system,
which, at a time when little is known about the disease, can, with a high degree of
certainty, screen out patients and identify those who most probably do not have the
disease, and redirect the rest for further costly diagnostic tests;

• the case study presenting the method for the generation of classifiers, where the
models are tuned to an assumed acceptable threshold of negative predictive values so
that the results allow for the effective screening of patients for COVID-19;

• an explanation of the obtained classification models, enabling the users to understand
the basis of the decision made by the model;

• a new data set based on questionnaires collected in a hospital in Poland and the
data set preparation, processing, characterisation, and visualisation, leading to the
identification of COVID-19 characteristics.

The structure of this paper is as follows. Section 2 presents an overview of previous
research related to the topic of this work. The proposed workflow and system architecture
are presented in Section 3. Section 4 outlines the characteristics of the shared data set
being the basis for classification models. Section 5 presents an automatic machine learning
approach and advanced approach to produce a classifier. The latter consists of advanced
data preparation steps and the generation and tuning of two models. Section 6 focuses on
the evaluation of the created models. Section 7 is devoted to the issue of model explanation,
and, additionally, it addresses the issue of model adaptation and the cost reduction that
can be realised by the presented system. Section 8 outlines the developed web application,
which is able to make an initial diagnosis (screening) based on the given symptoms.
Section 9 concludes the paper.

2. Related Work

The involvement of analysts in research related to the SARS-CoV-2 virus pandemic is
very broad, ranging from the analysis of genetic data [7] to predicting the development of
the epidemic [8–10]. This state-of-the-art review focuses on how data science was involved
in preventing and understanding the COVID-19 pandemic. Due to the great involvement
of the scientific community, many studies have been published dealing with this issue from
different perspectives. Many works on the use of machine learning methods to diagnose
COVID-19 have been covered in review articles such as [11–15].

The work [11] presents the analysis of the research dynamics in the field between
January and May 2020. In this work, based on the frequency of occurrence of various
methods, the following classes of solutions were distinguished: deep learning approaches
(CNN, LSTM, and others), mathematical and statistical methods, random forest, SVM,
and others (e.g., linear regression, XGBoost). The described approaches were applied
to various data types with a predominance of X-ray images and achieved good results.
However, the lack of real data was explicitly highlighted in the work.

An extensive meta-analysis (107 studies with 145 models) of the works published
between January and April 2020 is presented in [12]. In this study, three classes of pre-
dictive models are distinguished, and these are models for use in the general population,
for COVID-19 diagnosis and prognosis. Among 91 diagnostic models, 60 focus on image
analysis, while nine predict the disease severity. Out of the remaining 22 works present-
ing diagnostic models not based on imaging, only two studies were based on data sets
containing more than 1000 examples.

The reviews [13–15] discuss the possibility of using machine learning in various
aspects related to COVID-19, such as epidemiology, spreading, diagnosis, treatment, or
psychological health impact. The examples of approaches presented in these works are
focused on diagnostics based on image and clinical data (e.g., blood test results).

Among the studies presenting diagnostic machine learning-based models, the works
presented below can be distinguished as the most interesting due to the size of data set,
questionnaire-based data features, and utilised analytical approaches.
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The work [16] presents a statistical analysis of data attributes and the generation of a
multivariate logistic regression model on a data set consisting of 1702 individuals (579 were
SARS-CoV-2-positive and 1123 -negative), whose data were collected through an online
application. The attributes describing each example included personal characteristics (sex,
age, BMI) and flu-like symptoms (e.g., fever, persistent cough, loss of taste and smell, etc.).

The study [17] presents an approach where, based on routinely collected surveillance
data, a multiple model using logistic regression was generated. The data set that was the
basis of the analysis consisted of 5739 patient records (1468 were SARS-CoV-2-positive and
4271 -negative) collected in Brazil.

The analysis presented in [18] is based on the same data set as in this work. However,
the aim of the research presented in these two studies is different. The work [18] presents
how the screening model optimisation towards the selected classification quality measure
(e.g., combining sensitivity and specificity) can impact the final model results. This kind of
knowledge can support an expert in adjusting the methods to the goal of the analysis.

There are numerous reported data sets related to COVID-19 [19]. Such data sets
include information on COVID-19 diagnosis, case reporting, transmission estimation,
sentiment analysis from social media, and semantic analysis from the collection of scholarly
articles. Most of the COVID-19 diagnosis data are based on image (CT scans, X-ray images)
analysis [20–23].

A data set that can be referred to due to the subset of similar features was collected
by Carbon Health, a healthcare provider in the US [24]. The anonymised data of Carbon
Health patients were collected between March and June 2020. The data include the clinical
characteristics (epifactors, comorbidities, vitals, clinician-assessed symptoms, patient-
reported symptoms) and laboratory results of patients at the date of service.

Another data set [25] comes from the Hospital Israelita Albert Einstein, in Sao Paulo,
Brazil. The created set consists of data collected from hospital patients and it contains
5644 cases, of which 10% are SARS-CoV-2-positive. The attributes consist of virus, blood,
and urine test results, and internal assignment to a hospital ward. This data set was
analysed in [26] and partially analysed in [27]. The study [26] presents the results of
several different classification methods (logistic regression, neural network (multi-layer
perceptron), random forest, support vector machine, and gradient boosting) in terms of their
quality. Three directions of analysis were chosen in this study, covering the identification
of: patients that are likely to receive a positive SARS-CoV-2 test result, COVID-19 patients
that are likely to require hospitalisation, and COVID-19 patients that are likely to require
intensive care. Additionally, within each direction, the feature importance was identified.

In response to the growing demand for information on modern IT services developed
in the healthcare sector, and in order to coordinate activities undertaken in this regard in
Europe, the mHealth Innovation and Knowledge Hub was created on the initiative of the
WHO ITU/Andalusian Regional Ministry of Health [28]. It was established to collect and
share experiences on modern e-medicine solutions and to support countries and regions in
implementing large-scale activities in this regard.

mHealth initiatives are especially important nowadays, when the world is facing
SARS-CoV-2. Many governments, companies, and citizens’ movements have developed
various mHealth solutions to keep the population informed and help to manage the crisis
situation. A repository of such solutions developed in Europe can be found in [29]. This is
a dynamic resource that is updated as additional tools are reported.

Among many services created around the world, there can be found those that, in
order to reduce the spread of the virus, help to identify whether someone may have been
exposed to the coronavirus [30–32]. Others provide patients with a better understanding
of the mechanisms of COVID-19 or offer channels of updated information on regional
regulations, including territory-specific restrictions [33,34]. Some of the solutions provide
the most up-to-date research findings and information, including all the latest data on
COVID-19 diagnosis and treatment, thereby helping medical personnel to make informed
clinical decisions [35].
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There are also applications that, similarly to the service presented in this study, support
the diagnosis of patients with a SARS-CoV-2 infection based on the symptoms of the disease.
For example, the solutions presented in [36–42] allow for the self-assessment of the possible
symptoms of this infectious disease and for learning about the recommendations to be
followed. Some of the applications give the estimated risk of SARS-CoV-2 infection as a
result; however, they do not disclose the methods used in these estimates. In addition, some
mentioned applications are available only in one language version (e.g., in Italian [41]) or
are intended for use in a given region or country, and they require selection of the name of a
specific locality/province when completing the questionnaire [42]. Others are not publicly
available and need a special social security number assigned by the local health service to
activate the application [43]. Some, in turn, are targeted only towards medical staff [44].

A relatively small group of applications [45,46] are those developed as a result of
published research [47,48]. The corresponding works concerned COVID-19 diagnostics
using various machine learning methods. The common features of the data analysed by
them were attributes describing blood indices [49,50].

The state-of-the-art survey presented above shows that there exist numerous ap-
proaches proving the usability of classification models in COVID-19 diagnostics. However,
no studies report a comprehensive approach that can serve as a template, an approach
including data collection and transformation, system architecture, model generation, op-
timisation, and explanation. Moreover, to the best of the authors’ knowledge, there are
no approaches reported as a research paper taking into consideration solely questionnaire
data, which can be valuable when the healthcare system is overloaded or clinical tests are
not available. Numerous online applications perform symptom-based diagnosis; however,
no information on the applied methodology is given.

Another conclusion is that there are freely available patient data sets on the internet;
however, it is still important to enrich the available data representation. To the best of
the authors’ knowledge, there were no questionnaire-based data sets collected in Poland
reported and it is worth filling this gap.

3. Workflow and System Architecture

This study aims to provide a symptom-based screening system. The heart of the
proposed system is the classification model, generated based on collected patient data.
Each data example representing one patient has a label stating that this patient is infected
or not infected with a given pathogen—in the case of the presented analysis, this is the
SARS-CoV-2 virus and the COVID-19 disease.

The system is based on data collected from patients who are able to provide results
of a test for the presence of the pathogen. A very good source of reliable data seems to be
a hospital, where patients can be examined and tested. In order to collect the necessary
information, each patient is asked to fill the questionnaire in. The surveys are collected by
medics and supplemented with a label resulting from the laboratory test (e.g., PCR test in
case of SARS-CoV-2) indicating the disease or lack thereof. Moreover, the medics should
anonymise the surveys and pass them on to analysts for digitalisation. The data (in digital
form) are then processed and cleaned. Classification model generation can be twofold.
A simpler approach that does not require the involvement of an experienced data scientist
is to use an automated machine learning (AutoML) solution and automatically generate
the classifier. A more sophisticated approach may be required if the data are complex
and AutoML does not provide results of sufficient quality. In this situation, AutoML can
still indicate interesting directions that can be extended by data scientists. The finally
generated decision model is deployed in an application that performs screening on the
basis of end-user input, visualises the results of the analysis, and explains the premises of
the model’s decisions. The newly collected data can be used for validation of the classifiers,
as users can add labels to the submitted symptoms after receiving the test result. The
presented workflow is illustrated in Figure 1. The steps for data processing, automatic
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model generation, and model generation by experienced data scientists are discussed in
the following sections as a case study for symptom-based screening for COVID-19.

The application proposed in this work, which performs the screening of patients on
the basis of symptoms, consists of three main components related to the frontend, backend,
and a database. The backend consists of the analytical server executing classification
models as a web service. The frontend is a web application that can be used by users of
various types, e.g., end users, medics, and data scientists. The architecture of the created
solution is presented in Figure 2.

Providing data via 
survey view 

Manual filling out  
the  questionnaire 

containing  questions  
relevant  to  COVID-19 

diagnosis Complementing the 
test result  

Digitalisation and 
data preprocessing/ 
cleaning 

Data anonymisation 

minimal 
quality 
criteria 

Advanced analysis 
Feature selection 
Model creation  

Decision model 

AutoML 

F 

T 

DECODE 
engine 

Data 
visualisation 

Patients Medics Analysts  Data Scientists End users AutoML 

Hospital 
Analyst  

Working Environment 
Data Scientist Working 

Environment  
DECODE Portal 

AI Computational 
Resources 

Figure 1. System workflow presenting the steps leading to the generation of the model within the DECODE engine, as well
as the actors and environments involved in this process.

Figure 2. System architecture consisting of three main components.



Appl. Sci. 2021, 11, 10790 7 of 25

4. Data Set

The data set used within the presented case study was collected at Specialised Hospital
No. 1 in Bytom, Poland, between 21 February 2020 and 30 September 2020, thanks to the
cooperation of hospital staff and data scientists involved in the project.

Data acquisition was a process starting at the hospital where people arrived in order
to be diagnosed. Before any examination or testing, each person was asked to fill in the
questionnaire containing questions relevant to COVID-19 diagnosis. Initially, the survey
contained a few questions about the basic symptoms, consisting of the occurrence of tem-
peratures exceeding 38 ◦C, cough, and dyspnoea. With time and increasing knowledge
about the COVID-19 characteristics, the survey was enriched with further questions and op-
tions. When the final diagnosis resulting from the SARS-CoV-2 test, was known, the survey
was anonymised, scanned, tagged with the SARS-CoV-2 test result, and sent to the database
of survey images. Next, the information encapsulated in each survey was transformed into
a feature vector, i.e., an example in our data set.

The questionnaires were filled in by patients themselves. People waiting to be ad-
mitted to the hospital for further tests may feel unwell and anxious, which affects the
consistency and quality of completed questionnaires. Therefore, a synthetic and unambigu-
ous form of the survey was developed, which is now utilised within the web application
presented in Section 8, which is one of the results of this research. Nevertheless, due to the
manual nature of data collection, the data were subject to additional inspection to remove
errors introduced while completing the survey.

The collected data set consisted of 3114 patient records. Each patient was described
by 32 attributes. Within these attributes, the following classes of patient characteristics can
be identified:

• 18 attributes describing symptoms;
• 7 attributes listing comorbidities;
• 3 attributes representing the patient’s condition.

The other attributes include epidemiological information, such as age, sex, blood
group, and contact with infection. Each patient was classified by two conditions:

• Symptoms: Healthy/Sick;
• SARS-CoV-2 test result: Positive/Negative.

The quantitative characteristics of the collected sample from the population on the
basis of the classification listed above are presented in Table 2.

Table 2. Quantitative characteristics of the main analysed data set.

SARS-CoV-2 (−) SARS-CoV-2 (+) Total

Healthy 1000 173 1173
Sick 1355 586 1941
Total 2355 759 3114

In the presented study, patients who experienced disease symptoms (Sick) were taken
into consideration, i.e., 1941 people, as reported in Table 2. From this group, 577 patients,
surveyed mainly in August and September, were extracted for final classification evaluation
(test set). The characteristics of the test set taking into account SARS-CoV-2 diagnosis are
presented in Table 3.

Table 3. Quantitative characteristics of the test data set.

SARS-CoV-2 (−) SARS-CoV-2 (+) Total

Sick 393 184 577



Appl. Sci. 2021, 11, 10790 8 of 25

5. Decision Model Generation

As indicated in the workflow description, the final decision model can be generated
automatically using an AutoML environment, or it can be created within the two-step
procedure where AutoML is applied first and data science experts are involved later to
generate a more sophisticated solution. This section presents the second approach, where
both steps are used to develop a symptom-based screening support system for COVID-19.

As a part of the undertaken task, it was assumed that the positive examples denoted as
COVID-19(+) were SARS-CoV-2-infected patients who had symptoms of COVID-19 disease.
Negative examples, denoted as COVID-19(−), were patients who were not infected by
SARS-CoV-2 and suffered from a disease other than COVID-19.

The goal of the analysis was to derive a classification tool that is able to support the
filtration of COVID-19(−) patients within the population of sick patients in order to narrow
down the number of patients who need further molecular testing. Therefore, it can be said
that false negative examples are more costly in this analysis than false positive ones and,
using classification quality measures, it is more important to achieve a high sensitivity
value than high specificity.

5.1. Automated Approach

The analysis using the automatic machine learning environment was carried out in the
RapidMiner Auto Model [51]. This environment performs semi-automatic feature selection,
suggesting which attributes are valuable. It is recommended to remove attributes that
contain too many missing values, have too little (Stability) or too much (ID-ness) variety,
and are characterised by too strong or too weak correlation with a decision attribute. Auto
Model recommended the following attributes as the basis of the analysis: age, sore throat,
headache, muscle aches, dyspnoea, blood group, cough, contact with infected person,
hypertension, days of symptoms, sex, saturation, temp. > 38 ◦C, temp. max, temperature
in hospital, loss of smell or taste, dizziness.

Auto Model enables a user to define the costs of the classification mistakes. In this
way, it is possible to define the false negative error, which is the prediction that someone
does not have COVID-19 while they have the disease, as being more undesirable than a
false negative error. In the analysis performed, several values of the cost were verified—the
cost value set to −1 means that there were no additional costs, and the lower values mean
larger costs.

Finally, Auto Model allows a user to verify the quality of several optimised classifiers.
The classifiers are not evaluated by means of a well-known and typically recommended
cross-validation procedure, but by a proprietary solution. The reported performance is the
average of the scores over 5 out of 7 subsets on a hold-out data set consisting of 40% of
data that were not used for model optimisation. The performance (in terms of sensitivity
and specificity) of the models automatically generated on training data is presented in
Table 4. Moreover, the models generated for the larger cost values {−5,−7} (distinguished
by better quality) were applied to the test data set to additionally verify their quality—the
results of this analysis are presented in Table 5.

Table 4. Performance of the classifiers generated by RapidMiner Auto Model on training data.

Sensitivity Specificity

Cost −1 −3 −5 −7 −1 −3 −5 −7

Naive Bayes 0 72.2 100 100 100 8.53 0 0
Generalised Linear Model 0 0 64.58 100 100 85.39 16.18 0
Logistic Regression 0 16.17 62.79 84.29 100 56.8 18.68 8
Deep Learning 0 38.57 100 100 100 32.57 0 0
Decision Tree 0 0 0 100 100 100 100 1
Random Forest 0 32.68 100 100 100 83.29 5.05 0
Gradient Boosted Trees 0 14.05 64.4 98.33 100 96 69.93 9.05
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Table 5. Performance of the classifiers generated by RapidMiner Auto Model on test data.

Sensitivity Specificity

Cost −5 −7 −5 −7

Naive Bayes 100 100 0 0
Generalised Linear Model 75 98.37 9.16 0.51
Logistic Regression 70.65 90.76 15.78 3.56
Deep Learning 98.91 100 0.51 0
Decision Tree 0 99.46 100 0.51
Random Forest 99.46 100 3.05 0
Gradient Boosted Trees 65.22 97.83 64.38 11.7

The obtained results presented in Tables 4 and 5 show that the undertaken task is
non-trivial, and it is challenging for the automatically generated classifiers. This motivated
further research conducted by data science experts. Moreover, the adopted value of the cost
for false negative errors has a significant impact on the obtained quality of the results—only
higher cost values enabled the classifiers to obtain acceptable sensitivity (see Table 4);
however, the specificity then drastically decreased. Finally, treating the obtained results as
a starting point for more advanced analyses carried out by data science experts, it can be
noticed that the highest sensitivity with non-zero specificity is achieved by two models:
logistic regression and gradient boosted trees.

5.2. Data Preparation

Work on the model defined by the data scientists (not created automatically) began
with an additional stage of data processing. Since there were many missing values in the
collected data, it was necessary to filter the attributes and cases to generate the best possible
classification model. In order to perform data selection, the data set was transformed into
a binary representation where missing records were marked with the value of 1, while
complete records with the value of 0. For the “contact with infected person” variable,
missing values were treated as a negative answer due to the survey construction: patients
were asked to tick the “Yes” option only if they knew that they had been exposed to
SARS-CoV-2. Next, hierarchical clustering with the Hamming distance [52] and McQuitty
agglomeration [53] was performed for features and patients separately. Finally, the cluster
of patients with the highest level of missing information was removed from the data set
and the cluster of features with the highest level of missing data was not considered in
further analysis. The data subjected to the selection are illustrated in Figure 3, with missing
and complete information marked with red and bright green colours, respectively. The den-
drograms serving for the selection are at the sides of the figure. Branches highlighted in red
correspond to patients or features excluded from the further analysis due to high missing
data levels.

The list of data features was reduced to 16, and it contained: sex, contact with infected
person, number of days of symptoms, temperature > 38 ◦C, maximal temperature, cough,
dyspnoea, muscle aches, loss of smell or taste, sore throat, headache, dizziness, skin
reactions, temperature (measured at the hospital), saturation, and age. Characteristics
for exemplary attributes commonly referred to as related to SARS-CoV-2 infection are
presented in Figure 4.
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Figure 3. Heatmap of features and patients with hierarchical clustering due to missing information. Red
color represents missing value, green color represents presence of information. Branches highlighted in
red correspond to patients or features excluded from the further analysis due to high missing data levels.

5.3. Proposed Classification Approaches

Initial work with AutoML showed the promising use of two models in further, more
advanced research: logistic regression and gradient boosting. Therefore, within the con-
ducted research, two classifiers developed by two separate research groups were verified.
The first model was logistic regression [54], representing statistical approaches valued by
the medical community, while the second was the XGBoost method [55], implementing
the gradient boosting model, which is a leading data-driven machine learning approach.
The R implementation of generalised linear model fitting for logistic regression and the
xgboost package implementing the XGBoost method in the R [56] environment were used
in the analysis.

The initial data set was common to each of the approaches; however, the models were
generated in separate processes. Therefore, different data preparation and feature selection
steps could be applied and hence different splits into training and test data within the
model generation process were possible. However, both generated models were evaluated
on a common test data set and additional collection of data available online [24].

To evaluate classifiers in the conducted research, sensitivity and specificity can be
used, bearing in mind that, as stated earlier, false negative classification errors are more
costly, and it is more important to achieve a high sensitivity value than high specificity.
Moreover, when presenting the public health solutions and the results of medical analysis,
the positive predictive values (PPV) and negative predictive values (NPV) are applied
as they are commonly used to describe the performance of a screening and diagnostic
test [57,58]. Therefore, as part of the research, the Weighted Harmonic Mean (WHM) of
NPV and PPV was used in the classifier optimisation process:

WHM =

(
w

NPV
+

1− w
PPV

)−1
. (1)
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In a diagnostic test, the weight can be equally distributed between NPV and PPV.
However, here, the screening test is applied; thus, the importance of NPV should be higher
than that of PPV to maximally reduce the number of undetected COVID-19(+) patients
(false negatives). This should be reflected in a value of the weight w ∈ [0, 1].
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Figure 4. Distribution of exemplary attributes. Panel (A) shows the distribution of the number of days of symptoms in each
SARS-CoV-2 infection status (numerical feature). Panel (B) shows the proportions of positive and negative answers for
binary attributes commonly linked to SARS-CoV-2 infection.

5.3.1. Logistic Regression-Based Approach

For the features remaining after the initial data selection, the effect size was calculated
(Cramér’s V and an estimate for Mann–Whitney non-parametric test for discrete and continuous
features, respectively) [59,60]. Only features with at least a small effect were preserved for
further analysis. Hence, during the logistic regression model generation, five attributes were
considered: contact with infected person, number of days of symptoms, temperature > 38 ◦C,
loss of taste/smell, and dyspnoea. Additionally, for these attributes, all possible pair interactions
were constructed (intersections ∩; logical AND), e.g., occurrence of temp. > 38 ◦C and dyspnoea
simultaneously will logically result in 1 for the interaction variable. When at least one of the
attributes is 0, the interaction value will numerically be 0.

Finally, the logistic regression approach does not handle missing values, so patients
with incomplete information regarding five considered features were rejected. As a result,
the training data set consisted of 572 examples, 185 of which were positive (COVID-19(+))
and 387 were negative (COVID-19(−)).

The steps of the analysis presented in the consecutive paragraphs were repeated
100 times within the Multiple Random Cross-Validation (MRCV) process. Patients re-
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maining after filtration were randomly divided into training and validation sets in equal
proportions (50:50). The division was balanced in terms of COVID-19 diagnosis, as well as
with regard to the considered set of features, so that, for instance, patients with a particular
symptom were not underrepresented in the training or test set.

Next, the logistic regression model was built with the forward feature selection method.
Therefore, in each step, a new attribute was added to the model based on the selection
criterion, which, in this case, was the Bayes Factor. New attributes were added until the
Bayes Factor value decreased below 1, which is described as “barely worth mentioning
evidence” [61,62]. The attributes were either five previously selected features or their
pairs’ interactions.

As the logistic regression model provides the probability that an observation belongs
to a particular category (in this case, COVID-19(+)), the cut-off value of the probability
must be determined to classify each patient. The cut-off probability was identified in such a
way as to maximise the WHM (1) with weight w equal to 0.85. The enhanced importance of
NPV reduces the risk of false negative observations’ occurrence for screening test purposes.
Moreover, the applied weight reflecting standards in the designed medical screening test
were NPV > 90 and PPV > 30 is expected. For medical reasons, it is crucial to avoid COVID-
19(+) patients’ exclusion from further diagnosis procedures, while molecular testing for
SARS-CoV-2 infection of some COVID-19(−) patients is both acceptable and inevitable.
The cut-off value could only be selected from the interval 0.1–0.9. Finally, the quality of
prediction for the training and validation sets was calculated.

After the MRCV procedure, feature ranking was prepared based on the feature sig-
nificance in the model and the model’s quality as characterised by the WHM (1) with a
weight w equal to 0.85. The forward feature selection was again applied for the final model
building. However, this time, the feature ranking determined the order in which attributes
were added to the model. During each step, the data set was divided into training and
validation parts in a 50:50 proportion 100 times, and quality was estimated for each division.
The model with the highest average WHM value for validation sets was selected as the
final one. The cut-off probability was identified in such a way as to maximise the WHM
value. The parameters of the final model are presented in Table 6 and its performance
calculated on the whole train data set is presented in Table 7.

Table 6. Parameters of the final logistic regression classifier.

Estimate Std. Error p-Value OR

(Intercept) −0.9299 0.2287 4.77 × 10−5 -
Days of symptoms −0.1720 0.0486 3.99 × 10−4 0.8420
Loss of smell or taste 1.4948 0.3729 6.11 × 10−5 4.4584
Contact with infected person 1.1546 0.2687 1.73 × 10−5 3.1728
Days of symptoms AND Loss of smell or taste 0.0112 0.0593 8.51 × 10−1 1.0113
Loss of smell or taste AND Contact with infected person −0.9736 0.4135 1.86 × 10−2 0.3777
Days of symptoms AND Temp. > 38 ◦C 0.0763 0.0374 4.12 × 10−2 1.0793

Table 7. Logistic regression evaluation results—classification results for final model on the whole
train set.

NPV PPV Sensitivity Specificity

1.0000 0.3551 1.0000 0.1318

5.3.2. Gradient Boosting-Based Approach

This approach was designed to use all available attributes and binary interactions
between binary features. If two features a and b were binary ones, then a new binary
feature a ∪ b was created, and its value was calculated by applying a logical OR operation.

The next steps of the analysis aimed at limiting the number of features involved in
the classification in order to better explain the decisions made by the model. For this
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purpose, all information related to the measurement of body temperature was removed
from the set of features, except for the binary feature indicating whether the patient had
a temperature greater than 38 ◦C. This step was motivated by no significant differences
between the values of temperature and maximum temperature in both studied classes.
Moreover, the numerical variables that the XGBoost algorithm prefers to construct the tree
were removed in this way.

Moreover, further feature selection based on 100 draws of a subset of the available data
was performed. Each draw selected at least 60% of the examples and 60% of the attributes.
On such a limited data set, the XGBoost algorithm was run in the 10-times five-fold cross-
validation mode and the ranking of the importance of features in the trained classifier
was recorded. Then, the average position of a feature in the ranking was calculated.
This average ranking consisted of only those features that occurred at least 60 times
in the selected subsets. In this way, the set A consisting of all features presented in
Table 8 and their interactions (OR) between binary features was obtained. The value of the
sum_of_symptoms feature was calculated on the basis of 11 disease symptoms included in
the training set.

The steps of the analysis presented in the consecutive paragraphs were repeated
100 times within the MRCV process. Patients left after filtration were randomly divided
into training and validation sets in 60:40 proportions. Within this procedure, the optimisa-
tion process based on forward feature selection was performed. The WHM (1) evaluation
measure was used in the optimisation process, and the weight value was set to w = 0.7 to
enhance the importance of NPV and reduce in this way the risk of false negative observa-
tions’ occurrence, as the method was developed for the purposes of the screening test.

Table 8. Average position in the ranking of features created for XGBoost classifier.

Feature Name Average Ranking Position

Days of symptoms 1.1
No. of symptoms 2.5
Loss of smell or taste 2.6
Contact with infected person 4.6
Temp. > 38 ◦C 4.5
Cough 5.3
Muscle aches 5.3
Dyspnoea 5.3

In order to present the complete process of building the classifier, we denote by
XGB(A, t, m) the average value of evaluation measure m calculated on the basis of the
results of the MRCV procedure of the XGBoost algorithm, built based on the set of features
A. If t = tr, this means that the average value of m is given on the training sets; if t = ts,
this means that the average value of m is given on the test sets. In each of the 100 experi-
ments based on which the mean value of m is calculated, an internal optimisation of the
classification threshold to the COVID-19(+) class is carried out.

Initially, the ability to classify each individual basic feature from the A set is verified.
This means that, for each feature, a ∈ A the scoring XGB({a}, ts, WHM) is calculated. The
feature with the highest score is selected as the best one. This feature is the first one in the
set of selected features denoted as B. Next, further features a ∈ A \ B are added to B.

The process of adding features to the set of selected features B is carried out as long as:

XGB(B, ts, WHM) < XGB(B ∪ {a}, ts, WHM)
and
XGB(B, tr, WHM) ≤ XGB(B ∪ {a}, tr, WHM),

(2)
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or
XGB(B, ts, WHM) ≤ XGB(B ∪ {a}, ts, WHM)
and
XGB(B, tr, WHM) < XGB(B ∪ {a}, tr, WHM).

(3)

After the stage of expanding the set of features, the stage of pruning redundant
features can be performed. Feature b is removed from set B if its removal does not decrease
(or it increases) the value of XGB(B, ts, WHM); more precisely,

XGB(B \ {b}, ts, WHM) ≥ XGB(B, ts, WHM). (4)

The resulting set of features used further for classifier training consisted of the follow-
ing seven features: Contact with infected person OR Loss of smell or taste, Loss of smell or
taste OR Temp. > 38 ◦C, Days of symptoms, Cough OR Loss of smell or taste, Dyspnoea
OR Contact with infected person, Temp. > 38 ◦C, Cough OR Contact with infected person.

After selecting the features, the next step in the analysis was the optimisation of the
XGBoost algorithm parameters. This was carried out using the autoxgboost [63] R package.
This time, the F1 measure was used as the optimisation criterion in order to increase the
sensitivity and PPV value of the final classifier.

The performance of the model obtained in this way, which was calculated on the
whole training data set, is presented in Table 9.

Table 9. XGBoost evaluation results—classification results for final model on the whole training set.

NPV PPV Sensitivity Specificity

0.952 0.509 0.968 0.402

6. Evaluation of Created Models

Both created classification models presented in Section 5.3 were finally evaluated
(with respect to Formula (1)) on additional data sets. The characteristics of the first test
data set were presented in Section 4. This data set was created as a result of splitting data
into training and test parts (Table 3) and it consists of 577 examples. This data set will be
referred to further as PL.

The second data set was presented in Section 2 as the data set available online [24]. It
required an initial transformation, which involved removing all patients who did not show
any diagnostic symptoms used by the generated models and available in this collection
(contact with infected person, number of days of symptoms, temperature > 38 ◦C, cough,
dyspnoea, muscle aches, loss of smell or taste, sore throat, headache). The characteristics
of the obtained data set are presented in Table 10. This data set will be referred to further
as US.

Table 10. Quantitative characteristics of the US test data set.

COVID-19(−) COVID-19(+) Total

406 8 414

The results of applying the XGBoost classifier to the PL test data set are presented in
Tables 11 and 12.

The final logistic regression model, presented in Table 6, was tested on the reduced
PL data set. In this set, 538 examples had full information for model features, which is
required by the logistic regression classifier. The logistic regression model performance on
this data set is presented in Tables 11 and 12.

Additionally, the XGBoost classifier was applied to the reduced PL test data set,
in which there were no missing values. In this way, it was possible to compare the quality
of both models. The results of XGBoost are presented in Tables 11 and 12.
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Table 11. Confusion matrices obtained as a result of applying the generated models on the PL set
(full and without missing values).

Reference

COVID-19(−) COVID-19(+)

XGBoost Predicted COVID-19(−) 124 23
(Full data set) COVID-19(+) 269 161

XGBoost Predicted COVID-19(−) 117 23
(Reduced data set) COVID-19(+) 244 152

Logistic regression Predicted COVID-19(−) 41 4
(Reduced data set) COVID-19(+) 322 171

Table 12. Classification quality of the logistic regression and XGBoost models on the PL test data set.

XGBoost Logistic Regression XGBoost
Full Data Set Reduced Data Set Reduced Data Set

Sensitivity 0.875 0.977 0.869
Specificity 0.316 0.113 0.324
PPV 0.374 0.347 0.384
NPV 0.844 0.911 0.836

A second evaluation of both generated classifiers was performed on the US data set.
The XGBoost model performance on this data set is presented in Tables 13 and 14. Again,
the logistic regression model was tested on the reduced US data set, from which examples
with missing values were removed, and it consisted of 337 cases. The logistic regression
performance on this data set is presented in Tables 13 and 14. The results of XGBoost tested
on the reduced US data set are presented in Tables 13 and 14.

Table 13. Confusion matrices obtained as a result of applying the generated models on the US set
(full and without missing values).

Reference

OVID-19(−) COVID-19(+)

XGBoost Predicted COVID-19(−) 211 3
(Full data set) COVID-19(+) 195 5

XGBoost Predicted COVID-19(−) 145 2
(Reduced data set) COVID-19(+) 133 4

Logistic regression Predicted COVID-19(−) 65 1
(Reduced data set) COVID-19(+) 213 5

Table 14. Classification quality of the logistic regression and XGBoost models on the US test data set.

XGBoost Logistic Regression XGBoost
Full Data Set Reduced Data Set Reduced Data Set

Sensitivity 0.625 0.833 0.667
Specificity 0.520 0.234 0.522
PPV 0.025 0.023 0.029
NPV 0.986 0.985 0.986

The obtained classification results show that the NPV of both methods is acceptable
for the screening test; in particular, the NPV of the logistic regression model is above 0.90
on the PL and US sets. Both models have similar PPV values. The logistic regression model
is characterised by higher values of NPV and sensitivity, and XGBoost is characterised
by higher values of specificity. This is partly due to the model optimisation method.
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Furthermore, this confirms the thesis that, depending on the user’s preferences expressed
in this article by the weight value in Formula (1), it is possible to obtain classifiers with
different levels of PPV and NPV.

7. Discussion

In this section, various issues related to the presented case study are discussed. The
first part of this section is devoted to explaining the models obtained in the case study in
line with the idea of explainable artificial intelligence (XAI). The second part is about how
the proposed system, or, more specifically, its analytical heart, is maintained over time as
the epidemic progresses and moves to its new phases. The last part of the discussion is
related to an exemplary estimate of how such systems can contribute to the reduction of
epidemic management costs.

7.1. Explanation of the Models Obtained

The relation between parameter values and the decision represented by the XGBoost
models is difficult to interpret by a human. Logistic regression gives the possibility to
estimate the adjusted odds ratio (Table 6), which gives a direct and intuitive interpretation of
obtained classifier parameters. However, to give a unified comparison of both approaches,
the RPART decision trees [64] were created to provide an explanation of the relationship
between symptoms and the outcome predicted by the models.

Having two sets of basic features selected for each model, decision trees were gen-
erated to explain the behaviour of their representative models. First, two training sets
were prepared. The data sets consisted of patients with symptoms (Sick) representing
the attributes that were used by the models, and each patient was assigned the decision
given by the model. Then, based on these two separate training sets, two RPART decision
trees were generated. Finally, it was evaluated how well the decision trees approximate
the decisions made by the considered models. For each patient, the decision given by the
model was compared with the decision given by its RPART approximation. For the decision
tree generated for the logistic regression model approximation, the resulting Balanced
Accuracy (BAcc) value was 0.967, and, for the decision tree generated for the XGBoost
model approximation, the resulting BAcc value was 0.937. Based on the very high BAcc
values, it was possible to use the trees to explain the relationship between symptoms and
model outcomes.

Furthermore, similar decision trees using training sets based on selected feature
interactions were generated. However, since the representation of a tree based on simple
(basic) features can be better understood, it was decided to include a simpler version in the
manuscript.

The generated decision trees are presented in Figures 5 and 6. The colours in the
figures represent the classes—COVID-19(+) is represented by red and COVID-19(−) by blue.
The more saturated the colour of a node is, the greater the dominance of examples from a
given class in this node. The first row of the RPART tree node provides information about
the majority class of examples covered by that node; the second provides the percentage of
the cases from the node that are classified by the approximated model into the majority
class, and the third row provides the percentage of all cases covered by that node. The
branches of the tree represent symptoms and their presence or lack thereof (yes means that
the patient has a symptom and no means that a symptom is not observed). Please note
that since the trees were built to approximate the models, their leaves do not represent
the patient outcome, but the decision provided by the model based on the particular set
of symptoms. Decision trees can be used to explain which combinations of symptoms
and their values are taken into account while predicting diagnosis. For example, it can be
noted that, in the case of both models, a long symptom duration no_of_days_of_symptoms
≥ 13 will result in a negative decision (COVID-19(−)), unless the patient observes the
loss_of_taste_smell.
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Figure 5. Decision tree generated to explain the behaviour of logistic regression classifier—red colour
represents positive class and blue colour represents negative class. The more saturated the colour of
a node is, the greater the dominance of examples from a given class in this node.
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Figure 6. Decision tree generated to explain the behaviour of XGBoost classifier—red colour repre-
sents positive class and blue colour represents negative class. The more saturated the colour of a
node is, the greater the dominance of examples from a given class in this node.
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In general, the decision tree approximating the logistic regression model is less com-
plex and allows for an easy interpretation of the model’s decision-making. The decision-
making model can be expressed in terms of seven rules containing 2 to 4 conditions (nodes).
The tree approximating the XGBoost model is more complex. In this case, the decision
model consists of 12 rules with 2 to 7 conditions.

The knowledge represented by the created trees explaining how the decisions are
made by the generated classifiers can be analysed in more detail. However, it is related
to the current type of virus and the current epidemiological situation at the time of data
collection. Therefore, the conclusions of such an analysis do not fall within the scope of the
presented work.

7.2. Adaptation of the Proposed System

According to what was presented in the description of the workflow, a selected
model from among the created ones was transferred to the DECODE system for operation.
The generated classifiers are of sufficiently good quality in the conducted analyses. How-
ever, the presented case study concerns a data set describing COVID-19 disease symptoms
for the SARS-CoV-2 virus from the early stage of the pandemic. Later, new mutations of
the virus began to appear, for which the set of characteristic symptoms changed. The new
class definitions related to the new disease characteristics require adaptation of the created
models, because the lack of representation of new mutations in the training data will lead to
a decrease in the quality of the classifier. The concept of the system presented in Section 3
means that users who enter their symptoms into the form may add the laboratory test
result to them. Therefore, it is possible to verify the quality of the model on an ongoing
basis and react in the event of a quality decrease. Thus, the classifier’s efficiency is checked
from time to time, and, if it does not meet the minimum PPV and NPV requirements, a new
model has to be defined using automatic machine learning and data science experts.

7.3. Impact of the Proposed System

The qualitative analysis and interpretability of the models may be supplemented with
an estimate of the savings that may result from the application of the proposed system.
The cost reduction can be associated with the genetic testing of individuals showing
symptoms of the disease. According to Table 1, the mean value of the daily number of
tests performed was 23,178 in July 2020. Most of the tested people had symptoms of
the disease because, in accordance with the policy of the Polish government, doctors
directed only such persons for tests. The percentage of positive tests at that time in
Poland (https://ourworldindata.org/grapher/covid19-positive-rate-since-5th-death?tab
=table&time=2020-07-01..2020-07-31, accessed on 10 September 2021) was a maximum of
2.5%, which leads to the conclusion that, everyday, 22,599 people uninfected with SARS-
CoV-2 were tested. According to the pessimistically rounded results of the generated
classifiers, their specificity (Tables 7, 9, 12 and 14) was 0.3 and 0.1 for XGBoost and the
logistic regression model, respectively. This means that, at that time, these models would
not recommend testing for 6779 and 2259 people daily, respectively, if applied to the
screening of the patients directed to testing. Thus, the XGBoost and logistic regression
models would save, in this way, over USD 13 million and over USD 4 million in July 2020,
respectively (assuming USD 63 per test, as stated in Table 1).

8. DECODE Service

DECODE is a symptom checker tool used to assist patients and family doctors in the
preliminary screening and early detection of COVID-19.

In the DECODE service, a patient has the opportunity to fill out a questionnaire
regarding his/her health condition and obtain a preliminary assessment of their possibility
carrying COVID-19 and, consequently, the need to be tested for SARS-CoV-2.

https://ourworldindata.org/grapher/covid19-positive-rate-since-5th-death?tab=table&time=2020-07-01..2020-07-31
https://ourworldindata.org/grapher/covid19-positive-rate-since-5th-death?tab=table&time=2020-07-01..2020-07-31
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The questions (Figure 7) cover many problem areas related to possible COVID-19
disease. In addition to the year of birth, sex, the occurrence of signs that are typical for
coronavirus, such as fever over 38 degrees of Celsius, cough, dyspnoea, loss of smell or
taste, etc., the patient may add other disturbing symptoms and state how long they last.
Moreover, the person completing the questionnaire has the option of providing the names
of any chronic diseases—if any—and the names of the medications that are constantly taken.
Blood type is also taken into account. To avoid possible inconsistencies, the questionnaire
fields are validated. For example, if a patient checks any symptoms, the length of their
presence must be greater than 0.

After completing and sending the questionnaire, the patient receives suggestions in
the form of a Negative/Positive statement, a quantitative score, and an illustration of how
the obtained score compares with the distribution of other results stored in the system.
An example of such an illustration is presented in Figure 8. It contains two distribution
charts presenting the frequency of scores for patients who are positive or negative for SARS-
CoV-2 infection. The system informs users that the obtained results are only a prediction
and only a medical test can fully confirm the presence of SARS-CoV-2. The link that allows
the patient to return to the survey is active for 14 days. Using this link, the patient can,
for example, report new symptoms, if they occur. In particular, when the patient knows
their PCR test results, they can share this information and help to improve the service.

DECODE is available in two language versions (Polish and English) and is integrated
with the CIRCA diagnostic service, which was also developed at the Silesian University of
Technology to support and accelerate COVID-19 imaging diagnostics.
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Figure 7. Questionnaire collecting data on patient’s condition, implemented in the DECODE online tool to perform patient
preliminary screening for COVID-19.
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Figure 8. Example of the distribution charts illustrating the DECODE system result, presenting user score with regard to
SARS-CoV-2 infection.

9. Conclusions

The paper presents the assumptions, analytical background, and evaluation of a
COVID-19 screening support system that uses machine learning methods to classify pa-
tients on the basis of their symptoms.

The workflow and architecture included in the work present the general concept of
the system. The use case based on the collected data adopts both steps proposed in the
workflow to generate the final classification model. The first step, based on automatic
machine learning, did not provide a final solution of adequate quality, but it allowed us
to obtain valuable suggestions used at the second stage of work on classifiers. In this
way, based on the feature set describing the disease symptoms, it was possible to obtain
classifiers that met the expectations concerning the detection of patients with COVID-19
disease. This was achieved at the expense of a relatively low Positive Predictive Value.
The classifiers’ efficiency was verified on the data set obtained as part of the presented
research, in the last period of collecting the questionnaires, and on the data set available
online. Thanks to an approximation of the obtained classification models by a decision tree,
it was possible to explain—using the set of basic features—what features and their values
were the basis of the decisions taken by the classifiers. The obtained classification models
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provided the basis for the development of the DECODE service (decode.polsl.pl, accessed
on 25 October 2021), aiding doctors in preselection for further diagnostics in the event of
an overwhelming increase in disease transmission. The presented solutions can be used as
a template in the event of a threat of new pathogens in the future.

An important aspect of the paper is the data set describing over 3100 patients with
verified (positive or negative) SARS-CoV-2 infection. The set includes: asymptomatic
patients with SARS-CoV-2 infection, patients with COVID-19 disease (referred to in the
paper as COVID-19(+)), as well as symptomatic patients but without SARS-CoV-2 infection
(suffering from other diseases, e.g., influenza, denoted as COVID-19(−)). In addition to
information about symptoms, the data set includes information on comorbidities (e.g.,
hypertension, diabetes, etc.). However, comorbidities were not analysed in the studies
described in this paper. The data set is available to a wide group of researchers, and it is a
significant data repository describing COVID-19 symptoms in the Slavic population.

Further work will focus on developing an automatic adaptation procedure as the
generated classification models have to be periodically verified on newly emerging data
and tuned. Such a procedure may support the identification of new virus mutations and
their spread among the population. This type of research requires a larger set of data
obtained from the DECODE web service users and through cooperation with a greater
number of hospitals. Such a data set will additionally enable improvement of the classifiers
to increase their specificity (PPV and Specificity).
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