
applied  
sciences

Article

An Analytic Method for Improving the Reliability of Models
Based on a Histogram for Prediction of Companion
Dogs’ Behaviors

Hye-Jin Lee 1, Sun-Young Ihm 2, So-Hyun Park 3,* and Young-Ho Park 1,*

����������
�������

Citation: Lee, H.-J.; Ihm, S.-Y.; Park,

S.-H.; Park, Y.-H. An Analytic Method

for Improving the Reliability of

Models Based on a Histogram for

Prediction of Companion Dogs’

Behaviors. Appl. Sci. 2021, 11, 11050.

https://doi.org/10.3390/app112211050

Academic Editor: Subhas

Mukhopadhyay

Received: 22 October 2021

Accepted: 15 November 2021

Published: 22 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of IT Engineering, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu,
Seoul 04310, Korea; adorablehye96@sookmyung.ac.kr

2 Department of Computer Engineering, PaiChai University, 155-40 Baejae-ro, Seo-gu, Daejeon 35345, Korea;
sunnyihm@pcu.ac.kr

3 Bigdata Using Research Center, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu,
Seoul 04310, Korea

* Correspondence: shpark@sookmyung.ac.kr (S.-H.P.); yhpark@sookmyung.ac.kr (Y.-H.P.)

Abstract: Dogs and cats tend to show their conditions and desires through their behaviors. In com-
panion animal behavior recognition, behavior data obtained by attaching a wearable device or sensor
to a dog’s body are mostly used. However, differences occur in the output values of the sensor
when the dog moves violently. A tightly coupled RGB time tensor network (TRT-Net) is proposed
that minimizes the loss of spatiotemporal information by reflecting the three components (x-, y-,
and z-axes) of the skeleton sequences in the corresponding three channels (red, green, and blue) for
the behavioral classification of dogs. This paper introduces the YouTube-C7B dataset consisting of
dog behaviors in various environments. Based on a method that visualizes the Conv-layer filters
in analyzable feature maps, we add reliability to the results derived by the model. We can identify
the joint parts, i.e., those represented as rows of input images showing behaviors, learned by the
proposed model mainly for making decisions. Finally, the performance of the proposed method is
compared to those of the LSTM, GRU, and RNN models. The experimental results demonstrate that
the proposed TRT-Net method classifies dog behaviors more effectively, with improved accuracy and
F1 scores of 7.9% and 7.3% over conventional models.

Keywords: artificial intelligence; dog behaviors; multi class classification; tensor fusion

1. Introduction

To understand the intentions of animals, it is important to identify the meaning of
their behaviors. Dogs and cats, which have particularly close emotional ties and interrela-
tionships with humans, tend to reveal their conditions and desires through their behaviors.

Conventional studies on identifying the behaviors of companion animals include
studies using sensors [1–5] and videos [6,7]. In this paper, we describe a study conducted
on the behavior identification of dogs, which, among the various types of pets, are typical
companion animals. Most studies on dog behavior identification use sensor information
obtained by attaching wearable or physical devices to a part of the dog’s body [1–5].
However, if the dog moves violently, the method of attaching the device to its body
may result in the collection of data mixed with noise because differences occur in the
sensor output values. As a method of replacing the sensor information, a method using
visual information obtained from videos has been proposed. However, because there
have been few studies on image-based behavior classification in the field of dog behavior
identification, studies are conducted by supplementing such limitations based on the field
of human behavior identification [8–10], for which many studies have been conducted.
Some prior studies have used motion recognition devices, such as a Kinect, to enhance
the behavior recognition rate. For example, refs. [8–10] used a method of identifying a
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person’s posture based on the joint information and depth information obtained through
an RGB-D camera (e.g., Kinect). However, the method of collecting behavior data through
fixed cameras may be stressful for dogs because experiments are conducted within limited
spaces. Furthermore, a difficulty in modeling the dog behaviors occurs because the method
limits the radius of activities of the dogs.

To resolve this problem, some researchers have proposed a method for extracting
three-dimensional (3D) joint positions as a method of learning spatial and temporal infor-
mation from RGB videos captured by regular cameras without a special device such as a
Kinect [11–13]. However, this method [11–13] has a limitation in that it does not sufficiently
express the correlation of spatiotemporal information because it delivers the joint positions
of the human, which are input values, to the model by simply concatenating them. To
overcome this limitation, color-based data representation methods that maintain certain
vector information have emerged. However, the existing methods have a limitation in that
they are optimized for audio-visual data [14] or use grayscale, which is a limited color scale
for expressing 3D pose positions [15,16].

In this paper, we propose a novel but simpler data representation method using 3D
skeleton sequences consisting of 2D RGB image-based joint position values (x- and y-axes)
and depth information (z-axes) to identify the dog behaviors. To the best of our knowledge,
this representation has not been used in the field of dog behavior recognition and has an
advantage in that an efficient method of classifying dog behavior images can be applied.
The models used in the prior studies introduced above cannot sufficiently represent or
learn the correlations of x, y, and z axes that constitute the joints according to time because
they use methods for combining skeleton sequence data through simple operations or
representing them in grayscale images that have a limited number of colors. However, our
proposed method can minimize the loss of spatiotemporal information because it reflects
the three components (x-, y-, and z-axes) of the skeleton sequences in the corresponding
three components (red, green, and blue channels) of the pixels. Furthermore, it can express
the relationships of more temporal information and the spatial trajectory information of
the joints through an encoding method. Moreover, it adds reliability to the derived results
of the model through a method of analyzing which skeleton joints affect certain behaviors
based on a Conv-layer filter visualization method. The major contributions of this study
are as follows.

• First, this paper suggests a dog behavior dataset called the YouTube Companion
Dog’s Seven Behaviors Dataset (Youtube-C7B). We collected videos containing 2D
RGB image-based behavior data of dogs (French Bulldogs, Siberian Huskies, and
Retrievers) from the YouTube platform. The proposed Youtube-C7B helps the behav-
ioral modeling of dogs become more natural by collecting videos of dog behaviors
in real-world environments, unlike the conventional datasets that have collected be-
havior data through sensors in limited spaces. Furthermore, while the conventional
datasets are without labels, the dataset proposed in this study was built by labeling
behaviors suitable for deep learning. Finally, in contrast to the conventional datasets,
the proposed dataset contains not only normal behaviors, but also convulsing, which
is an abnormal behavior, and can be used in various applications for detecting the
abnormal behaviors of dogs and responding to emergency situations.

• Second, in this paper, to identify the postures of dogs, a Tightly Coupled RGB Time
Tensor Network is proposed, which is an RGB-based data representation method
that contains the correlations among the x-, y-, and z-axes, which change as time
passes. A good representation of the changing patterns of x, y, and z over time and
their relationships help to achieve a modeling with a great distance between each
behavioral feature. This leads to an improved accuracy of the dog pose identification.
For example, because convulsing results in more shaking on the x-, y-, and z-axes
compared to standing, the patterns that change over time and their relationships
should be properly represented to effectively model the dog’s behaviors. For this
reason, we encode the three components (x-, y-, and z-axes) of each 3D joint position
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into the 3D components (red, green, and blue channels) of the RGB images and then
fuse these colors. When the colors are fused in this way, it can be seen as containing
the correlations of the x-, y-, and z-axes because even after fusing, it is possible to infer
the pre-fusion behavior information, unlike when they were represented by vectors.
Furthermore, it helps the deep learning model decode meaningful information to
better identify the dog’s behaviors.

• Third, unlike conventional methods, the proposed method visualizes the filters of
Conv-layer in analyzable feature maps. Thus, the patterns that the CNN memorizes for
predictions can be understood. By displaying the joints extracted from the visualized
feature maps based on a histogram, it is possible to know which joint part of the input
image was mainly learned to make decisions.

The remainder of this paper is organized as follows. First, Section 2 introduces the
trends of prior studies, and Section 3 introduces a video-based dog behavior dataset and an
algorithm for the pose classification of dog behaviors using an RGB color space-based color
mixing method. Section 3 also describes an algorithm that analyzes the factors affecting the
derived results of the CNN model based on the analyzable feature maps. Next, Section 4
describes the experimental environment and method. Finally, Section 5 provides some
concluding remarks and describes areas of future study.

2. Related Work

This section discusses relevant studies on methods for collecting behavioral posture
data of dogs commonly used in the existing dog behavior recognition field and methods of
behavior data representation and describes the limitations of the previous studies.

2.1. Wearable and Physical Devices for Data Collection

In the field of dog behavior research, in the past, many studies used wearable devices
to enhance the accuracy of dog behavior recognition [1–5]. Most studies on dog behavior
recognition have used physical devices such as wearables for collecting dog behavior data.
For example, in [1–3], to obtain the position coordinates, methods are used to attach various
sensors such as accelerometers, gyroscopes, and magnetometers on a harness, which is a
chest strap that passes over some parts (chest, belly, back) of the dog. In [5], the authors
proposed a method of recognizing behaviors by extracting the dog’s skeleton and collecting
pose information through sensors placed in the clothes worn by the dog. The sensors are
attached tightly to the dog’s body, helping to collect high-quality behavior data, and have
the advantage of being wearable regardless of the type and size of the dog. By contrast, if
the dog scratches its neck or moves violently, there is a problem in which the sensor output
varies depending on the size of the dog, because the leash moves and the sensor position is
not fixed.

To overcome this drawback in the sensor information collection, methods have been
proposed to use visual information obtained from video sequences. For example, in [4], a
method is applied for identifying the postures of a dog using a Microsoft Kinect, which
does not need to be worn on the dog’s body. In addition, in [6], the authors used a
method for collecting and analyzing the movements of dogs showing a propensity toward
attention deficit hyperactivity disorder (ADHD) through cameras fixed to the ceiling.
These methods for collecting behavior data through fixed cameras can be stressful for dogs
because experiments are conducted in confined spaces. Furthermore, they have difficulty
in modeling the dog behaviors because the radius of the activities of the dogs is limited.

2.2. Spaito-Temporal Data Representation

To the best of our knowledge, no studies have used spatiotemporal information based
on pure video taken without sensor information in the field of dog behavior recogni-
tion and classification. Therefore, in this sub-section, we investigate the spatiotemporal
data representation methods and behavior recognition models commonly used in human
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behavior recognition studies, which have frequently been conducted among behavior
recognition studies.

Studies that obtain depth information from RGB images without depth sensors such as
a Kinect have recently emerged. Furthermore, a joint-based behavior recognition method
is gaining popularity, which extracts 2D joint position information based on the depth
information obtained from RGB images [17]. Such 2D joint position information is impor-
tant because it contains not only the joint position information but also the time sequence
information. Most joint-based behavior recognition methods use recurrent neural net-
works (RNNs) that are suitable for time-series data processing, such as an RNN [18], an
LSTM [19], and a GRU [20], to extract behaviors. For example, a hierarchical RNN [21]
has been proposed, which classifies human motions based on joint position information
containing spatiotemporal information; however, RNN-based methods have a limitation of
overemphasizing the temporal information during training.

As a method of sufficiently learning both spatial and temporal information, a learning
method of adding z-values corresponding to the depth information has been proposed.
Figure 1a shows a learning method based on a data representation method that flattens the
3D joint position information over time into 1D information [11]. The late fusion method
shown in Figure 1b is a learning approach that processes a variety of spatiotemporal
information and joint information and fuses the resulting values during the last stage.
For example, as shown in Figure 1b [12,13], tensor fusion networks that fuse the joint
positions of each skeleton have been proposed. The authors proposed methods that apply
various operations such as a Kronecker product and a Hadamard product, respectively,
to implicitly represent spatiotemporal information and in the end fuse each feature value
obtained through the operations.
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Figure 1. Three typical multi-modality fusion strategies. (a) Simple concatenation [11], (b) late fusion [12,13], (c) AV-TFN [14],
(d) MTLN [16], and (e) the proposed method (TRT-Net).

As indicated above, the simple concatenation [11] and late fusion [12,13] methods
have the following limitations. In Figure 1b, a new tensor called f1 is generated by fusing
data through simple calculations using tensors (x1, y1, and z1) showing spatial information
of each joint. However, f 1 has a limitation in that it does not sufficiently represent the
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correlation of spatiotemporal information per frame because the feature vectors of x1, y1,
and z1 before fusion are unknown.

To resolve this problem, a color-based data representation method that can maintain
certain vector information was suggested. For an audio-visual tensor fusion network (AV-
TFN) [14], a tensor fusion method was proposed, which represents the position information
(x- and y-axes) of each joint of the skeleton and the audio information in the gray- and color
scales, respectively, and fuses their colors to classify piano playing postures. The tensor
fusion method proposed for AV-TFN is a color-based data representation method, which
can be used to infer the pre-fusion vector information even after tensor fusion (Figure 1c).
This helps the learning model learn meaningful information, such as the relationship
between posture and sound. However, because AV-TFN is optimized for audio-visual data,
it is unsuitable for representing the 3D poses suggested in this paper.

As a method of processing 3D posture data, the authors of [15] proposed a method
of stacking gyroscope, total acceleration, and linear acceleration information row-by-row
and representing them in grayscale-based images. In addition, in [16], the authors used
a method of creating grayscales (g1, g2, and g3) through three channels (red, green, and
blue channels) for the 3D position information (x1, y1, and z1) of the pertinent joint, as
shown in Figure 1d, to integrate different spatial relationships between joints. However,
the method of representing data in grayscale as above has a limited number of colors that
can represent the 3D position information of the joint.

Finally, the previous methods have a problem [11–16] in that they do not provide
evidence or sufficient explanation for the results derived by the model. This problem is
resolved through a method of representing the RGB image, which preserves the pre-fusion
data and the Conv-layer filters as analyzable feature maps (Figure 1e).

3. Tightly Coupled RGB Time Tensor Network

In this section, we introduce our new Youtube-C7B dataset (Section 3.1) and the pro-
posed TRT-Net RGB color image-based dog behavior classification algorithm (Section 3.2).

Figure 2 shows the overall process of the TRT-Net proposed in this paper. Step 1
changes and normalizes the shape to use the dog’s 2D joint position as the input data
for deep learning. To do this, it first converts the 2D joint position extracted from the
video into a matrix. It then finds the z value based on the mean value of the x- and y-
coordinates of each joint containing some information about the depth as z-coordinates for
converting the 2D joint position into the 3D joint position [17]. The 3D joint position is as
shown in the data representation diagram of Step 1. The spatial information in the data
representation refers to the type of joint, and the temporal information refers to frames
per second (fps). Time means the flow of time. Step 2 converts each 3D coordinate value
obtained in Step 1 into the R, G, B data format. After the conversion, R, G, and B are
combined into a single color and represented as a pixel. In Step 3, the model is trained
to classify the dog behaviors, which are classified into normal and abnormal behaviors.
Normal behaviors include standing, walking, smelling, sitting, lying, and eating, whereas
convulsing corresponds to an abnormal behavior.

3.1. Creation and Selection of Behaviors

Previous studies have primarily focused on the face and body of the dog to distinguish
the breeds [22–26]. However, there has been a lack of studies on dog behavior recognition
and classification, which is the ultimate goal in the field of behavior recognition. The
existing dog-related datasets are aimed at classifying breeds have been collected through
sensor data in limited environments and do not include behavior labels [23–26]. Therefore,
the existing dog datasets without dog behavior labels cannot be used in this study, which
aims at recognizing and classifying dog behavior. In this subsection, we therefore use a
method of collecting various behaviors through YouTube videos to recognize dog behaviors.
To build a new Youtube-C7B dataset, the collected video images undergo processes for
extracting the skeleton information and labeling the behaviors through DeepLabCut [27].
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Table 1 compares and summarizes the properties of the Youtube-C7B dataset and dog
datasets commonly used in the field of dog recognition.
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Table 1. Comparison of dataset.

Dataset Name Year Species #Image Resolution Resource Pose
Labels Key Points

Columbia Dogs [23] 2012 Dog 8351 Various
Flickr

Image-Net
Google

-
√

(Only Face)

Oxford-IIIT [24] 2012 Cat+Dog 7349 Various
Flickr

Google
Image-Net

- -

Flickr-Dog [25] 2016 Dog 374 250 × 250 Flickr - -

Stanford Dogs [26] 2011 Dog 20,580 Various Google - -

Youtube-C7B
(our proposed method) 2021 Dog 10,710 Various YouTube

√ √

(Face+Body)

Experiments were conducted on the Youtube-C7B dataset proposed in this paper by
selecting the following research subjects: French Bulldogs, Retrievers, and Siberian Huskies,
the behaviors of which are relatively easy to distinguish among the dogs highly preferred
by people in South Korea and overseas. The Youtube-C7B dataset contains 357 behavior
videos and 10,710 images collected based on YouTube videos.

We defined five daily behaviors in the Youtube-C7B dataset based on the daily behav-
iors of dogs defined in [3,4,28]. In this paper, we added two behaviors that were excluded
from the five natural behaviors defined above. A Smelling class belonging to natural
behaviors and the Convulsing class belonging to the abnormal behaviors were added. As
the reason for adding the smelling behavior, dogs acquire and grasp most information
through olfactory information. In other words, we added the smelling behavior of dogs as
daily behaviors because smelling is an extremely important and instinctive dog behavior.
The convulsing behavior was added because it pertains to one of the most common nervous
system diseases occurring regardless of the dog type and size, and is caused by genetic
or external factors, not infectious diseases caused by viruses or bacteria [29]. Convulsing
behaviors appear as if there is some electrical shock in the brain, and a fast early response is
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important for the treatment of this disease. Figure 3 shows some examples of each behavior
class in the dataset built in this study.
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Figure 3. Some samples from the Youtube-C7B dataset. (a) Siberian Husky, (b) Retriever and (c) French Bulldog.

The proposed Youtube-C7B dataset has a total of seven behavior classes, i.e., six Daily
classes and one Abnormal class. The Daily classes include Walking, Smelling, Standing
on two legs, Standing on four legs, Lying down, and Eating off the ground, whereas the
Abnormal class includes the Convulsing behavior (Table 2). Youtube-C7B includes a total
of 20 key body points based on real dog skeletons. The key body points consist of two Ears,
two Eyes, Nose, Throat, Withers, Tail base, four Knees, two Elbows, two Wrists, two Stifles,
two Hocks, and four Paws, as shown in Figure 4.

Table 2. Definitions of categories in dog behavior.

Behavior Description

Walking Behavior of the companion dog moving to a different location when using all four legs

Standing on two Legs Stretching the front legs straight and sitting with rear legs while the four soles are touching the ground

Standing of four legs Posture of standing with four legs stretched straight and straightened body while the four soles are
touching the ground

Lying down Lying down with limbs either tucked under or placed in front of body

Eating off the ground Eating food on the ground by grabbing it with front legs

Additional behavior class

Smelling Behavior of smelling the ground, objects, or things by getting the nose close to it

Convulsing Behavior of shaking the face and body as if an electrical shock has been applied to the brain
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Figure 4. Configuration of the companion dog parts.

The Youtube-C7B dataset facilitates the learning of not only the daily behavior of dogs
but also abnormal behaviors because it includes dog behavior labels and the Convulsing
class, unlike conventional datasets. Therefore, it offers the advantage of learning the
behavioral conditions of the dogs in more detail.

3.2. Pose-Transition Feature to Image Encoding Technique

The subsections introduce TRN-Net, a new encoding technique that includes processes
for feature extraction, feature arrangement, and behavior image generation.

3.2.1. Pose and Transition Feature Extraction

The feature extraction stage for the dog skeleton information, which is a type of visual
information, proceeds as follows. The dog’s skeleton information is extracted from the
images using DeepLabCut [27] in the form of 2D coordinates (x- and y-axes). Previous
dog behavior recognition studies recognized the dog’s behavior by focusing on the dog’s
body. Unlike previous studies, this study adds ears and hocks and extracts the skeletons
of the face (0–4), torso (5–7), and legs (8–19), as shown in Figure 4. Because dogs show
emotion and behavior through their faces, including the eyes, nose, and ears, and their
tails, and because their legs move the most when in motion, we extracted the face and legs
by dividing them in more detail than in previous studies [5,7].

A good representation of the changes in the patterns of x, y, and z over time as well
as their relationships helps in conducting modeling with a long distance between each
behavioral feature. Furthermore, this leads to an improved accuracy of the dog pose
identification.

3.2.2. Behavior Image Generation (RGB Color Encoding)

To represent the correlations among x, y, and z corresponding to the 3D dog pose
coordinates, it is important to preserve the identity of each data item even if the data are
fused [14]. In this study, we represent the data by using the RGB color space to preserve
the identity of the data, unlike conventional methods that digitalize data in a 2D or 3D
data structure. In the RGB color space, colors are represented using the “additive color
mixing method,” in which the brightness (value) increases when colors are mixed. This is
characterized by the ability to represent more various colors through the hue, saturation,
and value (HSV), the three properties of color. RGB color encoding of a 3D form solves
the problem that the feature vectors of the data before fusion cannot be estimated in
conventional methods, which train models by simply multiplying feature values.
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Algorithm 1 shows an overall process to represent the correlation between the dog’s
behavior data in RGB color–space-based images. Table 3 shows the major notations used
in Algorithm 1, which is conducted in the three steps described below.

Algorithm 1: Construct RGB-color based Video Tensor

Input: Extracted skeleton values f rom videos
Output: The list o f rgb− color visual tensor
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Table 3. Summary of notation.

Symbols Definition

t Mean frame per second (0 ≤ t ≤ 30)
n Number of skeleton joints
V Extracted skeleton coordinate from videos

VT Conversion visual tensor
pixRGB RGB color pixels
imgRGB Color visual tensor image

R Red channel in RGB
G Green channel in RGB
B Blue channel in RGB

Step 1. Conversion and Normalization (Lines 1–8). It is extremely important to
convert skeleton joint sequences while keeping the temporal–spatial information intact [30].
In this study, we represent data through a method in which the skeleton joints of the dog are
represented in rows, and each frame in a column is based on the method described in [31].
A total of 20 2D joints (two ears, two eyes, nose, throat, withers, tail base, two elbows, two
wrists, two stifles, two hocks, and four paws) of a dog are extracted from each frame. The
2D joint coordinates p(xn, yn) of the dog extracted from each frame are converted into 3D
joint coordinates p(xn, yn, zn), in which the depth information has been added. Here, as
shown in line 7, the z-coordinate showing the depth information is represented through the
mean value of the x- and y-coordinates that have the depth information [17]. Equation (1)
shows the formula for finding the z-coordinate value.

zi( f ) = MEAN‖(p(xi, yi)‖ (1)
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Here, S(Skel(f)) represents the skeleton sequence of a dog, and Skel( f ) = Skel0( f ), Skel1( f ),
. . . , Skelm( f ) represents the set of the skeleton joint positions. Here, the number of
joints n = 0, 1, . . . , N, the number of frames f = 0, 1, 2, . . . , F, and Skeln = p(xn, yn, zn),
∀p(xn, yn, zn) ∈ R3. In addition, S(Skel(f)) can be represented in the following matrix form:

S(Skel( f )) =

 x0(0)y0(0)z0(0) · · · xN(0)yN(0)zN(0)
...

. . .
...

x0(F)y0(F)z0(F) · · · xN(F)yN(F)zN(F)


The joint position values of each joint of S(Skel(f)) are extracted by dividing into

xn( f ), yn( f ), zn( f ), and the extracted xn( f ), yn( f ), zn( f ) are put into X, Y, and Z in a list
form again. Here, S(Skel(f)) is redefined as S(Skel(f)) = [X, Y, Z], where X, Y, and Z have the
following tensor matrixes:

X =

 x0(0), x1(0) · · · xN−1(0), xN(0)
...

. . .
...

x0(F), x1(F) · · · xN−1(F), xN(F)



Y =

 y0(0), y1(1) · · · yN−1(0), yN(0)
...

. . .
...

y0(F), y1(F) · · · yN−1(F), yN(F)



Z =

 z0(0), z1(1) · · · zN−1(0), zN(0)
...

. . .
...

z0(F), z1(F) · · · zN−1(F), zN(F)


Furthermore, to prevent the effect of large-scale features becoming too big, all values

of S(Skel(f)) are normalized to the values of [0, 1] through Equation (2):
Xnorm = xn( f )−Xmin

Xmax−Xmin

Ynorm = yn( f )−Ymin
Ymax−Ymin

Znorm = zn( f )−Zmin
Zmax−Zmin

(2)

Step 2. Tensor mapping on RGB channels (Lines 9–11). To map xn( f ), yn( f ), zn( f ) to
the RGB channels (red, green, and blue, respectively), Red channel : rn( f ), Green channel :
gn( f ), Blue channel : bn( f ) that correspond to the channels, are respectively calculated, as
shown in Equation (3): 

rn( f ) = ‖255 ∗ xn( f )‖
bn( f ) = ‖255 ∗ zn( f )‖
gn( f ) = ‖255 ∗ yn( f )‖

(3)

The minimum and maximum of each tensor row X, Y, and Z are min (X), min (Y),
min (Z), max (X), max (Y), and max (Z). Through this, new tensor matrices are obtained
as follows:

R =

 r0(0), r1(1) · · · rN−1(0), rN(0)
...

. . .
...

r0(30), r1(30) · · · rN−1(30), rN(30)



G =

 g0(0), g1(1) · · · gN−1(0), gN(0)
...

. . .
...

g0(30), g1(30) · · · gN−1(30), gN(30)


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B =

 b0(0), b1(1) · · · bN−1(0), bN(0)
...

. . .
...

b0(30), b1(30) · · · bN−1(30), bN(30)


Step 3. RGB tensor fusion and image generation (Lines 12–18). By fusing the R, G,

and B tensor matrices mapped to the channels, respectively, through Step 2, one pixRGB
is generated. One pixRGB represents one joint in color, as shown in Equation (4). Here,
n = 0, 1, . . . , N, f = 0, 1, 2, . . . , F, and pixRGB(rn, gn, bn) ∈ [0, 255]3.

pixRGB = (rn( f ), gn( f ), bn( f ))3 (4)

Finally, 24-bit pixRGB are gathered to generate an imgRGB of 20 (total number of
joints) × 30 (total number of frames). One RGB color image, imgRGB, is represented by
the following 3D tensor matrix. Here, F means 30 fps.

imgRGB =


pixRGB0(0), pixRGB1(0) · · · pixRGBN−1(0), pixRGBN(0)
pixRGB0(1), pixRGB1(1)

...

. . .
pixRGBN−1(1), pixRGBN(1)

...
pixRGB0(F), pixRGB1(F) · · · pixRGBN−1(F), pixRGBN(F)


3.2.3. Hyperparameter Tuning

We selected the hyper-parameters of the CNN model by performing a systematic
grid search implemented in scikit-learn using 1000 epochs. A model that has various
hyper-parameter combinations was constructed, and for the parameters of the model with
the highest validation accuracy, we selected the best parameters among the evaluated
parameters. Table 4 shows the optimized parameters used in the network.

Table 4. Optimized hyperparameters of the proposed CNN model.

Hyper-Parameter Best Value Description

Batch size 200 Number of training cases over which SGD update
is computed.

Loss function Categorical
cross entropy

The objective function or optimization score function is
also called multiclass log loss, which is appropriate for

categorical targets.

Optimizer SGD Stochastic gradient descent optimizer.

Learning rate 0.01 Learning rate used by SGD optimizer.

Momentum 0.9 Momentum used by SGD optimizer.

3.3. Model Pattern Analysis Based on Filter Visualization

This section describes the method of analyzing the patterns that the model learns
through a method of visualizing 32 filters generated by TRT-Net, the CNN-based model
proposed in previous subsection. A pattern analysis of the model can be conducted through
a filter visualization. A model analysis can be achieved by understanding the parts of the
image that are important when generating the output image by looking at the features
learned inside the model or looking at the output of the model. It is important to develop a
method that provides a clear and analyzable basis for the decision of the model to better
understand it and improve its reliability while showing a good performance through
various filter visualizations. For this reason, the model analysis should be advanced in
line with the enhancement of the model performance. Furthermore, it is important to
implement the model analysis steps in more detail and consistently report them.

While the deep learning models of previous behavior recognition studies show ex-
cellent performance, they have a problem in that they do not sufficiently explain why the
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models made such decisions for the derived results. Therefore, there are limitations in
that the model cannot present the basis for the output results it produced, the reason for
success or failure, or the reliability of the results. These limitations are directly related to
the reliability of the model. Therefore, it is extremely important to explain the process
regarding how the model derived certain results, through a sufficient explanation of the
results derived by the model. In this paper, we propose a backtracking algorithm based
on the characteristics of preserving the pre-fusion data, which is an advantage of the RGB
color encoding method proposed in Section 3.2.2. Figure 5 shows the overall process of the
backtracking algorithm applied.
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Figure 5. Histogram-based backtracking algorithm through RGB color representation: (a) Structures of CNN Networks(step3
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The proposed backtracking algorithm (Figure 5) is based on the RGB color charac-
teristics of preserving the pre-fusion data even after fusion. To examine which parts of
the input RGB image that the CNN model learns, we extracted 32 feature maps in each
layer, as shown in Figure 5a,b. Herein, more activated parts are shown in red and less
activated parts are in blue. Based on the extracted feature maps (Figure 5b), new images
are generated through a color quantization method using K-means clustering, as shown in
Figure 5c. The pixel values are in the same positions as the activated pixel position values
(red color) of the generated image. Figure 5c shows the extraction of the input images
to those in Figure 5d. The values of the pixels corresponding to the extracted positions
are mapped to the respective RGB channels and the skeleton matrix. Through the indices
of the mapped pixels, the name and number of the pertinent joint are derived. Finally, a
histogram according to the joint frequency is produced based on the extracted joint names
and numbers, as indicated in Figure 5e. This has the following advantage: through the
histogram (Figure 5e), we can determine joints of the dog that the TRT-Net model (as
proposed in Section 3) mainly learned, which affected the decision of the model for the
behavior image, as shown in Figure 5f. Figure 5 shows the overall process of the histogram
based backtracking algorithm, which consists of the following three steps.

Step 1. CNN feature maps visualization. Deep learning models generally perform
well but do not sufficiently explain the actions through which the prediction has been
derived. To understand how (i.e., through which motions) the proposed Keras-based CNN
model obtained a good performance, we used a method of visualizing each feature map
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for the layer. The CNN model proposed in this paper consists of one Conv layer. An input
image is provided to the Conv layer, and the features maps, i.e., the results of applying
32 filters to the input image, are visualized, respectively, based on jet color maps. The closer
the pixel of the visualized image is to red, the more activated the part is, whereas the closer
it is to blue, the less activated the part is. Figure 5b shows the visualization of the filters for
certain behaviors.

Step 2. Color Quantization using k-means algorithm. The position of the pixels in
red, p(bxi, byi), which indicate the activated parts in the 32 feature maps generated in
Step 1, are extracted. Here, because there are too many colors in the feature maps, the
number of colors used in the feature maps is reduced through color quantization. Color
quantization refers to finding a lower number of representative colors that can express the
image containing as many similar colors as possible. For the number of colors that will
constitute the palette for color quantization, the optimal number k of centroids obtained
through the elbow method is found. Here, the k random centroid colors obtained is
C = C0, C1, C2, . . . , Ck, where k must be lower than the number of pixels in the input image.
To calculate the similarity to each pixel color of the feature map, the distance d between
two pixels is calculated. The value of d is calculated through the Euclidean distance, as
shown in Equation (5). The input image consists of combinations of red (R), green (G), and
blue (B) channels, and the distance between two pixels is calculated for each channel.

d =

√
(R1 − R2)

2 + (G1 − G2)
2 + (B1 − B2)

2 (5)

Color remapping is performed, in which each pixel of the input image is replaced
by the centroid color of Ck, which is at the closest distance. Finally, imgCQ, an image
consisting of k colors, is generated.

Step 3. Histogram based on the frequency of joints. Here, imgCQ[w, h], the pixel color
of which is red in imgCQ generated through Step 2, is extracted. We extract pixRGB, which
is possessed by the pixel of the same position in imgRGB and pixCQT[ f , j] extracted from
imgCQ, as shown in Equation (6).

pixCQT[ f , j]→ pixRGB[ f , j] (6)

In Step 2 described in Section 3.2.2, imgRGB with a size of W (number of joints) × H
(number of frames) was generated to generate imgRGB while preserving the spatiotempo-
ral information. Therefore, f of pixRGB[ f , j] has the frame information, and j has the joint
information. For the extracted j, the value is obtained by finding the same key in j_dict.
j_dict, which consists of immutable keys (joint numbers) and mutable values (joint names),
and has the following form:

j_dict =
{

0 :′ right ear′, 1 :′ le f t ear′, 2 :′ right eye′, . . . , 19 :′ le f t back paw′
}

The name and number of the pertinent joint are extracted through the values (joint
names) of the keys (joint numbers) matching j of pixRGB[ f , j] in j_dict. Finally, the numbers
of the top skeleton joints are derived by ranking them in ascending order according to the
frequency of the extracted joint numbers. Here, it can be proven that the CNN model made
the decision based on the joint movements derived.

4. Experiments

This section describes the experiments conducted. First, Section 4.1 describes the
experimental setup and Section 4.2 briefly describes the four experiments performed.
Finally, Section 4.3 describes the four experimental methods used as well as the results.

4.1. Experimental Setup

We used a CNN model to classify the dog behaviors represented in the color images,
and Table 4 shows the model setup. The experimental setup is as follows. The experiments
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were implemented in a system equipped with an Intel® Core™ i7-2600 CPU and an NVIDIA
GeForce GTX 1080Ti graphics card. For the development environment, we used TensorFlow
and Keras, and the operating system was Ubuntu 20.04. Finally, the development language
was Python 3.

4.2. Experimental Details

We conducted the experiments using the Youtube-C7B dataset proposed in Section 3.1.
A total of 70% of the dataset was used for the training and 30% for the testing. The four
experiments conducted in this study are summarized as follows:

• Experiments 1. Performance comparison of models in various color spaces
• Experiments 2. Performance comparison of models according to the fps
• Experiments 3. Performance comparison of models according to the number of

skeleton joints
• Experiments 4. Analysis of joints that the CNN model mainly learns for each behavior

The proposed method and the conventional models compared were constructed in
a structure in which the best performance is output. Figure 6 shows the structures of the
proposed method and the compared models. In every compared model, four layers and
100 cells were used, and the number of epochs was set to 1000. For the optimizer, Adagrad,
which solves through a reduction of the learning rate, was used. The learning rate was set
to 0.01, and the decay was set to 0.0.
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4.3. Experiments and Results

In the performance assessment of the classification model, the performance should
be measured by considering not just the ground truths, but also errors, because no perfect
answer can be obtained. Therefore, the accuracy, precision, recall, f 1 score, and error rate
(MSE) were used as the performance metrics for the dog behavioral pose classification
during every experiment. The MSE was used as the error rate because it is calculated by
considering the error in the correct answer rate not only for the ground truth, but also for
other incorrect answers. The assessment formulas used are shown in Equations (7)–(11).
In Equations (7)–(10), TP indicates a true positive, TN is a true negative, FP indicates a false
positive, and FN is a false negative. In Equation (11), Yi represents the real observation
value, and Ŷi represents the predicted value.

Accuracy =
TP + TN

TP + FP + FN + TN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 score =
2(Recall ∗ Precision)

Recall + Precision
=

2TP
2TP + FP + FN

(10)
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MSE =
1

d fE
∑
(
Yi − Ŷi

)2 (11)

Experiments 1. Performance comparison based on color space.
To increase the behavioral pose classification performance of dogs, it is important to

maintain the identity of the original data, knowing the relationships between the extracted
skeletons and the relationships among the behavior sequences. Furthermore, even for the
same data values, the form of the numerical data and the expressed color vary depending
on which color space they are based on. Therefore, it is important to know the color space,
based upon which the numerical data are represented and learned. In this study, we
propose a method for representing the relationships of dog behavior data in RGB color.
Herein, we conducted an analysis to identify the color space, for which the dog behavior
data show the best behavioral classification performance.

Many color spaces such as RGB, YCbCr, and HSV are used in the field of image
recognition. In the experiments, we compared the performance between the models in
the RGB, HSV, and HSL spaces, which are the most commonly used among the many
color spaces in the computer vision field. The RGB color space is based on what was
described in Section 3.2.2, and the HSV and HSL color spaces are calculated based on the
RGB color space.

RGB→HSV Color Space Conversion. Normalized values of RGB are used, and for
the method of converting from RGB into HSV, we use a method proposed by Travis et al. [32].
RGB values are converted into HSV values. HSV includes the hue, saturation-chroma, and
brightness values.

RGB→HSL Color Space Conversion. For the method of converting from RGB to
HSL, we use a method proposed by Saravanan et al. [33]. The RGB values are converted
into HSL values.

The RGB color model is a color model created mostly for use in systems or hardware,
and the HSV and HSL color models are user-oriented color models based on the color
perception of humans [33]. As shown in Figure 7, the form of the numerical data and
the position of the color are represented differently depending on which color space is
used, even if the color is the same. Because the represented brightness is different in each
color space, even the same color shows a different value and form in each color space.
Furthermore, as shown in Table 5, even for the same behavior data, the value and form,
which are represented differently in each color space, have an impact on the image learning
and classification results.
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Table 5. Comparison of behavior classification performance according to color space.

Color Space Accuracy Precision Recall F1-Score Error Rate
(MSE)

HSV 84.23 91.54 85.87 85.33 0.045

HLS 81.84 90.48 83.69 83.01 0.034

RGB 96.95 97.52 96.74 96.97 0.008

In Table 5, the experimental results prove that the proposed method achieves the
best accuracy, precision, recall, and F1 score, as well as the minimum loss. TRT-Net learns
the relationships between the skeletons and the relationships between frames together
by connoting them as RGB colors. Therefore, it can compensate for the decrease in pose
classification accuracy and shows a better classification performance than the conventional
pose classification methods using multi-modal data. In other words, the conventional
multi-modal methods have a problem in that the relationships between the features in the
modality cannot be efficiently learned because the models simply learn only the numerical
values of the data.

Experiments 2. Performance comparison between models according to fps.
We compared the performance of the models at various frame rates per second.

Through the experiments, we compared the performance between LSTM, GRU, RNN,
and the proposed TRT-Net model based on the assessment metrics of Equations (7)–(11)
described earlier.

A video refers to a continuous set of countless images, and sequential images are
gathered to compose one video. When 30 or more consecutive frames are processed per
second, humans perceive them as a natural video that is not discontinuous. Because the
frame rate felt by humans as being in real time is 30 fps, we conducted the experiments by
increasing the rate from 15 to 30 fps in steps of 5 fps. Figure 8 shows the comparison of the
accuracy, F1 score, and error rate between the models for each setting.
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In the experimental results, our proposed method, TRT-Net, showed a higher accuracy
and F1 score, as well as a lower error rate, than the other classification models at various
frame rates per second, ranging from a low fps of 15 to a fps of 30, which by humans
appears to be in real time. This proves that the algorithm can be used without a large
change in accuracy in both low- and high-performance devices. Unlike other classification
models, it consistently performs well without much performance change at various frame
rates per second because it maintains the original data on the pre-fusion, even after fusion,
while connotatively representing the relationships between the skeleton sequence data.
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Experiments 3. Performance comparison between models according to the number
of skeleton joints of a dog.

We know that dogs often express emotions or behavior by primarily using their body
or tail. However, it can be seen that many emotions and behaviors are expressed in the
face, including the dog’s eyes, nose, and ears, as well as in the tail and body. In particular,
the movement of the dog’s ears shows their mood, condition, positive signal, or negative
signal. In this study, therefore, we extracted the skeletons from the face and body of the
dog through DeepLabCut [27] and conducted experiments to investigate how much impact
the face and body of the dog have on the classification accuracy of its pose. As shown in
Figure 9, the experiments were conducted by dividing the following cases: (a) when the
ears and stifles of the dog, as proposed by Yao et al. [7], were not included (14 skeleton
joints); (b) when the ears of the dog, as proposed by Kearny et al. [5], were not included
(18 skeleton joints); and (c) when the ears and stifles of the dog, as proposed in this paper,
were all included (20 skeleton joints). We conducted the experiments by increasing the
number of skeleton joints to 14, 18, and 20 to select the most appropriate number for
classifying the behavioral pose of the dog.
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Figure 10 shows the accuracy, F1 score, and error rate according to the number of
skeleton joints. In the experimental results, the compared models, including our proposed
method, performed better with a higher accuracy and F1 score and a lower error rate in
Figure 10c, which contained the coordinate values of the ears, in comparison to Figure 10a,b,
which did not contain the ears. Based on the experimental results, we proved that our
proposed number of skeleton joints (20) for adding the ears and stifles improved the
performance of the models compared to the conventionally suggested number of skeleton
joints (14 joints and 18 joints). Therefore, we also used the same number of skeleton joints,
i.e., 20, that were applied in other experiments. Furthermore, through the experiments, we
confirmed that the ear movement and stifles of the dog are important clues for identifying
its behavior.

Experiments 4. Analysis of joints that the CNN model learns mainly for each
dog behavior.

To add reliability to the results derived by the CNN model, we conducted these
experiments to analyze the joints that the CNN model mainly learns. As mentioned in
Section 2, although the models of the previous studies showed good performance, they
had a problem in that they do not provide a sufficient explanation for the derived results
of the model. To solve this problem, we produced statistics by extracting the joints that
the CNN model learns mainly for each behavior. Table 6 shows the statistics of the joints
extracted from all behaviors. According to the experimental results, or Walking and Eating
Off Ground, which are dynamic behaviors, many body joint movements were detected. In
the relatively static behaviors, such as Standing on Two Legs, Standing on Four Legs and
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Smelling, the similar proportion of body and face joints were detected or in some cases,
face joints were detected more than body joints. For behaviors such as Convulsing, mainly
face joints were detected as in those cases, as dogs move their face left and right violently.
Through this experiment, it can be seen that although there is less information than the
movement of the body joints, the movement information of the face joints is also included.
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Table 6. Body and face joints detected for each dog behavior.

Behaviors Body Joints Face Joints

Walking
front_right_wrist(9),
front_left_wrist(12),
back_left_paw(19)

right_eye(2), left_eye(3)

Standing Two legs front_right_wrist(9),
front_left_elbow(12) right_ear(0), left_ear(1), left_eye(3)

Standing Four legs
front_right_elbow(8),
front_right_wrist(9),
front_left_elbow(11)

right_eye(2), left_eye(3)

Lying down withers(6) right_ear(0), left_ear(1), right_eye(2),
left_eye(3)

Eating off ground
throat(5), withers(6),
front_right_elbow(8),
front_right_wrist(9)

left_ear(1)

Smelling front_right_wrist(9) right_ear(0), left_ear(1), right_eye(2),
left_eye(3),

Convulsing None right_ear(0), left_ear(1), right_eye(2),
left_eye(3), nose(4)

5. Conclusions and Future Work

In this study, we proposed TRT-Net, a visual tensor fusion network of a skeleton, in
which the features of the skeleton extracted based on the body of a dog are represented
in color images, where a CNN learns and classifies the behavior of the dog through color
images. Furthermore, after generating a histogram according to the joint frequency based
on the prediction generated by CNN and the filter visualization, the pattern learned by
CNN was analyzed based on this. The proposed method converts behavior data into color
images and uses them to improve the accuracy in classifying the behavioral poses of the
dog. The proposed method was compared to the LSTM, GRU, and RNN, which are often
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conventionally used as behavior classification networks. According to the experimental
results, TRT-Net demonstrated that the accuracy improves by an average of 7.9% and
that the F1-score improves by an average of 7.3% compared to the conventional behavior
classification networks, showing that the proposed method, TRT-Net, is more effective for
dog behavior classification. Furthermore, through a visualization for each layer of the CNN
model, we found that the face of a dog has the greatest impact on the recognition of its dog
behavior. Although the conventional classification models achieve a good performance
in various behavior classification tasks, they do not explain which patterns were learned
to derive the results. However, to better understand the model and gain reliability on
the results derived by the model, it is important to provide a clear and analyzable basis
for the decision of the model. Finally, in this study, we conducted behavior classification
experiments limited to dogs. Nevertheless, this study can be a foundation for a behavioral
analysis of quadruped walking animals and can be used in various fields, including
abnormal behavior recognition, rehabilitation, training, and evaluation systems.

Future research plans include behavior pose classification of dogs based on automatic
extraction and the collection of dog skeleton joints from videos. In addition, we plan
to add more types and behaviors of dogs and improve the method in order to enable
behavior recognition from new dog behavior video data, excluding the training and
experimental data.
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