
applied
sciences

Article

Heuristics for a Two-Stage Assembly-Type Flow Shop with
Limited Waiting Time Constraints

Jun-Hee Han 1 and Ju-Yong Lee 2,*

����������
�������

Citation: Han, J.-H.; Lee, J.-Y.

Heuristics for a Two-Stage Assembly-

Type Flow Shop with Limited Waiting

Time Constraints. Appl. Sci. 2021, 11,

11240. https://doi.org/10.3390/

app112311240

Academic Editor: Vincent A. Cicirello

Received: 27 October 2021

Accepted: 23 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial & Management Engineering, Dong-A University, Busan 49315, Korea;
jheehan@dau.ac.kr

2 Division of Business Administration & Accounting, Kangwon National University,
Chuncheon-si 24341, Korea

* Correspondence: jy.lee@kangwon.ac.kr; Tel.: +82-33-250-6150

Featured Application: Manufacturing.

Abstract: This study investigates a two-stage assembly-type flow shop with limited waiting time
constraints for minimizing the makespan. The first stage consists of m machines fabricating m types of
components, whereas the second stage has a single machine to assemble the components into the final
product. In the flow shop, the assembly operations in the second stage should start within the limited
waiting times after those components complete in the first stage. For this problem, a mixed-integer
programming formulation is provided, and this formulation is used to find an optimal solution
using a commercial optimization solver CPLEX. As this problem is proved to be NP-hard, various
heuristic algorithms (priority rule-based list scheduling, constructive heuristic, and metaheuristic) are
proposed to solve a large-scale problem within a short computation time. To evaluate the proposed
algorithms, a series of computational experiments, including the calibration of the metaheuristics,
were performed on randomly generated problem instances, and the results showed outperformance
of the proposed iterated greedy algorithm and simulated annealing algorithm in small- and large-
sized problems, respectively.

Keywords: scheduling; two-stage assembly-type flow shop; limited waiting times; makespan; heuristic

1. Introduction

Competition in manufacturing industries is intensifying around the world, and these
industries are facing changes, such as the diversification of customer requirements, shorter
product life cycles, and the transition to a multiproduct small-volume production system.
In addition, a new area, such as smart manufacturing, is emerging with the 4th Industrial
Revolution. To enhance manufacturing competitiveness and improve productivity, several
manufacturers are focusing on reducing the production lead time and minimizing inven-
tory. To achieve these goals, production management and scheduling techniques have
emerged as core competencies [1]. Numerous scheduling problems have been studied for
various types of products that require assembly operations, considering the production of
components and subsequent assembly processes together [2]. For example, Lee et al. [3]
introduced a scheduling study of a manufacturing system that produces and assembles
the body and vehicle of a fire engine, and Potts et al. [4] dealt with a scheduling prob-
lem in make-to-order manufacturing systems, such as PC assembly. In addition, there
are scheduling problems with assembly operations arising from various manufacturing
systems (refrigerators [5], clothing [6], food [7], and semiconductors [8–11]).

This study deals with a scheduling problem in a two-stage assembly-type flow shop.
The first stage is the component production process in which each component is indepen-
dently fabricated on a dedicated machine. The components made in the first phase are
moved to the second stage and assembled into the final product. The assembly operation in

Appl. Sci. 2021, 11, 11240. https://doi.org/10.3390/app112311240 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3292-5705
https://orcid.org/0000-0003-4515-1454
https://doi.org/10.3390/app112311240
https://doi.org/10.3390/app112311240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112311240
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112311240?type=check_update&version=2

Appl. Sci. 2021, 11, 11240 2 of 24

the second stage can start after all necessary components have completed in the first stage.
The completion time of each product is defined as the time when the assembly operation
completes in the second stage. To enhance the flow shop productivity, this study aims to
minimize the makespan, which is equal to the completion time of the last scheduled job.

This study constrains the waiting times between stages 1 and 2. This implies that
components completed in the first stage must be entered into the second stage for the
assembly operation within the limited waiting times. Therefore, it is necessary to complete
the operations of the first stage considering the time when the assembly operation can
start in the second stage. Figure 1a,b illustrates example schedules with two jobs in the
assembly flow shop with and without limited waiting times, respectively. The starts in
the first stage in Figure 1a are delayed observing the limited waiting times w21 and w22,
whereas the second job in Figure 1b can start without any delay. In general, waiting times
are limited to prevent quality deterioration owing to increased waiting times. There are
various cases considering the waiting time constraints in manufacturing industries, such
as semiconductors, batteries, food, steelmaking, and biotechnology [12–14].

Figure 1. Example schedules with two jobs: (a) with waiting time constraints; (b) without waiting time constraints.

Since Lee et al. [3] introduced a two-stage assembly-type flow shop problem, there have
been many studies on the scheduling problems, and two review papers (Komaki et al. [2]
and Framinan et al. [15]) were recently published. Many studies have sought to minimize
the makespan. The makespan minimization problem was demonstrated to be strongly
NP-hard in [3], even though only two machines existed in the first stage. Lee et al. [3] also
developed three heuristics based on Johnson’s algorithm [16] and suggested a branch-and-
bound (B&B) algorithm. Potts et al. [4] showed that an optimal solution for the problem
with more than two machines in the first stage is always in permutation schedules where
the sequences on all machines in the flow shop are the same. Additionally, Hariri and
Potts [17] and Haouari and Daouas [18] provided B&B algorithms, while Sun et al. [19]
proposed heuristic algorithms. On the other hand, Koulamas and Kyparisis [20] consid-
ered the extended problem in which there are three stages and they developed heuristic
algorithms. Additionally, Sung and Juhn [21] proposed a B&B algorithm for the problem of
outsourcing one type of component subject to the job-dependent lead time in the first stage.
Wu et al. [22] addressed two scenario-dependent jobs processing times and proposed a
B&B algorithm and metaheuristics to minimize the robust makespan, and Wu et al. [23]
considered a processing time-based learning effect and proposed a B&B algorithm and
several metaheuristics. On the contrary, for other objectives, Lee and Bang [24] proposed a
B&B algorithm to minimize total tardiness, whereas Lee [25,26] developed B&B algorithms
to minimize total completion times and total weighted tardiness, respectively. Additionally,
there have been various studies on the assembly-type flow shop problems [27–32].

Although typical assembly-type flow shop scheduling problems have been studied
by many researchers, only a few studies have considered waiting time constraints or time
lags. According to recent review papers, it is necessary to study scheduling problems
with waiting time constraints, but there are only a few studies that considered no-wait
constraints. Mozdgir et al. [33] introduced a no-wait two-stage assembly flow shop and
proposed three metaheuristic algorithms: a genetic algorithm, differential evolution algo-
rithm, and population-based variable neighborhood algorithm. In addition, Ji et al. [34]

Appl. Sci. 2021, 11, 11240 3 of 24

provided a hybrid particle swarm optimization algorithm, and Li et al. [35] proposed an
iterated local search method. Shao et al. [36] suggested an iterated local search method and
a variable neighborhood search. Most of the studies related to the no-wait assembly flow
shop considered metaheuristic algorithms [37–40] as solution methodologies because these
problems are NP-hard.

The considered scheduling problem is defined as AF(m,1)|max-wait|Cmax in three-
field notation suggested by Graham et al. [41]. AF(m,1) represents an assembly-type
flow shop where there are m machines to fabricate components in stage 1 and a single
assembly machine in stage 2. Max-wait denotes the limited waiting constraints between the
two stages. Cmax represents the makespan, which is the objective function of the scheduling
problem. Assuming that there is only one machine in the first stage, this scheduling
problem becomes a two-machine flow shop problem with limited waiting time constraints
(F2|max-wait|Cmax), which has been proven to be NP-hard in [42]. Therefore, this problem
is also NP-hard.

To the best of the authors’ knowledge, no assembly flow shop study has considered
the limited waiting time constraints that are generalized from no-wait. Thus, as its main
contribution, this study is the first attempt to consider the assembly flow shop with
limited waiting times to fill part of the existing research gap. Additionally, this paper
proposes various solution methodologies, including the mathematical formulation, priority
rule-based list scheduling, constructive heuristic, and three metaheuristic algorithms.
Furthermore, we suggest a method that converts a sequence obtained by the heuristics into
a complete schedule with waiting time constraints.

This study aims to minimize the makespan in a two-stage assembly flow shop with
limited waiting time constraints. We provide a mixed-integer programming (MIP) to define
the considered problem clearly and use a commercial optimization solver, CPLEX 12.10, to
solve the MIP. However, because this problem is NP-hard, there is a limitation in obtaining
an optimal solution despite using the solver. Thus, we propose various heuristic algorithms,
such as priority rule-based list scheduling, constructive heuristic, and metaheuristic to
solve the large-sized problem within a short computation time. To evaluate the proposed
algorithms, we performed a series of computational experiments, including the calibration
of the metaheuristics, on randomly generated problem instances and reported the results.

The remainder of this paper is organized as follows. Section 2 provides the assump-
tions made in this study and notation for a clear description and provides a mathematical
model, while Section 3 proposes heuristic algorithms. Section 4 reports the computational
tests to evaluate the performance of the heuristic algorithms as well as the mathematical
model. Finally, Section 5 concludes this study and presents future research.

2. Problem Description

This section describes the scheduling problems considered in more detail with as-
sumptions and mathematically defines the problem through an MIP formulation. In this
study, there are n jobs to be scheduled, and it is assumed that information regarding the
jobs is provided in advance. The first stage consists of m dedicated machines that fabricate
m different components, whereas there is a single assembly machine to assemble the m
components into a final product in the second stage. The assembly operations of all jobs
must start within limited waiting times given to the jobs after completing the fabrication
of their components. The objective function of the scheduling problem is to minimize the
makespan, which is equal to the completion time of the last job. The other assumptions
made in this study are as follows:

• All jobs can be started at time zero;
• Preemption is not allowed;
• Not all machines can process multiple jobs simultaneously. In other words, machines

can process only one job at a time;
• The distances and delivery times between the two stages are ignored.

Appl. Sci. 2021, 11, 11240 4 of 24

In this problem, there are (n!)(m+1) alternative sequences, because n! sequences are
possible for each machine. However, there is an optimal solution among n! permutation
schedules in which the operating sequences of the jobs are the same on the machines. This
can be proven according to the proof by Tozkapan et al. [43] that permutation schedules are
dominant for the two-stage assembly flow shop to minimize the total completion time, and
this proof is sufficient to show that permutation schedules are also dominant for any regular
performance measure, including makespan. Although this study considers the limited
waiting time constraints, the left-shift schedules in which some operations begin earlier
without delaying any other operations are dominant, because a delayed start increases
the waiting time. Furthermore, in practical production lines, permutation schedules are
commonly utilized to ensure simplicity of managing work, flexibility of material handling,
and constrained buffer space. Therefore, this study only considers permutation schedules;
that is, all sequences on the machines in the considered flow shop are the same. Table 1
provides the notation for a clear description of the algorithms proposed in this study.

Table 1. Notation for the description of the algorithms proposed in this study.

Symbol Definition

n number of jobs
i, j job indices
m number of machines in the first stage

k machine index (k = 1, . . . , m, m + 1); if k = 1, . . . , m, it represents
the first stage machines, otherwise, the second stage machine

pik processing time of job i on machine k
wik waiting time of job i between machine k and machine (k + 1)
r position index

[r] index of the job in rth position of a permutation schedule
xir equals to 1 if job i is scheduled in rth position, 0 otherwise

s[r]k starting time of the rth job on machine k
c[r]k completion time of the rth job on machine k

The following is the MIP formulation for the considered scheduling problem.

Minimize c[n](m+1) (1)
subject to s[r]k + ∑n

i=1 pikxir ≤ s[r+1]k r ≤ n− 1 and k ≤ m (2)
s[r]k + ∑n

i=1 pikxir ≤ s[r](m+1) ∀r and k ≤ m (3)
s[r]k + ∑n

i=1(pik + wik)xir ≥ s[r](m+1) ∀r and k ≤ m (4)
s[r](m+1) + ∑n

i=1 pi(m+1)xir = c[r](m+1) ∀r (5)
∑n

r=1 xir = 1 ∀i (6)
∑n

i=1 xir = 1 ∀r (7)
s[r]k, c[r](m+1) ≥ 0 ∀r, k (8)
xir ∈ {0, 1} ∀i, r (9)

The objective Function (1) is the minimization of the makespan, which is equal to
c[n](m+1), the completion time of the last scheduled job [n] in the second-stage machine,
that is, machine (m + 1). Constraints (2) and (3) define the starting times on the same
machine and between the two stages, respectively. Constraint (4) ensures that jobs must
maintain the limited waiting times between both stages. Constraint (5) computes the
completion times of the jobs on the machine (m + 1). Constraints (6) and (7) consider only
the permutation schedules. That is, each job can only be sequenced once, without being
partitioned. Constraints (8) and (9) define the domain of the decision variables.

3. Heuristic Algorithms

The MIP formulation can obtain an optimal solution for the considered problem using
a commercial solver. However, because this problem is NP-hard, solvers may require a

Appl. Sci. 2021, 11, 11240 5 of 24

considerable amount of computational time to achieve an optimal solution for large or
practical size problems. Therefore, this study focuses on heuristic algorithms to find a good
solution within a short computation time.

This section proposes three types of heuristic algorithms: priority rule-based schedul-
ing methods, a constructive algorithm, and three metaheuristic algorithms. In the heuristic
algorithm procedures, we calculate the completion times of jobs using the following equa-
tions: the first two Equations (10) and (11) are for the first job (r = 1), whereas Equations
(12) and (13) are for the second to the last job (r = 2, . . . , n).

c[1](m+1) = MAX
(

p[1]k∀k ≤ m
)
+ p[1](m+1) (10)

c[1]k = MAX
(

p[1]k, c[1](m+1) − w[1]k

)
for k = 1, . . . , m (11)

c[r](m+1) = MAX
(

MAX
(

c[r−1]k + p[r]k∀k ≤ m
)

, c[r−1](m+1)

)
+ p[r](m+1)

for r = 2, . . . , n
(12)

c[r]k = MAX
(

c[r−1]k + p[r]k, c[r](m+1) − p[r](m+1) − w[r]k

)
for r = 2, . . . , n (13)

3.1. Priority Rule-Based Scheduling

Priority rule-based list scheduling is a commonly used method in many manufacturing
systems because it is intuitive and easy to implement. Such a method sorts jobs according
to priority values and then assigns the sorted jobs to the machines when the machines
become available. In general, the order of jobs can be generated from a priority rule based
on the characteristics of the considered problem. As this study considers only permutation
schedules, the priority rule-based scheduling can find feasible schedules by ordering jobs in
ascending order of the priority values. The following six priority rules generate six feasible
schedules, and the completion times of the jobs in a given schedule are calculated using
Equations (10)–(13).

• LS1: MAX(pik ∀k ≤ m);
• LS2: pi(m+1);
• LS3: MAX(pik ∀k);
• LS4: MAX(pik ∀k ≤ m) + pi(m+1);
• LS5: ∑m

k=1 pik/m + pi(m+1);

• LS6: MIN
(

MAX(pik ∀k ≤ m), pi(m+1)

)
.

The proposed priority rules are modified from the shortest processing time rule.
In the considered flow shop, the start of the second stage operation is affected by the
longest processing time of the first stage, not the shortest. This is because the second
stage operation can start after all the operations in the first stage complete. Thus, the
longest processing times in the first stage are considered. LS1 considers the first stage
only, LS2 focuses on the second stage, and LS3–6 consider both. Particularly in LS5, it
considers the average processing time, not the longest, for the first stage. LS6 is inspired by
Johnson’s rule [16] which provides an optimal solution for a classical two-machine flow
shop makespan problem.

3.2. Modified NEH Algorithm (MNEH)

This subsection provides a constructive heuristic algorithm based on the NEH algo-
rithm developed by Nawaz et al. [44]. This NEH algorithm is well known as an effective
and efficient heuristic for flow shop scheduling problems, and thus many researchers
have used the NEH for various flow shop problems. The original procedure begins with
an initial seed sequence obtained by sorting jobs in descending order of total processing
times (i.e., longest processing time order), and then it creates a complete schedule in an
insertion-based constructive manner. At each iteration, a job in front of the seed sequence

Appl. Sci. 2021, 11, 11240 6 of 24

is inserted into the best position in the current partial schedule and then it is removed from
the seed. These iterations are repeated until obtaining a complete schedule.

In this study, the modified version uses the best priority rule to obtain an initial seed
sequence, instead of the longest processing time order. The best rule will be demonstrated in
the computational experiments (Section 4). Additionally, after obtaining a partial schedule
with the insertion method at each iteration, an interchange method is applied to improve
the partial schedule. That is, after job (i) is inserted into the current best position at each
iteration, partial schedules obtained by interchanging job i and other jobs are evaluated,
and then the minimum makespan schedule is moved to the next iteration. Figure 2 shows
the procedure for this algorithm.

Figure 2. Modified NEH algorithm procedure.

3.3. Genetic Algorithm

The genetic algorithm (GA) is an evolutionary population-based optimization algo-
rithm inspired by genetics and Darwin’s theory of evolution, and it is based on the survival
of the fittest or natural selection [45]. GA is one of the most popular metaheuristics in the
field of optimization. GA involves many operators and parameters, and the performance
depends on the procedure design, operators, and parameters. The following subsections
describe the design of the proposed GA.

3.3.1. Solution Representation

In the GA, solutions are expressed in a chromosome structure, and the performance of
the algorithm depends on the chromosome structure. Because this study considers only
permutation schedules, the chromosome of a solution is represented in a permutation.

3.3.2. Initial Population

The GA is a population-based heuristic algorithm. Priority rule-based scheduling
and MNEH algorithm are used to generate an initial population. That is, six priority rules
generate six solutions, and the MNEH algorithm generates six solutions with each of the
six solutions by the rules, i.e., a total of 12 solutions. The remainder of the initial population
is randomly generated.

3.3.3. Solution Representation

Fitness represents how good a solution is. As this study has the objective of min-
imizing the makespan, the fitness of a solution is equal to the makespan obtained by
Equations (10)–(13). A lower makespan indicates better fitness.

3.3.4. Selection

The selection chooses parents randomly from the current population to generate off-
spring. The selection is based on the fitness values of chromosomes to generate offspring
that inherit good genes. In other words, good chromosomes with low fitness values are
likely to be selected as parents. This study considers two commonly used methods (tourna-
ment and roulette) in the literature for selection. In the tournament method, four solutions
are selected randomly from the population, and two winner solutions from the semi-finals

Appl. Sci. 2021, 11, 11240 7 of 24

are selected. That is, a better of the first two solutions and a better of the last two solu-
tions are paired. For the roulette methods, the inverse (fπ) of the objective function value
(Cmax(π)) for each solution (π) in the population is computed, that is, fπ = 1/Cmax(π) and
let F = ∑ fπ. The selection probability of each solution in the population is then obtained
by probπ = fπ/F. Based on these selection probabilities of solutions, two solutions are
selected randomly as parents. Note that the proposed GA uses a better one of two methods
after computational calibration (in Section 4).

3.3.5. Crossover

The crossover operation aims to generate better offspring by exchanging the informa-
tion of the selected parents. In this study, six types of crossover operation are considered:
one-point order crossover (OX1), two-point order crossover (OX2), similar job crossover
(SJX), two-point similar job crossover (SJX2), similar block crossover (SBX), and two-point
similar block crossover (SBX2). Like the selection operation, the proposed GA uses the best
of these six methods. For a description of these crossovers, let parent1 and parent2 be the
selected parents to generate offspring.

• Procedure: OX1

Step 0. Let point1 be a cutoff point randomly selected from parent1.
Step 1. Give the front part (from the first to point1) of parent1 to offspring.
Step 2. Remove the jobs, that are given to offspring in Step 1, from parent2.
Step 3. Sequence jobs remaining in parent2 into the unoccupied positions of offspring

from left to right in the order that they appear in parent2.

• Procedure: OX2

Step 0. Let point1 and point2 be cutoff points randomly selected from parent1, respectively.
Step 1. Give the middle part (between point1 and point2) of parent1 to offspring.
Step 2. Remove the jobs, that are given to offspring in Step 1, from parent2.
Step 3. Sequence jobs remaining in parent2 into the unoccupied positions of offspring

from left to right in the order that they appear in parent2.

• Procedure: SJX

Step 0. Give the jobs in the same position in both parents to offspring.
Step 1. Let point1 be a cutoff point randomly selected from parent1.
Step 2. Give the front part (from the first to point1) of parent1 to offspring.
Step 3. Remove the jobs, that are already given to offspring, from parent2.
Step 4. Sequence jobs remaining in parent2 into the unoccupied positions of offspring

from left to right in the order that they appear in parent2.

SJX2 modified from SJX selects two cutoff points and gives the middle part between
the two points of parent1 to offspring, as in OX2. Additionally, SBX and SBX2 are very
similar to SJX and SJX2, respectively. The only difference is that, in Step 0 of SJX (and SJX2),
two adjacent jobs are defined as a block and not an individual job but blocks in the same
position in both parents are given to offspring. The detailed procedures of SJX2, SBX, and
SBX2 are omitted because the rest of the steps are the same.

3.3.6. Mutation

The mutation operation increases the diversity of chromosomes in the population and
helps to escape the local optimum. This operation partially alters a solution to generate
new offspring with a new chromosome. In this study, two types of mutation schemes are
considered: insertion and interchange. The insertion with probability pIS inserts a randomly
selected job into a randomly selected position, whereas the interchange with probability
(1 − pIS) exchanges the positions of two randomly selected jobs.

3.3.7. Improvement (Local Search)

Usually, Gas and other metaheuristics adopt local search methods to improve solutions.
The proposed GA also uses a local search strategy of the insertion and interchange used

Appl. Sci. 2021, 11, 11240 8 of 24

in the mutation. The local search starts when the current best solution does not improve
during a predetermined number of consecutive generations, and insertion with probability
pIS or interchange with probability (1− pIS) is applied n times to the current best solution in
the population, where n is the number of jobs. If the new solution is better than the current
best solution, the new solution replaces the current best solution. To avoid an excessively
long computation time, we limit the number of local searches to the current best solution
to n times.

3.3.8. Restart

As the procedure of generating the next generation in GA iterates, the population can
converge prematurely and get stuck in a local optimum. To avoid premature convergence
and enhance the quality of solutions in the population, we use a restart procedure suggested
by Ruiz and Maroto [46]. This restart procedure starts when the current best solution does
not improve during a predetermined number of consecutive generations. The following is
the restart procedure.

• Procedure: Restart

Step 0. The chromosomes in the current population are sorted in ascending order of
their fitness values.

Step 1. Keep the top 20% of chromosomes and remove the remaining 80% from
the population.

Step 2. 20% of the population size are newly generated by randomly selecting from
the kept chromosomes and then mutating once based on the insertion.

Step 3. 20% of the population size are newly generated by randomly selecting from
the kept chromosomes and then mutating once based on the interchange.

Step 4. 40% of the population size are generated randomly.

3.3.9. Termination Criterion

The GA procedure is terminated at the maximum computation (CPU). In other words,
the GA procedure stops when the maximum CPU time elapses.

3.3.10. Entire Procedure of the Proposed GA

The entire procedure of the proposed GA is in Figure 3, in which POP, Psize, pc, pm, and
pIS denote the population, population size, crossover probability, mutation probability, and
insertion probability for a mutation operation, respectively. In addition, Pl and Pr denote
the parameters that trigger the local search and restart procedures, respectively, whereas gl
and gr indicate the number of consecutive generations that the current best solution does
not improve. Additionally, random() represents a function that generates a random number
from a uniform distribution with a range (0, 1).

3.4. Iterated Greedy Algorithm

The iterated greedy (IG) algorithm is a metaheuristic developed by Ruiz and
Stutzle [47] for the permutation flow shop problem to minimize the makespan. IG is an
extension of the NEH algorithm. The main strategy of IG involves the insertion method
of NEH stochastically to find better solutions. Not only NEH but also IG was developed
originally and particularly for flow shop scheduling problems, and IG has been verified to
work well in many research studies [48–51]. The advantage of IG is that the procedure is
simple, and there are few parameters that require calibration.

IG is composed of four phases: destruction, construction, local search, and acceptance,
and these four phases are executed iteratively. IG also starts with an initial seed sequence. In
the destruction phase, d jobs randomly selected from the incumbent solution are removed,
where d is a control parameter called destruction size. Then, the construction phase
generates a new complete solution by inserting the removed jobs in the constructive way of
the NEH. After that, a local search is performed to improve the newly generated schedule.

Appl. Sci. 2021, 11, 11240 9 of 24

Finally, the acceptance phase determines whether to accept the new schedule, as in the
uphill movement of a simulated annealing algorithm.

Figure 3. Proposed genetic algorithm procedure.

In the IG, an initial (incumbent) solution (π) is obtained from the MNEH (in Section 3.2),
and the destruction phase is applied to the incumbent solution. As stated briefly above, in
the destruction phase, a given number of d jobs are removed from π, generating two partial
schedules. The first one (πR) consists of the d jobs removed from π. The second one (πD)
contains the (n− d) remaining jobs, i.e., the original one without the removed jobs. Then, in
the construction phase, jobs in πR are inserted into the best position of πD as in NEH. After
the construction phase, a new complete solution (π’) with size n is created. Then, the local
search procedure which is introduced in Section 3.3.7 of GA is executed to improve the new

Appl. Sci. 2021, 11, 11240 10 of 24

solution. For the new solution, the acceptance phase determines whether to replace the
current solution with a new one for the next iteration. If Cmax(π’) < Cmax(π), the transition
to π’ is accepted. Otherwise, the transition is accepted with probability

exp(−∆/τ), (14)

where ∆ represents the difference between the objective function values of the two solu-
tions and is defined as ∆ = Cmax(π’) − Cmax(π), and τ is an adjustable parameter (called
temperature) in the IG. The temperature value is obtained using Equation (15)

τ =
∑n

i=1 ∑m+1
k=1 pik

10n(m + 1)
, (15)

suggested by Osman and Potts [52] for the permutation flow shop scheduling problem.
Note that, in IG, the temperature is constant instead of decreasing as in the simulated an-
nealing. The proposed IG repeats the destruction, construction, local search, and acceptance
until the maximum computation time elapses. Figure 4 shows the entire IG procedure.

Figure 4. Proposed iterated greedy algorithm procedures.

Appl. Sci. 2021, 11, 11240 11 of 24

3.5. Simulated Annealing Algorithm

Simulated annealing (SA) mimics the physical annealing process, and it is a meta-
heuristic optimization algorithm that works dynamically and iteratively to search for a
better solution [53]. SA has been commonly used to solve various combinatorial optimiza-
tion problems including scheduling problems. SA also begins with an initial seed sequence
and attempts to generate a better solution by repeating small alterations to the current
solution. However, such attempts may lead to being stuck in a local optimum. To escape
the local optimum, SA occasionally allows uphill movements that accept worse solutions
deteriorating the objective function value (makespan). Uphill movements are allowed with
an acceptance probability of Equation (14).

In this study, SA also begins with an initial seed sequence obtained from MNEH
and uses the insertion with probability pIS and interchange with probability (1 − pIS) to
generate a neighborhood solution (π’) of a current solution (π). If Cmax(π’) < Cmax(π), the
transition to π’ is accepted. Otherwise, the transition is accepted with Equation (14), and
the initial τ is obtained using Equation (15). SA repeats these generation and transition
procedures L times at the current temperature, where L is an epoch length as a parameter.
After repeating L times, the temperature decreases gradually by a cooling function as
τ←ατ, where 0 < α < 1, and this SA procedure terminates when the maximum CPU time
elapses. Figure 5 shows the procedure of the SA.

Figure 5. Proposed simulated annealing algorithm procedure.

4. Computational Experiments

This section evaluates the proposed algorithms on randomly generated problem
instances. All the algorithms were coded in Java, and the tests were conducted on a
personal computer with Intel Core i7-8700 CPU (3.2 GHz) and 16 GB RAM. To generate
problem instances, we used the same method in [25]. In the first stage, there are m dedicated

Appl. Sci. 2021, 11, 11240 12 of 24

machines, and three levels of m were used, that is, m = (2, 5, 10), whereas there is a single
machine in the second stage. Thus, there are a total of (m + 1) machines in the tests. The
processing times were generated from a uniform distribution. Table 2 shows the discrete
uniform distribution U(a, b) with a range between a and b. In Set A, the workloads of the
two stages are equal. On the contrary, in Sets B and C, the second and first stages become
bottlenecks, respectively. Limited waiting times were also generated from U(1, 100).

Table 2. Processing time distribution.

Set First Stage Second Stage

A U(1, 100) U(1, 100)
B U(1, 80) U(20, 100)
C U(20, 100) U(1, 80)

The first experiment evaluated the mixed integer programming formulation (MIP)
through a commercial optimization solver CPLEX 12.10. In the experiment, we considered
five levels of jobs (n = 10, 20, 30, 40, and 50) and generated five instances for each of the
(m, n) combinations. In addition, the computation time limit (TL) for each instance was
set to 1800 s to avoid excessive computation times. A summary of the results is presented
in Table 3, including the average computation times and the number of instances not
terminated until the time limit TL. As can be observed from the table, the ACPUT in
Set A increased exponentially as (m, n) increased. For m = (5 and 10), CPLEX found an
optimal solution only for instances with n = 10 within 1800 s. On the contrary, CPLEX
solved instances of Sets B and C relatively faster than those in Set A. One drawback of
CPLEX in this test is its wide range of computation times. For (m = 10, n = 20) in all three
sets, the minimum CPU time was only a few seconds, whereas the maximum time was
1800 s. If CPLEX shows a significant range of CPU times, the estimates for solving times
are inaccurate and even impossible; hence, using CPLEX may be impractical.

Table 3. Performance of MIP using CPLEX.

m n
CPUT 1 NI 2

Set A Set B Set C Set A Set B Set C

2

10 0.1 [0, 0.2] 0.1 [0, 0.1] 0 [0, 0] 0 0 0
20 58.9 [0.1, 172.2] 0.1 [0.1, 0.1] 0.1 [0.1, 0.1] 0 0 0
30 716.2 [0.3, TL] 0.6 [0.1, 2.2] 0.3 [0.2, 0.4] 1 0 0
40 754.7 [6.2, TL] 0.4 [0.2, 0.5] 0.4 [0.2, 0.5] 2 0 0
50 TL 0.8 [0.5, 1.3] 0.7 [0.4, 0.9] 5 0 0

5

10 1.2 [0, 2.7] 0.4 [0, 1.3] 0.1 [0, 0.1] 0 0 0
20 TL 98.2 [0.2, 489.9] 2.8 [0.1, 12.9] 5 0 0
30 TL 360.6 [0.4, TL] 1.2 [0.6, 2.5] 5 1 0
40 TL 15.6 [0.5, 70.9] 177.8 [0.9, 873.8] 5 0 0
50 TL 344.6 [1.6, 1630.4] 207.8 [2.6, 998.8] 5 0 0

10

10 6.3 [2.5, 13] 0.8 [0.1, 2.3] 1.4 [0.1, 2.4] 0 0 0
20 1440.7 [3.4, TL] 1075.8 [1.8, TL] 1080.4 [0.6, TL] 4 2 3
30 TL 1086.3 [5.6, TL] 527.5 [3.3, TL] 5 3 1
40 TL 1419.2 [54.8, TL] 1455.2 [76, TL] 5 3 4
50 TL 805.5 [26.2, TL] 1756.3 [1637.6, TL] 5 2 3

1 Average [min, max] computation time, where TL = 1800 s. 2 Number of instances not terminated within 1800 s.

Next, we tested the priority rule-based list scheduling methods to determine the best
method for offering an initial seed sequence for MNEH. The same instances with n = 10, 20,
30, 40, and 50 were used in these tests. To compare the list scheduling methods, the relative
deviation index (RDI) was used as a measure, defined as (obj# − objbest)/(objworst − objbest)
for each instance where obj# represents the makespan using priority rule #, and objbest and

Appl. Sci. 2021, 11, 11240 13 of 24

objworst represent the best and worst, respectively. According to the definition of RDI, the
lower the RDI, the better the performance.

A summary of the results is in Table 4 which provides the average RDI and number
of instances (out of 75) that LS# found the best solutions. As observed from the table,
LS1 outperformed the other rules. This indicates that the first stage on which LS1 focuses
is more important than the second stage, probably because the decision on sequencing
jobs on the parallel machines in the first stage must consider the limited waiting time
constraints. However, in the second stage, there is a single assembly machine, and the
sequence is equivalent to the sequence in the first stage because this study considers only
permutation schedules. Thus, if a shop manager wants to focus on either stage, the result
recommends the first stage. In summary, LS1 showed the best performance among the
proposed list scheduling rules, therefore LS1 will offer an initial seed sequence for MNEH
in the subsequence experiments.

Table 4. Comparison of the list scheduling methods (the best values are in bold).

Set LS1 LS2 LS3 LS4 LS4 LS6

A 0.286 (29) 1 0.886 (0) 0.242 (29) 0.527 (12) 0.466 (11) 0.621 (2)
B 0.165 (42) 0.906 (0) 0.480 (9) 0.459 (11) 0.570 (5) 0.436 (9)
C 0.195 (40) 0.900 (0) 0.488 (7) 0.513 (13) 0.518 (8) 0.456 (13)

Overall 0.215 (111) 0.897 (0) 0.403 (45) 0.500 (36) 0.518 (24) 0.504 (24)
1 Average RDI, number of instances (out of 75) that the method found the best solutions.

To check the efficiency of the interchange method in the proposed MNEH, comparison
tests were performed on the instances with up to n = 50. In this test, initial seed sequences
were obtained using LS1. Table 5 and Figure 6 show the results that show the effectiveness
of the interchange method in MNEH. The table reports the percentage change defined
as 100 × (objMNEH − objNEH)/objNEH. Note that the negative percentage change indicates
that MNEH found a better solution than NEH. As revealed in the table, MNEH worked
better than NEH, which indicates that the simple interchange method can improve the
solution quality. In addition, the improvement was more apparent when the problem size
increased. The same result was obtained in Set A than in Sets B and C as shown in Figure 6.
Thus, it can be concluded that the interchange method used in MNEH worked well. In
addition, although the interchange procedure was added, MNEH provided a solution for
all instances in less than a second.

Figure 6. Number of instances that NEH solved better than or equivalent to MNEH and vice versa.

Appl. Sci. 2021, 11, 11240 14 of 24

Table 5. Improvement by the interchange method in the proposed MNEH algorithm.

m n Set A Set B Set C

2

10 0.181 1 0.000 0.000
20 −1.091 0.000 0.048
30 0.155 0.011 −0.024
40 −0.720 0.000 0.000
50 −1.638 0.000 0.000

5

10 −0.935 0.000 0.000
20 −1.418 0.000 −0.368
30 0.053 −0.353 −0.178
40 −0.988 −0.017 −0.369
50 −0.909 −0.140 0.116

10

10 −1.473 0.076 −0.260
20 −1.141 −0.779 −0.835
30 −0.993 −0.204 −0.353
40 −1.224 −0.451 −0.145
50 −0.599 −0.050 −0.311

Overall −0.849 −0.127 −0.179
1 Percentage change, i.e., 100 × (objMNEH − objNEH)/objNEH.

To achieve the best performance of the proposed metaheuristic algorithms (GA, IG,
and SA), calibration experiments were performed. In general, calibration before using a
metaheuristic is essential because the performance depends significantly on the control
parameters. In other to calibrate the metaheuristics, we generated three instances for each
combination of (m, n), with three levels of machines (m = 2, 5, and 10) and four levels of jobs
(n = 50, 100, 300, and 500), on Set A. The algorithms solved each instance independently
three times, and the average value resulting from the three runs was used to compute the
RDI for comparison. For the termination condition, we set the maximum CPU time defined
as tmax = n(m + 1)(tf)/2 ms, where tf denotes the time factor and tf = 60 in this calibration.

The proposed GA has eight operators and parameters which are listed below.

• Selection: two levels (tournament and roulette).
• Crossover: six levels (OX1, OX2, SJX, SJX2, SBX, and SBX2).
• Mutation (pIS): five levels (0, 0.25, 0.5, 0.75, and 1).
• Population size (Psize): five levels (20, 30, 40, 50, and 60).
• Crossover probability (pc): five levels (0.0, 0.1, 0.2, 0.3, and 0.4).
• Mutation probability (pm): five levels (0.6, 0.7, 0.8, 0.9, and 1.0).
• Local search (Pl): five levels (30, 40, 50, 60, and 70).
• Restart (Pr): five levels (50, 60, 70, 80, and 90).

For the operators and parameters, 468,750 combinations were possible. To simplify
this calibration, we performed two separate experiments. The first experiment was to select
the best combination for selection, crossover, and mutation, and the second experiment
was to find the best combination for the other parameters.

For the first experiment, a full factorial design for selection, crossover, and mutation
was considered; hence, 60 different algorithms were tested. The remaining parameters
were fixed as (Psize, pc, pm, Pl, Pr) = (50, 1, 1, ∞, ∞). These values were intended to make the
parameters meaningless and to focus on the effects of selection, crossover, and mutation
on the solutions. Figure 7 illustrates the main effect plot to determine the best operators
with lower RDI values. As shown in the figure, (tournament, OX1 and 0.5) showed better
performance. This was likely because many changes by crossover operation did not lead
to better sequences in this problem with limited waiting time constraints. For mutation,
the use of insertion and interchange with the same probability provided good results.
Therefore, tournament, OX1 and pIS = 0.5 were used in subsequent experiments.

Appl. Sci. 2021, 11, 11240 15 of 24

Figure 7. GA calibration for selection, crossover, and mutation.

The second experiment examined the remaining parameters (Psize, pc, pm, Pl, Pr).
The full factorial design of the parameters could make 3125 combinations. However,
because testing these combinations requires significant time, we adopted the Taguchi L25
orthogonal array design instead of a full factorial design. The L25 design is provided in
Table 6; that is, the 25 combinations provided in the table were tested. Note that the Taguchi
design developed by Genichi Taguchi can achieve parametric research and optimization
while reducing the number of experiments or numerical tests [54]. Figure 8 shows that
the lowest RDIs for the parameters were achieved at (Psize, pc, pm, Pl and Pr) = (30, 0.2,
1, 60 and 60). Remarkably, the probabilities of crossover and mutation were opposite.
With these probabilities, the GA occasionally executes crossover, but it always performs
mutation operations. Considering the calibration results, i.e., OX1 and pc = 0.2, the mutual
interchange between two solutions may not help search for better solutions to this problem.
In contrast, the mutation was more useful for improving the solution. The values of Pl and
Pr were the same as 60. This indicates that the local search and restart procedures start
when the best solution did not improve during 60 generations.

Figure 8. GA calibration for Psize, pC, pM, Pl, and Pr.

Appl. Sci. 2021, 11, 11240 16 of 24

Table 6. Orthogonal array for GA calibration.

Experiment Psize pC pM Pl Pr

1 20 0 0.6 50 30
2 20 0.1 0.7 60 40
3 20 0.2 0.8 70 50
4 20 0.3 0.9 80 60
5 20 0.4 1 90 70

6 30 0 0.7 70 60
7 30 0.1 0.8 80 70
8 30 0.2 0.9 90 30
9 30 0.3 1 50 40

10 30 0.4 0.6 60 50

11 40 0 0.8 90 40
12 40 0.1 0.9 50 50
13 40 0.2 1 60 60
14 40 0.3 0.6 70 70
15 40 0.4 0.7 80 30

16 50 0 0.9 60 70
17 50 0.1 1 70 30
18 50 0.2 0.6 80 40
19 50 0.3 0.7 90 50
20 50 0.4 0.8 50 60

21 60 0 1 80 50
22 60 0.1 0.6 90 60
23 60 0.2 0.7 50 70
24 60 0.3 0.8 60 30
25 60 0.4 0.9 70 40

The suggested IG has two parameters: d and pIS. This calibration considered five levels
of each parameter, that is, d = (6, 8, 10, 12, and 14) and pIS = (0, 0.25, 0.5, 0.75, and 1). Thus,
we tested 25 combinations. A summary of the results is presented in Figure 9. As shown
in the figure, RDI had the lowest at d = 10 and the difference in RDIs between d values
was very clear. This value differed significantly from the original value of 4 which was
experimentally found in [47]. It is likely because computing power improved compared
to in the past. Note that the destruction size d is determined by considering the trade-off
between the solution quality and computation time. That is, a large d can provide good
solutions but requires a large amount of computation. Therefore, in a limited CPU time,
if the d value is too large, IG may provide a poor solution. The effect of the pIS was not
significant. This may be because IG is based on the insertion mechanism. Consequently,
the IG uses d = 10 and pIS = 0.75.

For calibration of the proposed SA, we considered five levels of each of the three
parameters (α, L, and pIS). In this experiment, the epoch length L was defined as L = n × l,
where l is a control parameter. The design of this calibration was also based on the Taguchi
L25 orthogonal array (Table 7). Figure 10 shows the calibration results. Three parameters
(α, l, and pIS) had the lowest RDI values at (0.995, 15, and 0.25), respectively. In contrast to
GA and IG, the results showed bath-curves for all the parameters. In other words, both
higher and lower values from the best values resulted in worse outcomes. This is probably
because SA generates a neighborhood solution using only a local search of insertion and
interchange without any other methods. From the value of pIS = 0.25, the interchange
appears to be more effective in SA. Therefore, the SA used α = 0.995, l = 15, and pIS = 0.25
in subsequence tests.

Appl. Sci. 2021, 11, 11240 17 of 24

Figure 9. IG calibration.

Table 7. Orthogonal array for SA calibration.

Experiment α l pIS

1 0.9 1 0
2 0.9 15 0.25
3 0.9 30 0.5
4 0.9 45 0.75
5 0.9 60 1

6 0.95 1 0.25
7 0.95 15 0.5
8 0.95 30 0.75
9 0.95 45 1
10 0.95 60 0

11 0.99 1 0.5
12 0.99 15 0.75
13 0.99 30 1
14 0.99 45 0
15 0.99 60 0.25

16 0.995 1 0.75
17 0.995 15 1
18 0.995 30 0
19 0.995 45 0.25
20 0.995 60 0.5

21 0.999 1 1
22 0.999 15 0
23 0.999 30 0.25
24 0.999 45 0.5
25 0.999 60 0.75

After calibrating the proposed metaheuristics, we examined the solutions obtained
from the heuristics by comparing them with those from CPLEX. Here, we considered
four levels of n = 20, 30, 40, and 50 because the destruction size d of IG was determined
to be 10 in the calibration. Metaheuristics independently solved each instance five times,
and the average values of the five independent results were used. In addition, for the
termination condition tmax n(m + 1)(tf)/2 ms, three levels of tf = (30, 60, and 90) were
considered, and let Atf be the algorithm A using tf = (30, 60, and 90). Table 8 summarizes

Appl. Sci. 2021, 11, 11240 18 of 24

the comparison results, which shows the average percentage gaps of heuristic solutions
from a solution using CPLEX, and Figure 11 represents the number of instances for which
the heuristic solutions are better than or equal to the CPLEX solutions. The negative
percentage gap indicates that the heuristic solutions are better than those of the CPLEX.
Overall, the IG algorithm exhibited the best performance. For 179 out of 180 instances,
IG found solutions better than or equal to those of CPLEX. Both algorithms were better
than CPLEX, and SA outperformed GA. For the three levels of tf, only a few changes
were observed in all cases. This indicates that the proposed metaheuristics can find a
solution close to an optimal solution within a short computation time for instances of up to
n = 50. These experimental results verified the effectiveness and efficiency of the proposed
metaheuristics. Meanwhile, MNEH showed percentage gaps of approximately 2% in Set A
and less than 1% in Sets B and C. Although MNEH was overwhelmed by the metaheuristics,
its performance is acceptable, bearing in mind that MNEH is a constructive heuristic.

Figure 10. SA calibration.

Table 8. Average percentage gaps of heuristic solutions from a solution using CPLEX.

Heuristic Set A Set B Set C

MNEH 2.110 1 0.408 0.356
GA30 −1.299 −0.032 −0.121
GA60 −1.362 −0.035 −0.128
GA90 −1.393 −0.036 −0.130
IG30 −1.869 −0.073 −0.175
IG60 −1.944 −0.075 −0.178
IG90 −1.976 −0.079 −0.180
SA30 −1.260 −0.065 −0.126
SA60 −1.262 −0.065 −0.126
SA90 −1.262 −0.065 −0.126

1 Average percentage gap, 100 × (objHeuristic − objCPLEX)/objCPLEX.

We also examined the performance of the heuristics on large instances with n = 100,
200, 300, 400, and 500. A summary of the comparison results is in Figure 12 which shows
the RDI values of the heuristic algorithms and Figure 13 which represents the number of
instances that the heuristic found the best solution. Overall, SA outperformed the other
algorithms, and even SA30 was better than GA90 and IG90. These results were remarkably
different from those of the previous test with small instances of up to n = 50. This is
probably because of the trade-off relationship between solution quality and computation
time. In IG, the greedy reinsertion method checks all possible positions to find the best
one, and thus, this mechanism is very effective in small instances. However, this technique
becomes computationally burdensome when n increases. In contrast, the SA procedure,
which uses only a local search method with insertion and interchange, is relatively simple.
That is, SA generates a new solution by slightly changing the current solution, and the

Appl. Sci. 2021, 11, 11240 19 of 24

time to create a new solution rarely increases even if n increases. Therefore, in terms of
the trade-off relation, it can be said that SA is much more effective and efficient. On the
contrary, for the instances with m = (2 and 5) of Sets B and C, there was no difference in the
performance of all algorithms, including MNEH. However, for instances with m = 10, SA
overwhelmed the other algorithms, and IG performed better than GA. A summary of the
experimental results thus far reveals that attempts to improve the solution by changing the
sequence slightly are desirable in this scheduling problem.

Figure 11. Number of instances that heuristic solutions are better than or equal to CPLEX solutions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 26

We also examined the performance of the heuristics on large instances with n = 100,

200, 300, 400, and 500. A summary of the comparison results is in Figure 12 which shows

the RDI values of the heuristic algorithms and Figure 13 which represents the number of

instances that the heuristic found the best solution. Overall, SA outperformed the other

algorithms, and even SA30 was better than GA90 and IG90. These results were remarkably

different from those of the previous test with small instances of up to n = 50. This is prob-

ably because of the trade-off relationship between solution quality and computation time.

In IG, the greedy reinsertion method checks all possible positions to find the best one, and

thus, this mechanism is very effective in small instances. However, this technique becomes

computationally burdensome when n increases. In contrast, the SA procedure, which uses

only a local search method with insertion and interchange, is relatively simple. That is, SA

generates a new solution by slightly changing the current solution, and the time to create

a new solution rarely increases even if n increases. Therefore, in terms of the trade-off

relation, it can be said that SA is much more effective and efficient. On the contrary, for

the instances with m = (2 and 5) of Sets B and C, there was no difference in the performance

of all algorithms, including MNEH. However, for instances with m = 10, SA overwhelmed

the other algorithms, and IG performed better than GA. A summary of the experimental

results thus far reveals that attempts to improve the solution by changing the sequence

slightly are desirable in this scheduling problem.

Figure 12. Cont.

Appl. Sci. 2021, 11, 11240 20 of 24Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 26

Figure 12. RDIs of the heuristic algorithms on large instances.

Figure 13. Number of instances that the heuristic found the best solution.

In addition, we performed statistical tests to see statistically significant differences in

the performance of the proposed metaheuristics. This test used RDI values obtained from

GA90, IG90, and SA90 on large-size instances of n = 100, 200, 300, 400, and 500. Figure 14

shows the 95% confidence interval for the mean RDIs of the algorithms. As shown in Fig-

ure 14, SA90 performed significantly better in terms of the mean RDI. We also performed

Kruskal–Wallis tests which is a non-parametric method. Table 9 shows the results of pair-

wise comparisons from the tests. For the tests in Set A, SA90 significantly outperformed

GA90 and IG90. However, there is no significant difference between SA and IG in Sets B

and C. This is likely because the RDIs for m = 2 and 5 were zero.

Figure 12. RDIs of the heuristic algorithms on large instances.

Figure 13. Number of instances that the heuristic found the best solution.

In addition, we performed statistical tests to see statistically significant differences in
the performance of the proposed metaheuristics. This test used RDI values obtained from
GA90, IG90, and SA90 on large-size instances of n = 100, 200, 300, 400, and 500. Figure 14
shows the 95% confidence interval for the mean RDIs of the algorithms. As shown in
Figure 14, SA90 performed significantly better in terms of the mean RDI. We also performed
Kruskal–Wallis tests which is a non-parametric method. Table 9 shows the results of
pairwise comparisons from the tests. For the tests in Set A, SA90 significantly outperformed
GA90 and IG90. However, there is no significant difference between SA and IG in Sets B
and C. This is likely because the RDIs for m = 2 and 5 were zero.

The last analysis shows the effect of the waiting time constraints on solutions. For this
analysis, we generated 10 instances of (m, n) = (5, 300) in Set A. The waiting times were
generated randomly with a range of [1, 100], and these values were treated by multiplying
the ratios (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0). We analyzed the results obtained by solving each
instance independently five times using SA90 which showed the best performance. As
shown in Figure 15, the makespan decreased as the waiting time ratio increased. This is
because tight limited waiting times caused delayed starts; hence, the makespan increased
accordingly. The decline of the makespan slowed when the ratio exceeded 2. That is, if the
limited waiting times are twice the processing times, the effect of the waiting time limit on
the solution is reduced. These results suggest the need for manufacturing technologies and
systems that can achieve product quality while setting enough limited waiting times. It
may also provide a guideline for considering the trade-off between production efficiency

Appl. Sci. 2021, 11, 11240 21 of 24

and product quality. Meanwhile, the range of the objective values increased as the ratio
increased. This may be due to the loose waiting time limits that increased the time range in
which jobs could start. In other words, tight waiting time limits reduced the solution space
for start times in a problem.

Figure 14. 95% CIs for the mean RDI of algorithms.

Table 9. Pairwise comparisons from Kruskal–Wallis tests.

Set Sample 1
-Sample 2 Test Statistic Std.

Error
Std. Test
Statistic Sig. Adj. Sig. 1

A
SA90-IG90 53.800 10.398 5.174 0.000 0.000
SA90-GA90 103.840 10.398 9.987 0.000 0.000
IG90-GA90 50.040 10.398 4.813 0.000 0.000

B
SA90-IG90 13.480 6.937 1.943 0.052 0.156
SA90-GA90 35.480 6.937 5.114 0.000 0.000
IG90-GA90 22.000 6.937 3.171 0.002 0.005

C
SA90-IG90 13.987 6.937 2.016 0.044 0.131
SA90-GA90 34.853 6.937 5.024 0.000 0.000
IG90-GA90 20.867 6.937 3.008 0.003 0.008

1 Significance values adjusted by the Bonferroni correction for multiple tests.

Figure 15. Effect of limited waiting time on solutions.

Appl. Sci. 2021, 11, 11240 22 of 24

5. Discussion and Conclusions

This study investigated a scheduling problem in a two-stage assembly-type flow shop
with limited waiting time constraints to minimize the makespan. For this problem, a mixed-
integer programming formulation was provided to mathematically describe and find an
optimal solution using CPLEX. If the limited waiting times are treated as zero time, we
can also use the MIP for solving a no-wait constrained problem. This problem is NP-hard,
which requires an excessive computational time to solve the problem optimally. Therefore,
this study focused on heuristic algorithms to quickly find good solutions. Various heuristic
algorithms were provided, including priority rule-based list scheduling methods, a modi-
fied NEH algorithm, a genetic algorithm, an iterated greedy algorithm, and a simulated
annealing algorithm. In addition, this study suggested equations to calculate the comple-
tion times of jobs in a given sequence. Computational experiments demonstrated that IG
and SA in small- and large-sized problems, respectively, were effective and efficient within
a short computation time.

This study had some limitations. First, this study considered only two stages and
a single machine in the second stage. Next, the suggested problem assumed that all
jobs are ready to process at time zero and considered the given and fixed information of
jobs. In addition, because finding exact solutions for large problems requires a significant
computation time or may be impossible, the solutions obtained by the heuristics were
examined by comparing them with each other. These limitations necessitate further studies.

Future studies may need to consider more general models, such as multiple stages and
machines in each stage. In addition, it may be necessary to consider a problem in which
jobs arrive at the first stage dynamically or a problem with stochastic processing times.
Furthermore, the multi-objective of the throughput of the system and the due date-based
measure may also be considered in future studies. Additionally, one may develop an exact
algorithm or effective lower bounds to evaluate the solutions obtained by the heuristic
algorithms. Finally, optimal solution properties may be necessary to reduce the solution
space to be explored.

Author Contributions: Conceptualization, J.-H.H. and J.-Y.L.; methodology, J.-Y.L.; software, J.-Y.L.;
validation, J.-H.H.; formal analysis, J.-Y.L.; investigation, J.-H.H. and J.-Y.L.; resources, J.-Y.L.; data
curation, J.-Y.L.; writing—original draft preparation, J.-Y.L.; writing—review and editing, J.-H.H.
and J.-Y.L.; visualization, J.-H.H. and J.-Y.L.; supervision, J.-Y.L.; project administration, J.-Y.L.;
funding acquisition, J.-Y.L. and J.-H.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by the National Research Foundation of Korea (NRF) Grant
Funded by the Korean Government (MSIT) (no. NRF-2020R1G1A1006268, NRF-2020R1G1A1099829).
The APC was funded by NRF-2020R1G1A1006268.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data for the computational experiments are generated randomly
and the method for generating data is written in Section 4 in the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, J.Y.; Chin, M.S. Research trends of scheduling techniques for domestic major industries. J. Soc. Korea Ind. Syst. Eng. 2018, 41,

59–69. [CrossRef]
2. Komaki, G.M.; Sheikh, S.; Malakooti, B. Flow shop scheduling problems with assembly operations: A review and new trends. Int.

J. Prod. Res. 2019, 57, 2926–2955. [CrossRef]
3. Lee, C.-Y.; Cheng, T.C.E.; Lin, B.M.T. Minimizing the makespan in the 3-machine assembly scheduling problem. Manag. Sci. 1993,

39, 616–625. [CrossRef]
4. Potts, C.N.; Sevast’janov, S.V.; Strusevich, V.A.; Van-Wassenhove, L.N.; Zwaneveld, C.M. The two-stage assembly scheduling

problem: Complexity and approximation. Oper. Res. 1995, 43, 346–355. [CrossRef]

http://doi.org/10.11627/jkise.2018.41.1.059
http://doi.org/10.1080/00207543.2018.1550269
http://doi.org/10.1287/mnsc.39.5.616
http://doi.org/10.1287/opre.43.2.346

Appl. Sci. 2021, 11, 11240 23 of 24

5. Lagodimos, A.G.; Mihiotis, A.N.; Kosmidis, V.C. Scheduling a multi-stage fabrication shop for efficient subsequent assembly
operations. Int. J. Prod. Econ. 2004, 90, 345–359. [CrossRef]

6. Yokoyama, M. Scheduling for two-stage production system with setup and assembly operations. Comput. Oper. Res. 2004, 31,
2063–2078. [CrossRef]

7. Blocher, J.D.; Chhajed, D. Minimizing Customer Order Lead-Time in a Two-Stage Assembly Supply Chain. Ann. Oper. Res. 2008,
161, 25–52. [CrossRef]

8. Bard, J.F.; Jia, S.; Chacon, R.; Stuber, J. Integrating optimisation and simulation approaches for daily scheduling of assembly and
test operations. Int. J. Prod. Res. 2015, 53, 2617–2632. [CrossRef]

9. Gholami-Zanjani, S.M.; Hakimifar, M.; Nazemi, N.; Jolai, F. Robust and fuzzy optimisation models for a flow shop scheduling
problem with sequence dependent setup times: A real case study on a PCB assembly company. Int. J. Comput. Integ. Manuf. 2017,
30, 552–563. [CrossRef]

10. Hayrinen, T.; Johnsson, M.; Johtela, T.; Smed, J.; Nevalainen, O. Scheduling algorithms for computer-aided line balancing in
printed circuit board assembly. Prod. Plann. Control 2000, 11, 497–510. [CrossRef]

11. Jin, Z.H.; Ohno, K.; Ito, T.; Elmaghraby, S.E. Scheduling hybrid flowshops in printed circuit board assembly lines. Prod. Oper.
Manag. 2002, 11, 216–230. [CrossRef]

12. Ju, F.; Li, J.S.; Horst, J.A. Transient Analysis of Serial Production Lines With Perishable Products: Bernoulli Reliability Model.
IEEE Trans. Autom. Control. 2017, 62, 694–707. [CrossRef]

13. Wang, J.W.; Hu, Y.; Li, J.S. Transient analysis to design buffer capacity in dairy filling and packing production lines. J. Food. Eng.
2010, 98, 1–12. [CrossRef]

14. Zhou, N.; Wu, M.; Zhou, J. Research on Power Battery Formation Production Scheduling Problem with Limited Waiting Time
Constraints. In Proceedings of the 2018 10th International Conference on Communication Software and Networks, Chengdu,
China, 6–9 July 2018; 2018; pp. 497–501.

15. Framinan, J.M.; Perez-Gonzalez, P.; Fernandez-Viagas, V. Deterministic assembly scheduling problems: A review and classification
of concurrent-type scheduling models and solution procedures. Eur. J. Oper. Res. 2019, 273, 401–417. [CrossRef]

16. Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68.
[CrossRef]

17. Hariri, A.M.A.; Potts, C.N. A branch and bound algorithm for the two-stage assembly scheduling problem. Eur. J. Oper. Res. 1997,
103, 547–556. [CrossRef]

18. Haouari, M.; Daouas, T. Optimal scheduling of the 3-machine assembly-type flow shop. RAIRO Rech. Oper. 1999, 33, 439–445.
[CrossRef]

19. Sun, X.; Morizawa, K.; Nagasawa, H. Powerful heuristics to minimize makespan in fixed, 3-machine, assembly-type flowshop
scheduling. Eur. J. Oper. Res. 2003, 146, 498–516. [CrossRef]

20. Koulamas, C.; Kyparisis, G.J. The three stage assembly flowshop scheduling problem. Comput. Oper. Res. 2001, 28, 689–704.
[CrossRef]

21. Sung, C.S.; Juhn, J. Makespan minimization for a 2-stage assembly scheduling problem subject to component available time
constraint. Int. J. Prod. Econ. 2009, 119, 392–401. [CrossRef]

22. Wu, C.-C.; Gupta, J.N.D.; Cheng, S.-R.; Lin, B.M.T.; Yip, S.-H.; Lin, W.-C. Robust scheduling for a two-stage assembly shop with
scenario-dependent processing times. Int. J. Prod. Res. 2021, 59, 5372–5387. [CrossRef]

23. Wu, C.-C.; Zhang, X.; Azzouz, A.; Shen, W.-L.; Cheng, S.-R.; Hsu, P.-H.; Lin, W.-C. Metaheuristics for two-stage flow-shop
assembly problem with a truncation learning function. Eng. Optimiz. 2021, 53, 843–866. [CrossRef]

24. Lee, J.Y.; Bang, J.Y. A two-stage assembly-type flowshop scheduling problem for minimizing total tardiness. Math. Probl. Eng.
2016, 2016. [CrossRef]

25. Lee, I.S. Minimizing total completion time in the assembly scheduling problem. Comput. Ind. Eng. 2018, 122, 211–218. [CrossRef]
26. Lee, I.S. A scheduling problem to minimize total weighted tardiness in the two-stage assembly flowshop. Math. Probl. Eng. 2020,

2020. [CrossRef]
27. Azzouz, A.; Pan, P.A.; Hsu, P.H.; Lin, W.C.; Liu, S.C.; Ben Said, L.; Wu, C.C. A two-stage three-machine assembly scheduling

problem with a truncation position-based learning effect. Soft Comput. 2020, 24, 10515–10533. [CrossRef]
28. Wu, C.C.; Wang, D.J.; Cheng, S.R.; Chung, I.H.; Lin, W.C. A two-stage three-machine assembly scheduling problem with a

position-based learning effect. Int. J. Prod. Res. 2018, 56, 3064–3079. [CrossRef]
29. Wu, C.C.; Bai, D.Y.; Azzouz, A.; Chung, I.H.; Cheng, S.R.; Jhwueng, D.C.; Lin, W.C.; Ben Said, L. A branch-and-bound algorithm

and four metaheuristics for minimizing total completion time for a two-stage assembly flow-shop scheduling problem with
learning consideration. Eng. Optimiz. 2020, 52, 1009–1036. [CrossRef]

30. Talens, C.; Fernandez-Viagas, V.; Perez-Gonzalez, P.; Framinan, J.M. New efficient constructive heuristics for the two-stage
multi-machine assembly scheduling problem. Comput. Ind. Eng. 2020, 140, 106223. [CrossRef]

31. Wu, C.C.; Azzouz, A.; Chung, I.H.; Lin, W.C.; Ben Said, L. A two-stage three-machine assembly scheduling problem with
deterioration effect. Int. J. Prod. Res. 2019, 57, 6634–6647. [CrossRef]

32. Luo, J.C.; Liu, Z.Q.; Xing, K.Y. Hybrid branch and bound algorithms for the two-stage assembly scheduling problem with
separated setup times. Int. J. Prod. Res. 2019, 57, 1398–1412. [CrossRef]

http://doi.org/10.1016/j.ijpe.2003.08.006
http://doi.org/10.1016/S0305-0548(03)00165-5
http://doi.org/10.1007/s10479-007-0289-7
http://doi.org/10.1080/00207543.2014.970713
http://doi.org/10.1080/0951192X.2016.1187293
http://doi.org/10.1080/09537280050051997
http://doi.org/10.1111/j.1937-5956.2002.tb00492.x
http://doi.org/10.1109/TAC.2016.2572119
http://doi.org/10.1016/j.jfoodeng.2009.11.009
http://doi.org/10.1016/j.ejor.2018.04.033
http://doi.org/10.1002/nav.3800010110
http://doi.org/10.1016/S0377-2217(96)00312-8
http://doi.org/10.1051/ro:1999120
http://doi.org/10.1016/S0377-2217(02)00245-X
http://doi.org/10.1016/S0305-0548(00)00004-6
http://doi.org/10.1016/j.ijpe.2009.03.012
http://doi.org/10.1080/00207543.2020.1778208
http://doi.org/10.1080/0305215X.2020.1757089
http://doi.org/10.1155/2016/6409321
http://doi.org/10.1016/j.cie.2018.06.001
http://doi.org/10.1155/2020/9723439
http://doi.org/10.1007/s00500-019-04561-8
http://doi.org/10.1080/00207543.2017.1401243
http://doi.org/10.1080/0305215X.2019.1632303
http://doi.org/10.1016/j.cie.2019.106223
http://doi.org/10.1080/00207543.2019.1570378
http://doi.org/10.1080/00207543.2018.1489156

Appl. Sci. 2021, 11, 11240 24 of 24

33. Mozdgir, A.; Ghomi, S.M.T.F.; Jolai, F.; Navaei, J. Three meta-heuristics to solve the no-wait two-stage assembly flow-shop
scheduling problem. Sci. Iran. 2013, 20, 2275–2283.

34. Ji, M.; Yang, Y.; Duan, W.; Wang, S.; Liu, B. Scheduling of No-Wait Stochastic Distributed Assembly Flowshop by Hybrid PSO. In
Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; pp. 2649–2654.

35. Li, P.; Yang, Y.; Du, X.; Qu, X.; Wang, K.; Liu, B. Iterated Local Search for Distributed Multiple Assembly No-Wait Flow-
shop Scheduling. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation, Donostia, Spain, 5–8 June 2017;
pp. 1565–1571.

36. Shao, W.S.; Pi, D.C.; Shao, Z.S. Local search methods for a distributed assembly no-idle flow shop scheduling problem. IEEE Syst.
J. 2019, 13, 1945–1956. [CrossRef]

37. Zhao, F.Q.; Liu, H.; Zhang, Y.; Ma, W.M.; Zhang, C. A discrete water wave optimization algorithm for no-wait flow shop
scheduling problem. Expert Syst. Appl. 2018, 91, 347–363. [CrossRef]

38. Zhao, F.Q.; Qin, S.; Zhang, Y.; Ma, W.M.; Zhang, C.; Song, H.B. A hybrid biogeography-based optimization with variable
neighborhood search mechanism for no-wait flow shop scheduling problem. Expert Syst. Appl. 2019, 126, 321–339. [CrossRef]

39. Zhao, F.Q.; Zhang, L.X.; Cao, J.; Tang, J.X. A cooperative water wave optimization algorithm with reinforcement learning for the
distributed assembly no-idle flowshop scheduling problem. Comput. Ind. Eng. 2021, 153. [CrossRef]

40. Zhao, F.Q.; Zhang, L.X.; Liu, H.; Zhang, Y.; Ma, W.M.; Zhang, C.; Song, H.B. An improved water wave optimization algorithm
with the single wave mechanism for the no-wait flow-shop scheduling problem. Eng. Optimiz. 2019, 51, 1727–1742. [CrossRef]

41. Graham, R.L.L.; Lawler, E.L.; Lenstra, J.K.; Rinnooy-Kan, A.H.G. Optimization and approximation in deterministic sequencing
and scheduling: A survey. Ann. Discrete Math. 1979, 5, 287–326. [CrossRef]

42. Yang, D.-L.; Maw-Sheng, C. A two-machine flowshop sequencing problem with limited waiting time constraints. Comput. Ind.
Eng. 1995, 28, 8. [CrossRef]

43. Tozkapan, A.; Kirca, O.; Chung, C.-S. A branch and bound algorithm to minimize the total weighted flowtime for the two-stage
assembly scheduling problem. Comput. Oper. Res. 2003, 30, 309–320. [CrossRef]

44. Nawaz, M.; Enscore, E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11,
91–95. [CrossRef]

45. Sadeghi, A.; Doumari, S.A.; Dehghani, M.; Montazeri, Z.; Trojovsky, P.; Ashtiani, H.J. A new “Good and Bad Groups-Based
Optimizer” for solving various optimization problems. Appl. Sci. 2021, 11, 4382. [CrossRef]

46. Ruiz, R.; Maroto, C. A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. Eur.
J. Oper. Res. 2006, 169, 781–800. [CrossRef]

47. Ruiz, R.; Stutzle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.
Oper. Res. 2007, 177, 2033–2049. [CrossRef]

48. Fernandez-Viagas, V.; Valente, J.M.S.; Framinan, J.M. Iterated-greedy-based algorithms with beam search initialization for the
permutation flowshop to minimise total tardiness. Expert Syst. Appl. 2018, 94, 58–69. [CrossRef]

49. Karabulut, K. A hybrid iterated greedy algorithm for total tardiness minimization in permutation flowshops. Comput. Ind. Eng.
2016, 98, 300–307. [CrossRef]

50. Mao, J.Y.; Pan, Q.K.; Miao, Z.H.; Gao, L. An effective multi-start iterated greedy algorithm to minimize makespan for the
distributed permutation flowshop scheduling problem with preventive maintenance. Expert Syst. Appl. 2021, 169. [CrossRef]

51. Ribas, I.; Companys, R.; Tort-Martorell, X. An iterated greedy algorithm for the parallel blocking flow shop scheduling problem
and sequence-dependent setup times. Expert Syst. Appl. 2021, 184, 115535. [CrossRef]

52. Osman, I.H.; Potts, C.N. Simulated annealing for permutation flow-shop scheduling. Omega 1989, 17, 551–557. [CrossRef]
53. Abuajwa, O.; Bin Roslee, M.; Yusoff, Z.B. Simulated annealing for resource allocation in downlink NOMA systems in 5G networks.

Appl. Sci. 2021, 11, 4592. [CrossRef]
54. Thao, P.B.; Truyen, D.C.; Phu, N.M. CFD analysis and taguchi-based optimization of the thermohydraulic performance of a solar

air heater duct baffled on a back plate. Appl. Sci. 2021, 11, 4645. [CrossRef]

http://doi.org/10.1109/JSYST.2018.2825337
http://doi.org/10.1016/j.eswa.2017.09.028
http://doi.org/10.1016/j.eswa.2019.02.023
http://doi.org/10.1016/j.cie.2020.107082
http://doi.org/10.1080/0305215X.2018.1542693
http://doi.org/10.1016/S0167-5060(08)70356-X
http://doi.org/10.1016/0360-8352(94)00026-J
http://doi.org/10.1016/S0305-0548(01)00098-3
http://doi.org/10.1016/0305-0483(83)90088-9
http://doi.org/10.3390/app11104382
http://doi.org/10.1016/j.ejor.2004.06.038
http://doi.org/10.1016/j.ejor.2005.12.009
http://doi.org/10.1016/j.eswa.2017.10.050
http://doi.org/10.1016/j.cie.2016.06.012
http://doi.org/10.1016/j.eswa.2020.114495
http://doi.org/10.1016/j.eswa.2021.115535
http://doi.org/10.1016/0305-0483(89)90059-5
http://doi.org/10.3390/app11104592
http://doi.org/10.3390/app11104645

	Introduction
	Problem Description
	Heuristic Algorithms
	Priority Rule-Based Scheduling
	Modified NEH Algorithm (MNEH)
	Genetic Algorithm
	Solution Representation
	Initial Population
	Solution Representation
	Selection
	Crossover
	Mutation
	Improvement (Local Search)
	Restart
	Termination Criterion
	Entire Procedure of the Proposed GA

	Iterated Greedy Algorithm
	Simulated Annealing Algorithm

	Computational Experiments
	Discussion and Conclusions
	References

