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Abstract: The converter is an important component in wind turbine power drive-train systems, and
usually, it has a higher failure rate. Therefore, detecting the potential faults for prediction of its failure
has become indispensable for condition-based maintenance and operation of wind turbines. This
paper presents an approach to wind turbine converter fault detection using convolutional neural net-
work models which are developed by using wind turbine Supervisory Control and Data Acquisition
(SCADA) system data. The approach starts with the selection of fault indicator variables, and then the
fault indicator variables data are extracted from a wind turbine SCADA system. Using the data, radar
charts are generated, and the convolutional neural network models are applied to feature extraction
from the radar charts and characteristic analysis of the feature for fault detection. Based on the
analysis of the Octave Convolution (OctConv) network structure, an improved AOctConv (Attention
Octave Convolution) structure is proposed in this paper, and it is applied to the ResNet50 back-
bone network (named as AOC–ResNet50). It is found that the algorithm based on AOC–ResNet50
overcomes the issues of information asymmetry caused by the asymmetry of the sampling method
and the damage to the original features in the high and low frequency domains by the OctConv
structure. Finally, the AOC–ResNet50 network is employed for fault detection of the wind turbine
converter using 10 min SCADA system data. It is verified that the fault detection accuracy using the
AOC–ResNet50 network is up to 98.0%, which is higher than the fault detection accuracy using the
ResNet50 and Oct–ResNet50 networks. Therefore, the effectiveness of the AOC–ResNet50 network
model in wind turbine converter fault detection is identified. The novelty of this paper lies in a novel
AOC–ResNet50 network proposed and its effectiveness in wind turbine fault detection. This was
verified through a comparative study on wind turbine power converter fault detection with other
competitive convolutional neural network models for deep learning.

Keywords: AOC–ResNet50 network; converter; deep learning; fault detection; radar chart

1. Introduction

In recent years, the penetration of wind energy into the whole energy market is
constantly growing. The installed capacity worldwide reached 650.8 GW by the end of
2019 with a yearly average increase rate of more than 10% in the past 10 years [1]. Wind
energy is captured using wind turbines. However, most wind turbines are operating in a
very harsh environment. As a result, wind turbine health condition assessment has become
increasingly important for the purpose of realization of condition-based maintenance
and operation.

In a wind turbine, the power drive-train system usually has a higher failure rate than
others. As a critical component in the power drive-train system, the converter plays a role
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to transmit the generated power to grid. The power converter realizes the conversion and
control of the generated wind power. It converts the electrical energy that changes with
fluctuation by following the wind speed into energy with stable frequency complying with
the requirement of the grid.

Grid-side converter voltage failure is the most influential converter failure in a wind
farm. When it occurs, the grid voltage, current, and grid-side active and reactive power will
produce secondary harmonics. Wave pulsation causes the voltage of the capacitor terminal
on the DC side to be unstable, the operation performance of the grid-connected converter is
reduced and the power loss increases. In severe cases, the main power device may be burnt,
and the asymmetry of the grid voltage will be further aggravated [2]. The research work
reported in this paper is focused on the faulty status detection of the Double–fed Induction
Generator (DFIG) wind turbine converter in order to avoid unnecessary shutdowns of the
wind turbines caused by converter failure.

Regarding fault detection and diagnosis for wind turbines, there are different models
and methods developed which can be generally categorized as model-based [3–6] and data-
based [6–13] approaches. The model-based approach is mainly used for fault mechanism
analysis, and the data-based approach is for condition assessment and prediction. The
data-based approach is adopted in this paper using the Supervisory Control and Data
Acquisition (SCADA) system data of wind turbines. In [14], a review of research on
fault detection and condition monitoring using SCADA data is provided, with some
discussions on the potential research trend in the future. Using SCADA data for wind
turbine fault detection and diagnosis, different modeling techniques have been developed
and utilized. They are generally classified as artificial neural networks (such as back-
propagation, radial basis function, auto-associative, multilayer perceptron and concurrent
and convolutional neural networks), Support Vector Regression (SVR), Support Vector
Machine (SVM) [15,16], Bayesian inference (such as Bayesian network, Naïve Bayes), fuzzy
logic and fuzzy inference (such as fuzzy inference system, fuzzy logic system and adaptive
neuro-fuzzy inference system), Principal Component Analysis (PCA), Self-Organizing
Feature Map (SOFM), expert systems, k-means clustering, decision trees and wavelet-based
techniques [6,10,17–25]. In [23], a brief summary of the application of these techniques is
given. In [12], an in detail review of these techniques from the perspective of deep learning
was conducted. One review of machine learning methods for wind turbine condition
monitoring is proposed by Stetco et al. [26], where various techniques applied to regression
and classification are discussed. From these reviews, it is perceived that the application of
deep learning techniques to wind turbine fault detection and diagnosis will represent a
strong research and application trend for the operation of wind turbines; see, for example,
refs. [27–32] published in the last two years.

Regarding fault detection and diagnosis of wind turbine converters, the methods
applied are generally categorized as model-driven-, data-driven- and signal processing-
based; see a short review provided below.

1.1. Model-Based Methods

In [33], a hybrid model is established covering inverter and permanent magnet syn-
chronous generators to diagnose inverter open circuit fault by analyzing the residual signal
of the generator stator current through the model. In [34], the use of heat flux sensors
to monitor the condition of a wind power converter, mainly for the failure and aging of
electronic power devices, i.e., insulated-gate bipolar transistors (IGBTs) in the converter,
where models are developed for the implementation of condition monitoring is proposed.
In [35], a generic mathematical model of a two-level converter with open-switch faults
is described. The impact of open-switch fault on the current control system of isotropic
permanent-magnet synchronous generator (PMSG) was investigated.

The method based on the analytical model has the advantages of being unaffected by
the load, not requiring new hardware such as sensors and fast diagnosis, but its accuracy
depends heavily on the accuracy of the system model and parameter values estimated.
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The wind turbine power converter is a multivariable system involving strong coupling
and nonlinearity, and its physical parameters change dynamically in operation. There-
fore, the fault detection and diagnosis method based on analytical models is limited in
practical applications.

1.2. Methods Based on Signal Processing

This kind of method extracts fault features by analyzing the mean value, frequency
and harmonics of sensor signals to realize fault detection and diagnosis. In this category, the
methods are mainly divided into current signal-based and voltage signal-based methods.

Fault diagnosis by analysis of current signal
The average current Park’s vector method is proposed in [36], where the average value

of the three-phase current is transformed to the average current Park’s vector by Clark
transform. Under normal and fault conditions of the system, the faulty power device is
located by analyzing the replication and phase difference of the average current Park’s
vector. In [37], a method is introduced for the diagnosis of DFIG back-to-back converter
open circuit fault, which can realize fault detection and fault location. For fault detection, it
gives an absolutely normalized Park’s vector method. When the wind turbine generator is
running at a synchronous speed, this method can detect multiple open-circuit switch faults
and ensure that they are free from false alarms. For fault location, this method uses the
normalized current average value to identify single-circuit and double-circuit open-circuit
faults. In [38], converter fault occurrence is identified by detecting the current Park’s vector
phase angle change. The fault is located based on the Park’s vector phase angle interval of
the average current on the machine side converter and the positive and negative of each
phase current on the grid side converter. In view of the fluctuation and high noise of wind
speed, in [39], a diagnosis algorithm is proposed based on the Park current amplitude
normalization method by reference to wind speed. Combined with the current trajectory,
the fault diagnosis of a permanent magnet synchronous wind turbine power converter can
be achieved under variable wind speed.

Fault diagnosis by analysis of voltage signal
In [40], a method is presented for the diagnosis of open circuit fault of an inverter by

measuring and comparing the three-phase output voltage of the inverter and the midpoint
voltage at the DC side. For the three-level topology, however, this method can only
judge the faulty phase but cannot locate the faulty element. In [41], an inverter phase
voltage observer is established. It is used to diagnose open-circuit faults of a converter by
comparing the observed voltage with a reference voltage, but the accuracy of the observer
is greatly affected by generator parameters. In [42], the operating characteristics of various
voltages when the permanent magnet synchronous wind turbine power converter has
an open circuit fault are revealed through detailed theoretical derivation. In [43], the
deviation of the line voltage before and after the converter fault of the permanent magnet
synchronous wind turbine is used to diagnose and locate the fault. The fault diagnosis
reliability is improved by satisfying both the voltage amplitude and time width criteria.
In [44] a new switch fault diagnosis method which treats output inductor voltages as
diagnostic criteria is developed. Based on the features of diagnostic signals in such a
system, a low-cost diagnostic circuit is designed. The failed module caused by open-
circuit or short-circuit fault could be detected within one switching period, allowing for an
immediate fault-tolerant action.

The fault diagnosis method based only on current or voltage signal has certain limi-
tations in application. First of all, the electronic control system is relatively independent
and compact; it is not easy to add additional sensors or data acquisition units unless it is
redesigned. It is also required that the monitoring and diagnosis system cannot interfere
with the normal operation of the electronic control system. Second, relying only on a single
signal for diagnosis will increase the missed fault detection and false detection rate due to
signal loss and signal interference.



Appl. Sci. 2021, 11, 1280 4 of 22

1.3. Data-Driven Methods

The data-driven method does not require the precise mathematical model of the
diagnostic object, nor does it need to add extra sensors or hardware circuits. It is widely
applied to the fault detection/diagnosis of the converter. The typically applied techniques
include neural networks, expert systems, support vector machine (SVM), fuzzy logic and
cluster analysis [45–49].

In [45], wavelet transform is used to obtain three-phase current fault characteristics,
where the artificial neural network algorithm or fuzzy expert system is employed to
complete classification of failure modes from which the open circuit fault of the converter
is diagnosed. In [41], a summary of a variety of diagnostic methods for open circuit, short
circuit and drive signal loss for converter IGBT module failure is provided and compared
to the effectiveness and anti-interference abilities of the methods. In [46], a data-driven
fault diagnostic method using long short-term memory (LSTM) network to detect multiple
open-circuit switch faults of the back-to-back converters used in DFIG wind turbines is
presented. In [47], an advanced Fault Detection and Diagnosis (FDD) approach aiming to
increase the availability, reliability and required safety of wave energy converters (WEC)
under different conditions is described. The developed approach exploits the benefits of
the Machine Learning (ML)-based Hidden Markov Model (HMM) and the PCA model.
To improve the accuracy of fault diagnosis for wind turbine converters, a fault feature
extraction method combined with a wavelet transform and compressed sensing theory is
proposed in [48], in which an improved AdaBoost-SVM is developed and used for fault
diagnosis. The three-phase output current signal is selected as the research object and
is processed by the wavelet transform to reduce the signal noise. In [49], fault detection
was conducted for three wind turbine subsystems, including a pitch system, generator
and converter by developing SVR, SVM and convolutional neural network (CNN) models
using SCADA system data. It is verified that the CNN model’s performance is superior to
SVR and SVM models.

In view of the literature review above, the following conclusions can be drawn:

1. The model-based fault diagnosis method has higher diagnosis speed and lower cost,
but it is sensitive to system parameters so that its practical application is limited.

2. The current signal-based fault diagnosis method does not require new hardware to be
added, but its diagnosis speed is lower, and it is easily affected by noise disturbance.
The voltage signal-based method has fast diagnosis and high accuracy, but it requires
additional hardware circuits, such as voltage sensors, which increases the system cost
and complexity. Usually, it is not suitable to add new sensors to a wind turbine control
system unless it is redesigned. The fault diagnosis performance is not sufficient, and
it is not stable if only one signal is used.

3. The data-based method does not require the establishment of an accurate mathe-
matical model and has certain advantages for complex systems, but the algorithm is
relatively complicated.

Nowadays, with the fast improvement in computational capacities and large volumes
of high frequency and multi-dimensional parametric data recorded, new opportunities
are created that make it possible to take advantage of deep learning techniques in fault
detection and diagnosis for wind turbines. Based on a quick literature review, it was found
that the future techniques applied to fault detection and diagnosis of wind turbines will be
driven by deep learning approaches and algorithms. Motivated by this finding, this paper
focuses on fault detection of wind turbine power converters using convolutional neural
network models which are one kind of important model in deep learning.

Considering that the operation of wind turbines is affected by many factors, such
as wind load and environment conditions, the condition monitoring signals involve a
certain degree of randomness, and hence the signals are related to the faulty converter
status. These signals are generally weaker than mechanical signals. Certain correlations
exist between the converter fault signals. They interact and influence each other. In order
to explore the relationship between the fault signals and improve the accuracy of fault
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detection, this research work starts with the selection of fault indicators and construction
of radar charts based on the fault indicator variables data. The second step is to convert the
radar charts into images which are then utilized for further processing in the fault detection.
From the perspective of image processing, different features embedded in the images are
extracted and analyzed to identify the normal and faulty operations of the wind turbines.
This method helps to discover the correlation between signals, and can determine more
characteristics from some weak signals involved in the process.

As one kind of important network model of deep learning, the convolutional neural
network can take the original image as data input, analyze the relationship and charac-
teristics between pixels in the image and reduce the information loss of the image in the
processing and hence reduce errors. With the continuous increase in the number of image
samples, the network depth is required to be increasingly deeper in order to seek better
processing results. However, with increase in the network depth, it is difficult to optimize
the neural network, and the accuracy of the network is obviously "degraded" so that the
satisfactory learning effects cannot be obtained. Residual Network (ResNet), which intro-
duces residual learning into the convolutional neural network, can help effectively solve
this problem of rapid degradation of the accuracy of the network as the depth increases.
It can greatly increase the depth of the network, but does not cause a sharp increase in
the number of parameters. In 2019, Facebook AI, the National University of Singapore
and Qihoo 360 AI Institute, jointly proposed OctConv (Octave Convolution) based on the
mixed characteristics of information at different frequencies [50]. Using it to replace the
traditional convolution can greatly save the computing resources while improving the
learning effect. Therefore, this present paper applies OctConv to the ResNet network to
detect faults in the wind turbine power converter. At the same time, in order to verify the
effectiveness of the improved convolutional neural network for fault detection, the fault
detection effects are compared with the ResNet50 convolutional neural network and the
OctConv (Oct–ResNet50) network based on the ResNet50 backbone.

However, the OctConv structure has two shortcomings: one is that the asymmetry
of the upsampling and downsampling methods causes the asymmetry of the information
in modeling, and the second is that OctConv directly adds the high- and low-frequency
domain features to realize the information interaction between different frequency domains,
which greatly destroys the original features in the high- and low-frequency domains.
Aiming to overcome the above shortcomings, an improved network structure based on the
OctConv one, named the Attention Octave Convolution (AOctConv) structure, is proposed
in this paper. First, this is to modify the existing sampling method of OctConv, replace the
original downsampling method with max pooling and replace the original upsampling
method with max unpooling to achieve symmetry of the downsampling and upsampling
processes. Secondly, a self-attention mechanism is introduced to adaptively control the
interaction process of information in the OctConv module, and self-supervise the output of
the two branches in the high- and low-frequency domains. Therefore, this paper applies the
improved AOctConv structure to the ResNet50 backbone network and hence proposes the
AOC–ResNet50 network to realize fault detection for the wind turbine power converter.

In summary, the overall workflow of this paper is illustrated in Figure 1. The first
step is to determine the fault indicator variables that provide some indications or reflection
of the converter health status. Seven fault indicator variables were selected based on
analyses of existing failure cases and understanding of the requirements for converter
functions. Step 2 is to determine an appropriate approach for fault detection. In this paper,
the data-driven approach was selected based on the literature review and discussions as
well as the available data. Step 3 is to select the techniques for modelling and analysis for
which CNN models were applied to feature extraction of radar charts generated using
SCADA system data. Step 4 is to give an introduction to the typical CNN structures for the
purpose of the development of a new improved CNN architecture. Step 5 is to propose
a new improved CNN architecture. With this new development, Step 6 is to apply the



Appl. Sci. 2021, 11, 1280 6 of 22

AOC–ResNet50 network to converter fault detection, and Step 7 provides a brief discussion
based on the research findings and conclusion of the paper.
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In view of the overall process as discussed above, the remainder of this paper is
organized as follows: Section 2 gives a brief introduction to the generation of radar charts;
Section 3 presents deep learning network principles; Section 4 describes the improved
convolutional neural network; Section 5 discusses the fault detection of the wind turbine
power converter using the convolutional neural network models with a comparison of
the model performance; Section 6 provides a brief discussion, and Section 7 concludes the
paper and indicates future research directions.

2. Generation of Radar Chart

The radar chart analysis method is a multivariate comparative analysis based on the
graphics on the similar navigation radar screen.

2.1. Radar Chart Introduction

A radar chart is a graph that shows multiple quantitative parameter value changes
along different axes starting from the same original point. It can be used to describe
multivariate data. The relative position and angle of the radar chart axis are usually
the undefined information. It is often called a network chart, spider chart, star chart,
Kiviat chart or irregular polygon. It is a typical evaluation method based on graphically
comprehensive analysis. It is, therefore, suitable for the comprehensive analysis and
comparison of multiple factors. It can vividly and intuitively reflect the comprehensive
attributes of the evaluation target. Its advantages are that it is intuitive, vivid and easy to
operate [51].

The radar chart shows the visual expression of numerical data from the perspective
of “face thinking”, and converts the information in the high-dimensional invisible space
into intuitive planar information. Radar charts are widely used in scientific research
and industrial fields for data visualization and graphical representation for effectively
displaying multiple variables [52–55].

Before drawing a graph, the data need to be standardized, usually in the interval
[0,1]. If there are m numerical data with n-dimensional features, each line in the figure
represents a one-dimensional variable in the process of drawing, and there are n in total.
They intersect at the center of the circle. Connect the points corresponding to each variable
value in order to form a closed n polygon. Finally, m data samples can be represented
as m two-dimensional n polygons so that the original numerical data are represented by
an image.

2.2. Radar Chart Drawing

The SCADA system data of wind turbines were collected from two-year operation
data of 27 wind turbines in a wind farm in Hebei Province, China, which was put into
operation in 2012. Before proceeding to draw radar charts, the fault indicator variables
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must be determined. The function of the converter in the operation control of a wind
turbine is illustrated in Figure 2. The converter plays a role to make sure that the output
power complies with the requirements of grid. It ensures that the output voltage is in
a threshold range and the current frequency is in accordance with the grid. The output
power of the generator is under control through adjusting the blade angle by a pitch
control system. According to an investigation and analysis, the grid-side converter voltage,
generator torque set-point, active and reactive power, wind speed, turbine rotor position
and generator rotor speed are selected as the fault indicators of the converter. Wind speed
is measured by wind sensor standing on the top and rear of wind turbine nacelle. Turbine
rotor position and generator rotor speed are measured, and the other parameter values are
recorded in wind turbine operation.
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With the SCADA system data, one can extract the data 30 min, 3 h, 24 h, 7 days or
15 days ahead of occurrence of failures and put the data into a design Excel table. Table 1
shows an example of the fault indicator variable data which are 24 h ahead of a converter
failure. Each table, like Table 1, has 181 rows of data, and a total of 100 sets of data were
extracted for study in this paper; the extracted normal operation data were in the same
sample size as the failure data set.

Table 1. Sample of fault indicator variable data of converter.

Serial
No.

Wind
Speed
(m/s)

Turbine Rotor
Position

(◦)

Active
Power
(kW)

Reactive
Power
(kW)

Generator
Rotor Speed

(rpm)

Grid Side Converter
Voltage

(V)

Generator Torque
Set-Point
(N×m)

1 4.90 77.43 233.4 −33.257 1176.1 0 22.881
2 4.70 38.41 259.2 −36.933 1216.6 0 24.539
3 4.92 117.51 256.2 −41.666 1213.4 0 24.362
4 6.49 98.96 288.6 −27.281 1262.3 0 26.401
5 4.61 191.34 328.8 −31.396 1319.5 0 28.632

. . . . . . . . . . . . . . . . . . . . . . . .
179 5.44 30.76 271.8 −44.461 1241.6 3.276 25.489
180 4.46 166.38 180.0 −35.734 1079.2 0.536 19.261
181 4.42 74.27 224.4 −25.718 1163.8 0.236 22.596
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The specific steps for drawing a radar chart in this paper are as follows:
The first step is to select the wind speed index as the drawing reference;
The second step is to normalize the fault indicator variable values representing the

converter operation condition status;
Step 3 is to collect all fault indicator variable values with a determined wind speed,

and draw the 7 indicator variable values on a radar chart;
Step 4 is to draw a closed heptagon through the 7 points on the 7 axes representing

the seven fault indicator variables. It is noted that the closed area defines the size of the
image converted later.

The radar charts generated are shown in Figure 3 below. The numbers 1–7 in the
figure represent the 7 fault indicator variables, respectively. Through drawing the graphs,
the changes of the fault indicator variable values and the correlation between the fault
indicator variables can be intuitively reflected. Figure 3a shows radar charts of the fault
indicator variables data under normal operation of the converter; Figure 3b presents radar
charts of the fault indicator variables data under faulty operation status of the converter.
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In Figure 3a, the charts were plotted corresponding to the wind speeds of 3.1 and
6.4 m/s, respectively. In the case of normal operation of the converter, the fault indicator
variables data do not change much and are relatively stable. Although the amount of
data is large, the number of curves shown in the graph is relatively small because of
the phenomenon of data overlap, and the graph is relatively regular. In Figure 3b, the
charts were plotted under the operation condition with wind speeds of 4.3 and 6.5 m/s,
respectively. In the case of faulty status of the converter in operation, the fault indicator
variables data change remarkably, resulting in poor regularity of the graph and irregular
lines. When the system fails, some fault indicator variable data appear to be 0, such as
the power data, so that incomplete graphics are observed in the radar chart. It can be
seen from the figure that although there is a certain overlap in the radar chart of the fault
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indicator variables data, there is still a big difference from the radar charts drawn by using
the normal operation data.

3. Deep Learning Network Principles
3.1. ResNet50 Convolutional Neural Network

Deep learning is an important research direction in the field of machine learning. Its
introduction to machine learning makes it closer to artificial intelligence. The convolutional
neural network is a deep neural network model that includes convolution. Its core process
is to train and learn from a large amount of sample data through multiple iterations to
extract the deep feature expression of the sample data, and finally predict the sample data
according to different required tasks [56].

As the number of layers in the deep learning network increases, features of different
layers can be extracted. The more abstract the feature expression, the richer the semantic
information. However, as the number of original network layers in deep learning simply
increases, it will cause gradients to disappear or become extremely large. The traditional
method to solve this problem is generally to use reasonable weight initialization and
regularization, but the implementation of the method will bring new problems of network
performance degradation [57]. ResNet is a residual learning framework that can improve
the performance of the network under the premise of increasing depth. The basic residual
unit structure diagram of ResNet is shown in Figure 4 [58].
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If the back layer of the deep network is an identity mapping, the model can be
degenerated into a shallow network. However, it is more difficult to directly use some
layers to fit potential identity mapping functions, such as H(x) = x. Therefore, the network
is designed as H(x) = F(x) + x, and the problem is transformed into learning a residual
function F(x) = H(x) − x. When F(x) = 0, it constitutes an identity mapping H(x) = x, so that
it is easier to implement residual fitting.

In summary, the residual network structure was chosen for this paper to increase the
network depth to improve the performance and accuracy of the network, and the residual
structure can solve the problem of the disappearance of the gradient caused by the increase
in the network depth.

The common residual network models are ResNet18, ResNet50 and ResNet101. As
the number of layers increases, the amount of network calculation also increases [15,59]. By
considering the calculation speed and the fault detection accuracy of the network employed,
the ResNet50 structure is selected as the backbone network, and the residual unit adopts a
three-layer bottleneck layer design as shown in Figure 5.
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3.2. Oct–ResNet50 Convolutional Neural Network

Chen et al. [60] proposed a novel Octave Convolution (OctConv) operation applied to
convolutional neural networks (CNNs). OctConv is designed as a single, generic, plug-
and-play convolution unit that can directly replace the original convolution without the
need to adjust the network architecture [60]. OctConv is dedicated to reducing the spatial
redundancy in CNNs and aims to replace the ordinary convolution operations without
adjusting the backbone CNN architecture. It is confirmed that OctConv has superiority
over the ordinary convolution methods in improving efficiency and performance of CNN
models [60].

1. Idea for OctConv

The idea for OctConv is to understand the image from the perspective of the frequency
domain. To view an image from the perspective of spatial domain, it can be generally
represented by a c × H × W matrix where H and W denote the spatial dimensions and
c is the number of feature maps or channels. Each position in the matrix corresponds
to a value of [0, 255]. From the perspective of the frequency domain, the image can
be decomposed into low spatial frequency components (low frequency domain) that
describe smoothly changing structures and high spatial frequency components (high
frequency domain) that describe the fast-changing fine details. It can effectively process
the corresponding low-frequency and high-frequency components, and can also achieve
effective interfrequency communication.

OctConv defines the feature map after the “downsampling” operation as the “low
frequency domain”, while the original size feature map without downsampling is defined
as the “high frequency domain”. After the above operations, the size of the feature map is
reduced due to downsampling, thereby reducing the computation amount of OctConv. In
addition, because the network has different scales of information (two frequency domains)
and the two scales of the information are aggregated after the convolution is completed,
the performance of OctConv is improved.

2. OctConv Principle

OctConv is a combination of downsampling and upsampling operation, as shown
in Figure 6, where the green arrows represent the operation of information updates; the
red arrows facilitate information exchange between the two frequencies; and X and Y
are the input and output tensors, respectively. Between the input and output, it is the
convolution process.
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The output, Y, is expressed by:

Y =
{

YH , YL
}

, and YH = YH→H + YL→H , YL = YL→L + YH→L

where the format YA→B represents the convolutional update from the feature map group A
to B, YH and YL denote the high- and low-frequency components of Y, respectively. Specif-
ically, YH→H and YL→L indicate intrafrequency update, and YH→L and YL→H indicate
interfrequency communication.

In order to obtain the above terms, the convolution kernel W is divided into W =[
WH , WL] for the convolution with the input feature maps of XH and XL, respectively.

Each component can be further divided into two parts (within frequency part and between
frequencies part), namely, WH =

[
WH→H , WL→H] and WL =

[
WL→L, WH→L].

The main work of OctConv is to split the original convolution operation into four
operations, and the input processed by three of these four operations is half the height and
width of the original feature map. Therefore, the amount of computation is reduced.

Using average pooling for downsampling, the output Y =
{

YH , YL} is:

YH = f
(
XH ; WH→H)+ upsample

(
f
(
XL; WL→H), 2

)
YL = f

(
XL; WL→L)+ f

(
pool

(
XH , 2

)
; WH→L) (1)

where, f (X; W) represents the convolution with the parameter, W; pool(X, k) represents the
average pooling operation with the kernel size k× k and the step size, k; and upsample(X, k)
is the upsampling operation with the factor k through the nearest interpolation.

The four parallel lines in Figure 4 correspond to the four terms in Equation (1). The
two green paths, namely, the first and the fourth, correspond to the information update of
the high-frequency and low-frequency feature maps, respectively; the two red paths play
the role of information exchange between the two frequency domains.

3. OctConv Operation

The number of feature map channels cin is divided into high frequency (1− ain) cin
and low frequency aincin according to the preset coefficient, am. The width and height of
the low frequency part are reduced to half of the original. OctConv performs the following
operations:

(1) The high frequency part is directly convolved through f
(
XH), that is, high frequency

to high frequency convolution; the number of output channels is (1− aout) cout.
(2) The high-frequency part is first downsampled and then convolved. The down-

sampling is by pool
(
XH , 2

)
and then f

(
pool

(
XH , 2

))
, that is, the convolution from

high-frequency to low-frequency, and the number of output channels is aoutcout.
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(3) The low frequency part is directly convolved and then upsampled, f
(
XL) is the

convolution from low frequency to high frequency and the number of output channels
is (1− aout) cout.

(4) The low frequency part directly convolves in f
(
XL), that is, the low frequency to the

low frequency convolution; the number of output channels is aoutcout.

The above operations are followed by the information aggregation process, i.e., the
results from the first and third path are added by bit, and it is the same for the output
results from the second and fourth path; see Figure 6.

4. Analysis of Principles of Improved Convolutional Neural Network Based on
Frequency Domain Features

OctConv is suitable for the majority of existing trunk network structures, such as
ResNet and MobileNet, which can bring performance improvement while reducing the
amount of computation of existing models and is validated in ImageNet Classification tasks.

However, this paper finds that there are two deficiencies in the OctConv structure.
The first is the asymmetry of information caused by the asymmetry of the upper- and
lower-sampling methods; the second is that OctConv adopts the way that the two fre-
quency domain features are directly added together to ensure the information interaction
between the high- and low-frequency domains; however, it is likely to destroy the original
characteristics of the features at the high frequency domain and the low frequency domain.

Therefore, this paper makes improvement to the OCtConv structure to overcome the
above two deficiencies, and proposes the structure of Attention Octave Convolution.

4.1. Improvement in Sampling Methods

OctConv’s downsampling uses the average pooling method. When conducting up-
sampling, the same pixel values are copied in the upsampling step size, and the step size is
2 for both the downsampling and the upsampling, as shown in Figure 7.
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The OctConv sampling method will cause information asymmetry. In view of this
problem, this paper proposes to change OctConv’s existing sampling method as shown be-
low.

Replace the original OctConv downsampling with max pooling and the original
upsampling with the form of max unpooling as shown in Figure 8 below.

The improved downsampling process outputs the sampling index in addition to
the sampled feature map. During the sampling process, the feature map can be restored
according to the corresponding index, and its other positions can be made up to 0.

Compared to average pooling, the max pooling operation can better preserve the
local maximum points in the feature graph where the local maximum points generally
characterize the information of the edges or corners of the image. In addition, the max
pooling operation can produce a corresponding sampling index which provides a basis for
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subsequent upsampling operations, thereby achieving symmetry in the downsampling
and upsampling processes.
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In summary, max pooling and max unpooling are better suited for sampling tasks in
OctConv. Because of the number of channels in the index, this paper adjusts the operation
from the low frequency domain to the high frequency domain in OctConv, that is, the max
unpooling operation is carried out first, followed by the convolution operation, in order to
restore the feature graph in the upper sample.

4.2. Add a Branch of the Self-Attention Mechanism

OctConv transforms an existing backbone network into a two-stream format, i.e., high-
frequency and low-frequency domains. At the same time, in order to ensure the two-stream
information interaction, the information at the two frequency domains is directly added to
the corresponding position and then reverted to the form of two streams at the end of each
OctConv module, as shown in the following procedure.

YH = XH→H + XL→H (2)

YL = XL→L + XH→L (3)

where, XH→H and XL→L are the information after convolution transforms within their
respective frequency domains, XL→H and XH→L are the information after the convolution
transforms across the frequency domains and the addition of the corresponding positions of
the feature graph can ensure the information interaction within the two frequency domains,
but the information in XL→H and XH→L may destroy the information of XH→H and XL→L

in the original frequency domain.
In summary, this paper introduces an Attention mechanism, an adaptive control of

the information interaction process in the OctConv module. This is to control XL→H and
XH→L feature diagram information to be added to the feature diagrams of XH→H and
XL→L.

The specific operation is to multiply each channel in XL→H and XH→L by its corre-
sponding coefficient to achieve the effect of scaling the feature map, as shown in Figure 7.
The size of the input feature map X in Figure 9 is w× h× c, and the layer in the right branch
is responsible for the Attention task. The specific implementation process is as follows:
First, the input feature map X is subjected to global average pooling, and the output size
becomes 1 × 1 × c. Second, the feature extraction is achieved through two fully connected
layers, fc1 and fc2, successively. The output of the fc1 layer is the feature vector with 1 ×
1 × c/16 dimensions, and it is activated by ReLU. The purpose of c/16 is to reduce the
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number of channels for reducing the number of parameters and computation. The output
of the fc2 layer is the feature vector with 1× 1× c dimensions, which serves the purpose of
the further extraction of features and re-upgrading the number of channels from c/16 to c,
keeping it consistent with the original input. In order to prevent the output characteristics
from being destroyed, the output of the fc2 layer is no longer activated by ReLU. Finally,
the sigmoid function is used to compress the features of each channel in the output feature
vector to the range of [0,1]. After the original input X passes through the attention branch,
the output feature vector becomes 1× 1× c dimensions. The feature vector is multiplied
by the original input X channel by channel, and the result is used as the new output of Y.
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The above structure is introduced into XL→H and XH→L branches, and the output of
the two branches is controlled by self-supervision. When XL→H and XH→L are not suitable
for fusion with the original XH→H and XL→L, the scale coefficient will approach 0, and, on
the contrary, it will approach 1.

The self-attention mechanism proposed in this paper has the following characteristics:

(1) All layers in the Attention branch are differentiable, that is, they can directly partici-
pate in the network end-to-end training task.

(2) After the output of the Attention branch passes the sigmoid threshold, the output
range is limited to [0,1], which ensures that the value in the original feature will not
be excessively scaled.

(3) When the model performs a prediction task, the output of the Attention branch is not
a fixed value but is determined by the original input, that is, it responds differently to
different inputs.

The structure of AOctConv proposed in this paper is shown in Figure 10, where f (XH;
WH→H) and f (XL; WL→L) represent high frequency to high frequency and low frequency
to low frequency convolution, respectively; max pool(XH, 2) denotes the maximum pool-
ing operation; max unpool(XL, 2) is a function which applies the maximum unpooling
operation and upsamples the spatial dimensions of the input data; ψ is an upsampling
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operation based on the index; and fa(·) is a function of the information represented by
XH→L or XL→H . When max unpool(XL, 2) performs upsampling, the index generated by
downsampling is used for max unpooling, and the Attention branch added by XL→H and
XH→L branches is represented by fa(·). The branches represented by f (XH; WH→H) and
f (XL; WL→L) keep the original operation without change.
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4.3. Comparison of Three Network Structures

The overall structures of ResNet50, Oct–ResNet50 and AOC–ResNet50 networks are
shown in Table 2 below.

Table 2. Comparison of three network structures.

Layer Name Output
Size ResNet50 Oct–ResNet50 AOC–ResNet50

conv1 112× 112 conv, 7× 7, 64, stride 2

conv2x 56× 56
max pool, 3× 3, stride2 1× 1, 64

3× 3, 64
1× 1, 256

× 3

 1× 1, 32
3× 3, 32
1× 1, 128

× 2× 3


1× 1, 32
fc[2, 32]

3× 3, 32
fc[2, 32]

1× 1, 128
fc[8, 128]

× 2× 3

conv3x 28× 28
 1× 1, 128

3× 3, 128
1× 1, 512

× 4

 1× 1, 64
3× 3, 64
1× 1, 256

× 2× 4


1× 1, 64
fc[4, 64]

3× 3, 64
fc[4, 64]

1× 1, 256
fc[16, 256]

× 2× 4

conv4x 14× 14
 1× 1, 256

3× 3, 256
1× 1, 1024

× 6

 1× 1, 128
3× 3, 128
1× 1, 512

× 2× 6


1× 1, 128
fc[8, 128]

3× 3, 128
fc[8, 128]

1× 1, 512
fc[32, 512]

× 2× 6

conv5x 7× 7
 1× 1, 512

3× 3, 512
1× 1, 2048

× 3

 1× 1, 256
3× 3, 256

1× 1, 1024

× 2× 3


1× 1, 256
fc[16, 256]
3× 3, 256
fc[16, 256]

1× 1, 1024
fc[64, 1024]

× 2× 3

1× 1 average pool, 2–d fc, softmax
FLOPs(G) 4.11 2.38 2.42

Params(M) 23.51 23.51 23.53

The image input size is 224 × 224, and the number of output categories is 2. It should
be noted that when calculating the amount of computation, the computation at the fully
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connected layer and the convolutional layer includes the addition operation and also
includes the computation consumption at other layers, such as the pooling layer, the BN
layer and the ReLU layer.

In a forward process, ResNet50 needs 4.11 GFLOPs of computation, and the parameter
number is 23.51 M; Oct–ResNet50 needs 2.38 GFLOPs of computation, and the parameter
number is 23.51 M; AOC–ResNet50 needs 2.42 GFLOPs of computation, and parameter
number is 23.53 M. Through the comparison of network parameters, Oct–ResNet50 has
a significant reduction in the amount of computation, which is reduced by 42.09%, and
the number of parameters does not change by comparing with the ResNet50 network.
Compared with Oct–ResNet50, the improved algorithm of AOC–ResNet50 has a compu-
tation increase of 0.04 G FLOPs, accounting for 0.84% of the original computation and a
parameter increase of 0.02 M Params, accounting for 0.08% of the original parameters, a
slight increase. However, compared with the ResNet50 network, AOC–ResNet50 still has a
significant decrease in the amount of computation.

The improved algorithm of AOC–ResNet50 solves the problem of information asym-
metry caused by the asymmetric sampling method in the original OctConv structure
and the damage to the original features in the high and low frequency domains by the
OctConv structure, and improves the accuracy of fault detection as demonstrated in the
following section.

5. Wind Turbine Power Converter Fault Detection

This article applied the improved AOctConv structure to the ResNet50 backbone
network, and proposes the AOC–ResNet50 network. Based on the radar charts of converter
fault indicator variables data which occurred 24 h, 3 days, 7 days and 15 days before a
failure, this paper used ResNet50, Oct–ResNet50 and AOC–ResNet50 network structures
to train and validate the fault detection models. After validation, each model’s structure
was determined including the weight of each link. Then, the models were applied to
fault detection using SCADA system data. The fault detection performance indices were
compared among these models using the test sample data. The effectiveness of these
network models was then verified.

(1) Sample data

As a pure electric component, the wind turbine converter has a high frequency of
failures due to frequent starting and braking. For the faulty operation data, the data that
occurred 24 h, 3, 7 and 15 days before the occurrence of a converter failure were extracted,
the sampling frequency was every 10 min and 100 sets of the data were collected during
each fault time period (each fault time period refers to 1, 3, 7 and 15 days, respectively).

The normal operation data are the data when the system has no fault, and the extracted
quantity is the same as the failure operation data. In each group of the data collected, the
normal operation data dimensions were 14,400 × 7; and corresponding to each fault time
period, the faulty operation data dimensions were 14,400 × 7 as well. Taking the wind
speed as the reference index, after normalization of each fault indicator variable values,
the radar charts were drawn. Corresponding to each fault time period, 17,001 radar charts
representing the normal operation of converter and 17,001 radar charts corresponding to
the faulty operation status of the converters were generated, totaling 34,002. Among them,
11,900 normal and faulty status radar charts were selected for training, and 5101 normal
and faulty status radar charts were selected for testing.

(2) Implementation of the training and testing method

In order to adapt to the task of fault detection, the output dimension of the final fully
connected layer of the AOC–ResNet50 network was set as 2 in this paper. In the training
process, the original radar image size of 256 × 256 pixels was first scaled to the universal
size 224 × 224 pixels, and then the whitening operation was performed after expansion to
three channels, and no other data augmentation operations were performed. Finally, the
picture was used as the input of the model training. The loss function of the task training
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used cross-entropy loss, batch size was 64, stochastic gradient descent (SGD) method was
used for optimization and the training framework was Pytorch.

(3) Hardware platform utilized

Training GPU: Single card RTX2080Ti.
CPU Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20GHz.
Memory: 256 G.

(4) Analysis of fault detection results for converter

In order to verify the effectiveness of the proposed AOC–ResNet50 network, ResNet50,
Oct–ResNet50 and AOC–ResNet50 networks were used for converter fault detection, and
the fault detection results obtained are shown in Tables 3–7 below. In Tables 3 and 5, TP
denotes True Positive, which means that the true value is true and the detected/predicted
value is true; FN is False Negative, which means that the true value is true and the
detected/predicted value is false; FP is False Positive, meaning that the true value is false
and the detected/predicted value is true; and TN is True Negative, which means that the
true value is false and the detected/predicted value is false. In Tables 4, 6 and 7, accuracy
= (TP + TN)/(TP + TN + FP + FN); precision = TP/(TP + FP); recall = TP/(TP + FN);
specificity = TN/(TN + FP); and negative precision = TN/(TN + FN). Tables 3 and 4 show
the fault detection results by using the models which were trained using the variables data
that occurred 3 days before occurrence of converter failures. Tables 5 and 6 present the
fault detection results by using the models which were trained using the variables data
which occurred 7 days before converter failures. Table 7 gives a comparison of the fault
detection performance of three models developed using the AOC–ResNet50 network and
trained using the variables data that occurred 3, 7 and 15 days ahead of converter failures.
It is observed that the model’s performance becomes better if trained using the variables
data which occurred nearer to the time of a converter failure.

Table 3. Converter fault detection results.

TP FN FP TN

AOC–ResNet50 4982 119 80 5021
Oct–ResNet50 5048 53 706 4395

ResNet50 4895 206 761 4340

Table 4. Converter fault detection performance indices.

Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

Negative Precision
(%)

AOC–ResNet50 98.04 98.41 97.66 98.43 97.68
Oct–ResNet50 92.56 87.73 98.96 86.15 98.81

ResNet50 90.52 86.54 95.96 85.08 95.46

Table 5. Converter fault detection results.

TP FN FP TN

AOC–ResNet50 5052 49 347 4754
Oct–ResNet50 5017 84 776 4325

ResNet50 4840 261 835 4266
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Table 6. Converter fault detection performance indices.

Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

Negative Precision
(%)

AOC–ResNet50 96.11 93.57 99.03 93.19 98.97
Oct–ResNet50 91.57 86.61 98.35 84.78 98.09

ResNet50 89.25 85.28 94.88 83.63 94.23

Table 7. Converter fault detection performance indices by AOC–ResNet50.

Days before
failure

Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

Negative Precision
(%)

3 days 98.04 98.41 97.66 98.43 97.68
7 days 96.11 93.57 99.03 93.19 98.97
15 days 92.51 92.99 91.92 93.07 92.01

From the fault detection results and detection performance indices shown
in Tables 3–6, it can be observed that the AOC–ResNet50 network proposed in this paper
has the best performance. Taking the results shown in Table 4 as an example, the fault
detection accuracy of the AOC–ResNet50 network model is 5.48% higher than the Oct–
ResNet50 model and 7.52% higher than the ResNet50 model, while other performance
indices are also superior. In addition, there is no significant difference in the values of
the recall rate of the three network models. It is clearly verified that the AOC–ResNet50
outperforms Oct–ResNet50 and ResNet50 in fault detection of the wind turbine converter.

In order to verify the robustness of each obtained model, the training and testing
process was repeated five times. Then, the obtained models were applied to fault detection
using the same data set. It was found that each model has the same performance in terms
of fault detection using the same dataset. Therefore, the model’s robustness was confirmed.

6. Discussion

A data-driven approach was selected for converter fault detection using SCADA
system data in this paper. It was found that the proposed CNN network, AOC–ResNet50
network model, is better than other competitive CNN network models, such as ResNet50
and Oct–ResNet50 network models, in converter fault detection using the SCADA system
data. This is due to the advantage of the AOC–ResNet50 network that it avoids the
information asymmetry and the damage to the original features in the high and low
frequency domains in the information sampling by comparing to the OctConv structure.

Although the AOC–ResNet50 network can provide higher accuracy in fault detection,
it requires a large data sample for training the model, and the detection accuracy also
relies on the data quality. Another disadvantage is that the algorithm associated with the
AOC–ResNet50 network is more complex and requires the developer to have a strong
mathematical background to understand the network structure and very good skills in
software programing.

Selection of an approach to fault detection or diagnosis depends on the available
signals and data recordings. If there are direct measurement signals corresponding to a
failure mode, the methods based on signal processing and analysis would be preferred.
If there are no direct measurement signals but there are indirect measurement data and
operation data, a data-driven approach would be selected. In this case, CNN and other
neural network models can be selected for testing. In general, if it is a complex system with
multiple-dimension data available including operation and condition monitoring data,
the newly proposed AOC–ResNet50 network as well as other typical CNN models are
recommended for trial.

In the cases where there are direct measurement signals and the data sample size
is large enough, the AOC–ResNet50 network and other typical CNN models are also
recommended for application. In this situation, one may carry out a comparative study of
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the model performance by making a comparison between the CNN models and the models
developed using signal processing and analysis methods, e.g., to detect and diagnose
bearing faults for failure prediction [61].

7. Conclusions

In this paper, a deep learning approach was employed to develop fault detection
models for wind turbine converters. The contribution of this paper includes two aspects:
first, it proposes an innovative convolutional neural network structure named the AOC–
ResNet50 network based on improvement of the Octave Convolution (OctConv) network by
overcoming its two shortcomings; second, the AOC–ResNet50 network model is established
and applied to wind turbine converter fault detection using wind turbine SCADA system
data, and its effectiveness in fault detection was verified by a comparative study with other
competitive CNN models including ResNet50 and Oct–ResNet50 network models.

The algorithm based on the AOC–ResNet50 network first replaces the downsampling
and upsampling in the original OctConv structure with max pooling and max unpooling
methods, and then introduces the branch of self-attention when the high-frequency domain
features are fused to the low-frequency domain features, and the low-frequency domain
features are fused to the high-frequency domain features. It controls the fusion process of
the two frequency domains. After the AOC–ResNet50 network is developed, it is employed
to extract the features of radar charts generated using the seven fault indicator variables
data extracted from the wind turbine SCADA system for fault detection of the wind turbine
converter. The fault detection performance indices were compared with the ResNet50 and
Oct–ResNet50 networks to verify the effectiveness of the improved network. It was found
that the fault detection performance using the AOC–ResNet50 network is superior to the
ResNet50 and Oct–ResNet50 networks. The fault detection accuracy of AOC–ResNet50
network model can be up to 98.0%, which is 5.48% higher than Oct–ResNet50 and 7.52%
higher than the ResNet50 model based on the radar charts generated using the fault
indicator variables data that occurred 3 days ahead of converter failures. In the next step of
our research work, the AOC–ResNet50 network will be applied to wind turbine converter
failure prediction using fault indicator variables data that occur at different time periods
before a failure occurs. At the same time, the AOC–ResNet50 network will be applied to
fault detection and failure prediction for other wind turbine components.
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