
applied  
sciences

Article

Hydrothermal and Entropy Investigation of Ag/MgO/H2O
Hybrid Nanofluid Natural Convection in a Novel Shape of
Porous Cavity

Nidal Abu-Libdeh 1,*, Fares Redouane 2, Abderrahmane Aissa 3 , Fateh Mebarek-Oudina 4 ,
Ahmad Almuhtady 5 , Wasim Jamshed 6 and Wael Al-Kouz 7

����������
�������

Citation: Abu-Libdeh, N.; Redouane,

F.; Aissa, A.; Mebarek-Oudina, F.;

Almuhtady, A.; Jamshed, W.; Al-Kouz,

W. Hydrothermal and Entropy

Investigation of Ag/MgO/H2O

Hybrid Nanofluid Natural

Convection in a Novel Shape of

Porous Cavity. Appl. Sci. 2021, 11,

1722. https://doi.org/10.3390/app

11041722

Academic Editor: Andrea Frazzica

Received: 7 January 2021

Accepted: 9 February 2021

Published: 15 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Natural Sciences, College of Sciences and Human Studies,
Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia

2 LGIDD, Department of Physics, Faculty of SESNV, Ahmed ZABANA University, Relizane 48000, Algeria;
redouane.fares@cu-relizane.dz

3 Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M),
University of Mascara, Mascara 29000, Algeria; a.aissa@univ-mascara.dz

4 Department of Physics, Faculty of Sciences, University of 20 août 1955—Skikda, Skikda 21000, Algeria;
f.mebarek_oudina@univ-skikda.dz

5 Mechanical & Maintenance Engineering Department, School of Applied Technical Sciences,
German Jordanian University, Amman 11180, Jordan; ahmad.almuhtady@gju.edu.jo

6 Department of Mathematics, Capital University of Science and Technology (CUST),
Islamabad 44000, Pakistan; dmt143004@cust.pk

7 Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University,
Al Khobar 31952, Saudi Arabia; walkouz@pmu.edu.sa

* Correspondence: nabulibdeh@pmu.edu.sa

Abstract: In this study, a new cavity form filled under a constant magnetic field by Ag/MgO/H2O
nanofluids and porous media consistent with natural convection and total entropy is examined. The
nanofluid flow is considered to be laminar and incompressible, while the advection inertia effect in
the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is
explained in the dimensionless form of the governing equations and solved by the finite element
method. The results of the values of Darcy (Da), Hartmann (Ha) and Rayleigh (Ra) numbers, porosity
(εp), and the properties of solid volume fraction (φ) and flow fields were studied. The findings show
that with each improvement in the Ha number, the heat transfer rate becomes more limited, and thus
the magnetic field can be used as an outstanding heat transfer controller.

Keywords: natural convection; entropy; hybrid nanofluids; magnetic field; porous media

1. Introduction

Over the past two decades, as a relatively recent type of heat transfer fluid, nanoflu-
ids have attracted the interest of researchers throughout the world. In the mechanical
and chemical engineering disciplines, as well as physics and material sciences, the ever-
increasing number of journal and conference papers, as well as several books devoted
to nanofluids, have made them one of the top hot topics. For the first time, Choi and
Eastman [1] introduced nanofluids to increase the thermal transfer of cooling systems.
Maxwell [2] suggested, for the first time in the nineteenth century, the key concept of
retaining very tiny particles in standard fluid to obtain desired physical properties. He
assumed that by dispersing metal ions in water, physical characteristics could be improved.
Unfortunately, because of the rapid sedimentation of microparticles, he did not explain his
theory. To boost thermophysical properties such as density, viscosity, precise heat transfer,
and thermal conductivity, nanofluids apply to nanoscale particles suspended in traditional
heat transfer fluids such as ethylene glycol, oil, and water. Nanofluid applications are now
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encountered successfully in a wide variety of sectors, including, though not limited to, im-
pingement jets, heat exchangers, clean energy, automobiles, electronic chip cooling, nuclear
reactors, heating and tempering, combustion, lubrication, and medication [3–9]. Patterson
and Imberger [10] claimed to have undertaken one of the first studies on the movement
of fluid inside enclosures. Inside a rectangular enclosure, they analyzed transient natural
convection. They concluded that while the steady state of the flows analyzed does not
depend on the value of the Prandtl number (Pr) which represents the ratio of the viscosity
to the thermal diffusivity of the fluid, it is apparent that the unsteady flows can be heavily
dependent on the Prandtl number. Then, different unstable flows contribute to different
regimes but ultimately converge into the same stable states. Armaghani et al. [11] studied,
numerically, alumina/H2O nanofluid natural convection inside a puzzled L-shaped ring.
They reported that any increase in aspect ratio improved heat transfer and the strength
of nanofluids. Malekpour et al. [12] studied, numerically, the production of entropy and
magnetic natural copper oxide/H2O nanofluid convection inside an I-shaped enclosure.
Their findings found that the volume concentration of nanoparticles improved normal
convection but increased the rate of entropy production unfavorably. In addition, they
found that both the rate of entropy production and natural convection could be repressed
by the magnetic field.

Mamourian et al. [13] attempted to research the effect of a magnetic field and its angles
of inclination on the heat transfer of natural convection and the production of entropy
of nanofluids in a square cavity. They discovered that by increasing the Rayleigh (Ra)
number, the overall entropy production and the mean Nusselt number (Nuavg) increased,
independent of the Hartmann (Ha) number and inclination angle.

Bondareva et al. [14] investigated the magnetic natural convection inside a filled
cavity of inclined wavy transparent porous nanofluids in another numerical analysis.
Their observations indicated that a reciprocal increase in the Ha number and the angle of
inclination of the magnetic field induced a decrease in heat transfer and attenuation of
convective flow.

Recently, Dogonchi et al. [15] examined the magnetic natural convection of nanofluids
within a cavity with an inclined elliptical radiator. They tried to find the effect of nanopar-
ticle form factors, such as copper cubic, cylindrical, and platelet shapes, on heat transfer
and they discovered that from the perspective of heat transfer enhancement, the platelet
nanoparticle was stronger than the other shapes. Their findings indicate that by increasing
nanoparticle volume concentration, the heat transfer increases.

The entropy production and magnetic natural convection of a nanofluid inside an
inclined square porous enclosure were investigated numerically by Rashad et al. [16]. They
also studied the influence of the scale and position of the source and heat sink. Their
findings showed, unexpectedly, that the amount of Nusselt decreased with each increase in
the volume fraction of the nanoparticle as well as the Ha number.

More recently, Sajjadi et al. [17] studied the magnetic natural convection of a hybrid
nanofluid in a porous medium inside a square cavity. Their findings showed that the
rate of heat transfer was decreased by increasing the magnetic field and this decrease was
minimized by the value of Darcy (Da) number and boosted by the value of the Ra number
and porosity (εp).

The magnetic natural convection of nanofluids (H2O/copper) in a porous arc-shaped
enclosure was investigated by Dogonchi et al. [18], considering Brownian motion as an
important mechanism for increasing heat transfer. Their observations showed that the
frequency of the convective flow had a favorable relationship with the values of the Da
and Ra numbers, whereas it has an opposite relationship with the magnetic field angle of
inclination and the Ha number.

There have also been other worthwhile numerical investigations [19–35] about natural
convection. In many sectors, such as mobile devices, including varied geometries and
functions, traditional nanofluids, as well as their new version dubbed “hybrid nanofluids”,
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are importance to thermal scientists and researchers around the world for supporting
cooling processes.

The aforementioned studies in the literature investigated different cavity configura-
tions with many physical effects including the effect of magnetic field and porous media.
Moreover, these studies have helped researchers in terms of the range of investigated
parameters as well as the selection of innovative examined geometry. A trapezoid, which
is analyzed in this paper, is one such geometry that is used for cooling purposes. This
geometry is more realistic than the cavities in the rectangle. Therefore, in this paper, we
investigate the natural convection heat transfer of Ag/MgO/water nanofluids in a porous
cavity subjected to a constant magnetic field. The effects of diverse controlling parameters
such as Da, Ha, and Ra numbers, εp on flow, and heat transfer characteristics with entropy
are examined.

2. Problem Description

Natural convection of Ag/MgO/water nanofluids in a porous enclosure under con-
stant horizontal magnetic field is shown in Figure 1. The effects of gravity, the conduction
and convection heat transfer, as well as the external magnetic field on the flow are examined
and analyzed thoroughly. The figure also shows that the cavity is of length L and height H.
The hot surface is set at a Th, while the cold surfaces are set at Tc. The mesh of the study’s
domain is illustrated in Figure 2. The cavity is filled with a porous medium and subjected
to a magnetic field (B0).
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3. Formulation of the Mathematical Model
3.1. Governing Equations and Boundary Conditions

The stationary natural Magnetohydrodynamics (MHD) convection flow is analyzed
through a novel shape of porous cavity for hybrid nanofluid. For modeling a porous
medium, the model of Brinkman–Forchheimeris used [36]. Navier–Stokes and heat equa-
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tions, expressed in Cartesian coordinates for the problem taking into account the above
assumptions, can be formulated as follows:

∂u
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+
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= 0 (1)
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(4)

where αn f =
kn f

(ρcp)n f
is the thermal diffusivity of the nanofluid, |u| =

√
u2 + v2 amplitude

velocity. Fc = b√
aε3/2 denotes the Forchheimer coefficient (where a = 150 and b = 1.75)

and demonstrates the operative thermal conductivity of porous medium saturated with
nanofluid, where the porous medium K is the permeability and εp is the porosity of the
medium, that can be described as follows [37]:

K =
εp

3d2
m

150
(
1− εp

)2 (5)

For the base fluid and nanoparticles, Table 1 exhibits the thermophysical properties.

Table 1. Thermophysical properties of the nanoparticles and the fluid (Ag/MgO/water (50:50)) [37].

Physical Properties Cp(J/kg·K) k(W/m·k) ρ(kg/m3) β·10−5(K−1) σ(s/m) α(m2/s)

Water 4179 0.613 997.1 21 5.5×10−6 1.47 ×10−7

Ag 235 429 10500 5.4 8.1× 10−4 147 ×10−3

MgO 879 30 3580 3.36 8 ×10−4 95.3 ×10−7

The following nondimensional variables are employed to transform these govern-
ing equations:

X =
x
L

, Y =
y
L

, U =
u.L
αb f

, V =
v.L
αb f

, θ =
T − Tf

Th − Tf
, P =

(
p + ρ0b f gy

)
L2

ρb f α2
b f

(6)

Dimensionless numbers are written as:

Pr =
vb f

αb f
, Da =

K
L2 , Ha = LB0

√
σb f

µb f
, Ra =

βb f g(Th − Tc)L3

αb f vb f
(7)

The nondimensional governing equations form as follows:
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U
∂θ

∂X
+ V

∂θ

∂Y
=

σn f

σb f

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
(11)

For the computational domain of proper boundary conditions, the dimensional form
represented for walls as follows:

• The outer wall u = v = 0, T = Tc
• The mi sphere wall u = v = 0, T = Th
• The down walls

u = v = 0,
∂T
∂n

= 0 (12)

3.2. Thermophysical Propertiesofthe Nanofluid

Designed for nanoparticles MgO and Ag, the properties are obtained [38] as follows:

ϕ = ϕAg + ϕMgo (13)

ρnp =
ϕMgoρMgo + ϕAgρAg

ϕ
(14)

(cp)np =
ϕMgo(cp)Mgo + ϕAg(cp)Ag

ϕ
(15)

βnp =
ϕMgoβMgo + ϕAgβAg

ϕ
(16)

knp =
ϕMgokMgo + ϕAgkAg

ϕ
(17)

σnp =
ϕAgσAg + ϕMgOσMgO

ϕ
(18)

The thermal conductivity, heat capacity, and density of the nanofluid can be calculated
as follows [39]:

σhn f = (1− ϕ)σb f + ϕσnp (19)

ρhn f = (1− ϕ)ρb f + ϕρnp (20)

(ρβ)hn f = (1− ϕ)(ρβ)b f + ϕ(ρβ)np (21)(
ρcp
)

hn f = (1− ϕ)
(
ρcp
)

b f + ϕ
(
ρcp
)

np (22)

αhn f =
khn f(

ρcp
)

hn f
(23)

khn f

kb f
=

knp + (n− 1)kb f − (n− 1)
(

kb f − knp

)
ϕ

knp + (n− 1)kb f +
(

kb f − knp

)
ϕ

(24)

The effective dynamic viscosity based on the Brinkman mode is considered as follows:

µhn f =
µb f

(1− ϕ)2.5 (25)

σhn f

σb f
= 1 +

3
(

σnp − σb f

)
φ(

σnp + 2σb f

)
−
(

σnp − σb f

)
φ

(26)
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The local and average Nusselt numbers along the heated wall can be defined as:

Nuloc =
khn f

kb f

∂T
∂y

(27)

Nuavg =
1
L

L∫
0

NulocdL (28)

3.3. Nondimensional Entropy Generation

Local entropy production measurement is obtained by totaling the conjugated fluxes
and the forces developed. The nondimensional local entropy production is given by
(Woods [40]) in a convective process and under the effect of the magnetic field as:

SGen =
km(

Tavg
)2

[(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2
]
+

µn f

Tavg

⌈
εp

K

(
U2 + V2

)
+ 2
(

∂U
∂X

)2
+ 2
(

∂V
∂Y

)2
+

(
∂U
∂Y

+
∂V
∂X

)2
⌉
+

σn f

Tavg
B2V (29)

where Tavg = TH+TC
2 .

3.4. Numerical Procedure

It should be noted that the abovementioned governing equations, as well as the
boundary conditions, are solved using the finite element method. The equations are solved
numerically by the Galerkin weighted residual finite element method. The computational
domain is discretized into triangular elements. Triangular Lagrange finite elements of
different orders are used for each of the flow variables within the computational domain.
Residuals for each conservation equation are obtained by substituting the approxima-
tions into the governing equations. To simplify the nonlinear terms in the momentum
equations, a Newton–Raphson iteration algorithm was used. The convergence of the
solution is assumed when the relative error for each of the variables satisfies the following
convergence criteria: ∣∣∣∣∣Γi+1 − Γi

Γi

∣∣∣∣∣≤ η

where i represents the iteration number and η is the convergence criterion. In this study,
the convergence criterion was set at η = 10−6.

4. Validation and Grid Independency Analysis

Five different grids were used to confirm that the results were not dependent on the
grid. The Nuavg and the stream function (shown in Table 2) are used as the indicators of the
results. Due to the different results, the fourth grid was preferred as the final grid, ensuring
the numerical solution method is one of the primary criteria for achieving results. Previous
studies by Calcagni et al. [41] and Ghassemi et al. [42] were used to validate our model, as
shown in Figure 3 and Table 3. It should be noted that the streamlines in the upper part of
the validation in Figure 3 do not coincide because of the grid size used in the simulated
case. We believe that having a finer grid resolves these discrepancies and, also, that the
discretization method used is different from the compared case in the literature.

Table 2. Evaluation of the mean Nusselt number (Nuavg) and ψmax for diverse grid resolution.

Mesh size 2988 4740 2442 29912 41728

Nuavg 7.2360 7.2876 7.4241 7.4959 7.4969

ψmax 1.3074 1.3181 1.3244 1.3279 1.3306
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Figure 3. (left) Numerical results from Calcagni et al. [35]; (right) The present study for streamlines
at Rayleigh number (Ra) = 106.

Table 3. Validation of the present code, for the Nuavg with Ra at Hartmann number (Ha) = 0, with a
cavity by Ghassemi et al. [30].

Ra 103 104 105 106

Present work 1.1803 2.2745 4.8759 9.6335

Ghassemi et al. 1.17612 2.2679 4.8608 9.5918

Moreover, the current code is validated with the case of Fares et al. [5], in which a
porous media is included. The cavity considered is a square shape with porous media.
Table 4 Shows that the current code gives results with an average error of less than 2% for
all the cases compared.

Table 4. Validation of the present code, for the entropy generation with Darcy number (Da), with a
cavity by [5].

Da 10−2 10−3 10−4 10−5

Fares et al. [5]
SGen(max)

11.09 7.19 2.01 1.21

Present work 11.0911 7.1897 2.0102 1.1989

5. Results Discussion

In this section, we describe the numerical outcomes for the streamlines, isotherms,
and the general entropy concerning five parameters. Those parameters denote Rayleigh
number (103 ≤ Ra ≤ 106), Hartmann number (0 ≤ Ha ≤ 100), nanoparticle volume fraction
(0 ≤ φ ≤ 0.08), and Darcy number (10−5 ≤ Da ≤ 10−2), and the porosity is (0.2 ≤ εp ≤ 0.8).
The base fluid and solids, Ag and AgO, phase thermophysical properties are tabulated
in Table 1. According to the governing parameters, the results are classified into four
subsections, where, in a particular subsection, we considered the impact of the individual
parameter, while the remaining parameters are maintained at constant values.

5.1. Effect of Rayleigh Number

Figure 4 shows the isosurfaces of the governing variables for different magnitudes of
the Ra number at Ha = 0, Da = 0.01, φ = 0.02, and εp = 0.4. The increase in Ra characterizes
a start of the temperature contrast between the hot wall and cooler.
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The highest value of the stream function increases. This phenomenon means a stronger
vortex, and therefore higher velocity of the vortex in the enclosure. The second characteris-
tic is that the density of the streamlines close to the walls, increases.

This means that the temperature gradient enhances close to the walls. Hence, the
vortex size increases in this area. The Ra number represents the buoyancy force. An
augmentation in the Ra results in an increase in the buoyancy force. The buoyancy force is
because of the difference between the density of the cold and hot fluid in the area of the
cold and hot walls, respectively. A vortex is created as a result of the fluid movement in the
enclosure. The vortex velocity increases by increasing the value of the Ra number, this will
lead to an enhancement of heat transfer.

Entropy generation due to heat transfer accumulates around the upper cold wall and
increases in the lower-left corner with increasing values of Ra, due to increased kinetic
energy and due to a decrease in the velocity near the boundary layer; however, for values of
Ra ≤ 104, the entropy generation occupied almost the entire cavity. Since thermal entropy
production and the entropy production due to fluid friction are small, the isentropic lines
are slightly similar to each other.

In Figures 5–10, the values of Nu calculated on the hot wall, Nusselt average, and
total entropy are displayed for different values of Ra, Ha, Da, φ, and εp.
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Figure 5 reveals that the Nuavg increases with the Ra, this process is detected for all
values of Ha. This is because an augmentation in the buoyancy force by enhancing the
Ra results in an augmentation in the velocity of the fluid in the enclosure, hence, the Nu
decreases. The Nuavg diminishes with the Ha and the Lorentz force. This is due to the fact
that Lorentz force prevents the formation of vortices, which leads to a reduction in the
velocity of the fluid in the cavity, resulting in a reduction in the Nu.

Variation of Nuavg with Ra for different ε values is presented in Figure 6. The Nuavg
increases with Ra for all values of εp. Additionally, increasing ε enhances Nu and heat
transfer for higher values of Ra, as fluid motion (and hence convective heat transfer) is
hindered for low porosities. The effect is not seen for low values of Ra due to conductive
heat transfer dominance. It should be mentioned that the enhancement is most evident
when increasing ε in the small ranges (e.g., 26% enhancement with an increase from εp = 0.2
to εp = 0.4 at Ra = 106 as compared with the enhancement of 10% with an increase from
εp = 0.6 to εp = 0.8 for the same Ra). Therefore, the improvement of fluid motion is also
more significant in the lower ranges.

Figure 7 demonstrates the variation of Nuavg with Ra for different values of the volume
fraction of the nano-solid particles (φ). For Ra values below 100,000, values of Nuavg are
almost equal with increasing values of Ra, besides increasing φ does not significantly
increase Nu. The almost equal behavior is due to the equilibrium between conduction
and convection. The highest heat transfer rate occurs with the upper values of Ra, and we
notice the disappearance of any difference of Cloud for different φ.

To further examine the effect of permeability and its relation to the cross-sectional area
in the problem, the Nuavg change with Ra at different values of Da is shown in Figure 8.
The plots and conclusions are identical to those in Figure 6, where more fluid freedom of
motion represents better heat transfer, which is attributed to better convection.

Variations of total entropy generation with various values of Ra for Ha are shown in
Figure 9. The entropy generation increases with Ra for higher Ra values regardless of Ha.
However, and projecting it to Figure 5, it can be seen that for high values of Ra, the vortices
and heat transfer decrease with increased Ha, and the Lorentz force is also accompanied
by a decrease in the total entropy. This reflects the superior role of the thermal and fluid
friction entropy as compared with the entropy, due to the magnetic field for that Ra range.
For the small Ra range, the thermal and fluid friction entropy generation is small, reducing
the total entropy generation, and therefore the Ha has no impact.

Figure 10 represents variations of total entropy generated with various values of Ra
for different εp, and the results are similar to those in Figure 6.That means, the entropy
generation (as mentioned upward) is governed mainly by thermal and fluid friction entropy
generation (large heat transfer from more freedom of fluid motion) at high values of Ra,
whereas at low values of Ra the entropy generation is indifferent to various εp values.
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The total entropy generation, plotted against Ra for different φ values, is plotted in
Figure 11. Clearly, the variation of φ does not impact total entropy generation significantly,
which, once again, confirms that the total entropy generation is mainly governed by heat
transfer, and heat transfer has shown small variations with different φ values given in
Figure 7.
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Figure 12, which plots the total entropy generation against Ra for different Da numbers,
can be compared again with Figure 8 to realize the dominance of the thermal and fluid
motion (friction) contribution to the total entropy generation.
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Therefore, the main conclusion from Figures 9–12 is that whenever a parameter
enhances heat transfer, total entropy generation is impacted in a similar manner (increase),
as the thermal entropy generation contribution clearly is dominant against other entropy
generation components, especially for high values of Ra.

5.2. Effect of Nanofluid Loading

Figures 13–15 characterize the influence of the solid volume fraction. A growth of φ
characterizes a weak modification of streamlines and isotherms, while isoconcentrations
are modified significantly. A solid volume fraction increment characterizes an increase in
the entropy plume adjacent to the top of the cavity. Other changes are insignificant. Figures
relating to the local Nusselt number and total entropy versus φ are shown in Figures 14
and 15 at Ra = 106 and Da = 0.01, and different εp. A solid volume fraction reflects the
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temperature gradient increase along the heater zone. It should be noted that the negative
values about Nu correspond to the upper part of the cylinder where the cylinder is heated
from the hot temperature wave, while the positive magnitudes correspond to the bottom
part of the cylinder where the cylinder heats the surrounding liquid.
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Figure 14 reveals the role of increasing φ on heat transfer, and thus the increase in
entropy, shown in Figure 15. On the contrary, the impact of varying εp is insignificant
(themaximum is less than 3% for Nu and 11% for entropy, both are occurring at the
highest φ).

5.3. Effect of Hartmann Number

Hartmann number is a direct indication of the amount of electromagnetic loading
impacting the nanofluid. To investigate its impact, the streamlines, isotherms, and entropy
generations were plotted for various Ha, ranging from 0 to 100 (Figure 16). First, symmetry
about the vertical centerline is apparent in all cases of Ha. Nonetheless, comparing case to
case, it can be clearly seen that Ha extensively changes all the aforementioned; especially
for Ha values higher than 25. That is, while there is a similarity between a zero magnetic
field and a small magnetic field, once the electromagnetic force becomes dominant as
compared with the viscous force, the changes are clearly observed. For the streamlines, the
plume centers are pushed downward under the effect of the Lorentz force, bringing vortex
centers closer to the hot surface, but much slower (~64% drop in the velocity of the center
of Ha = 0 to Ha = 100), which, in turn, impacts the isothermal lines by making them more
uniform (closer to stagnant fluid heat conduction), with diminished “thermal void/jump”
in the center of the upper part. The result is a much-smoothened thermal gradient which
reduces heat transfer. Consequently, the entropy generation, especially near the center of
the top, is impacted.

Figures 17–20 provide more insight about the variation of Ha at the higher Ra value of
106 and with Da = 0.01. The general conclusion, which was previously drawn earlier, that
increasing the value of Ha will dampen the heat transfer, and thus the entropy generation
is still applicable. However, it is of interest to know that varying the nano-solid particles
volume fraction φ between 0.02 and 0.08 is not impacting the heat transfer for such Ra
and Da at all Ha values (evidenced by Figure 17). In addition, the entropy generation is
minimally affected by φ, where the greatest is at low Ha values, and disappears with higher
Ha (Figure 18). Contrary to φ, the porosity (εp) (Figures 19 and 20) affects the heat transfer
and total entropy, as concluded before from Figures 6 and 10, respectively. Nonetheless,
the new revelation here is the dampening effect of the Ha on the improvement εp on both
Nu and entropy. In a summary, the main conclusion drawn from these figures is that at
high values of Ra where heat transfer is usually governed by convection and fluid motion
and vortices, and hence generation of large amounts of entropy, all of that can be damped
down by increasing the magnetic field which, in turn, reduces the motion of the fluid, and
hence reduces the efficiency of the heat transfer.
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Ra = 106, φ = 0.02, and Da = 0.01.

5.4. Effect of Darcy Number

Darcy number is an indicator of how easy the fluid is allowed to flow within the
medium characterized by the permeability of the medium through which the fluid flows
with respect to its cross-section. Figure 21 investigates that at φ = 0.02, Ra = 106, Ha = 0
and εp = 0.4 by providing visualization of the streamlines, isotherms, and entropy. Fora
high Da number (last row of the figure, Da = 0.01), permeability is granted to the fluid
rendering the vortices in the middle of the cross-section between the lower hot surface
and the upper cold surface and with high velocity. However, decreasing the Da reveals
attempts of the medium to stagnate or resist at least the fluid motion, and vortices are
pushed downward in the direction of gravity. The former is accompanied by an enhanced
heat transfer evidenced by the jump in the thermo lines, where the latter shows smoothed
uniform temperature gradient revealing decreased heat transfer. Thus, entropy follows as
explained earlier due to the dominance of the thermal entropy.

Figures 22 and 23 study Nu and total entropy values at variations of Da and εp at the
a high value of Ra. Not surprisingly, increasing εp and Da work, hand in hand, providing
more freedom of fluid motion and enhancing convective heat transfer, and thus the total
entropy. Finally, Figures 24 and 25 show that the role of φ on Nu and total entropy is not
significant, especially for high values of Da for Nu and low values of Da for Stot. Still, it is
of interest that Figure 25 shows the flipping behavior for different values of φ across the Da
range. For example, at low values of Da, the largest φ is marginally the dominant, where at
high values of Da, the smallest φ is marginally dominant. Physically, that can be attributed
to the fact that, on the one hand, high values of Da enhance permeability for nanoparticles
up to a certain size, giving them more movement, more heat transfer, and producing more
entropy. On the other hand, at low values of Da, almost all nanoparticle sizes are hindered,
and those with more size create marginally more entropy in the fluid friction. All in all,
increased values of Da will always provide higher Nu, due to permittable fluid motion,
and hence increase generated entropy.
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6. Conclusions

The finite element method is used to study a new cavity form filled under a constant
magnetic field by Ag/MgO/water nanofluids and porous media. The streamlines, natural
convection, and total entropy were examined for various parameter effects. The main
conclusion revealed that any parameter that increases is responsible for limiting the motion
of the fluid, and therefore directly limits the effective heat transfer and the total entropy
generation. The Ha and Da are examples of these parameters. In contrast, εp improves
heat transfer. Some other factors were shown to marginally affect heat transfer such as the
volume fraction of the nano-solid particles, especially for high values of Ra. The thermal
entropy generation has also been shown to dominate the other entropy components.
Finally, understanding the impacts of all of these parameters has direct application for
implementing an elaborate heat transfer. The heat transfer can even be controlled through
the variation of the magnetic field, especially for high values of Ra.
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Abbreviations

List of symbols
k Thermal conductivity (W/m·k)
L,H Long and height of the cavity (m)
l1, l2 Long and height of heat wall (m)
Ra Rayleigh number
Ha Hartmann number
Nu Nusselt number
Nuavg Average Nusselt number
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Nuloc Local Nusselt number
Pr Prandtl number
Da Darcy number
x, y Coordinate(m)
X,Y Dimensionless coordinate
u, v Velocity components(m/s)
U, V Nondimensional velocity components
T Temperature (◦C)
p Pressure (N/m2)
P Dimensionless pressure
K Permeability
g Gravitational acceleration vector (m/s2)
Fc Forchheimer coefficient
B0 Intensity of magnetic field
SGen Total dimensionless entropy generation
Greeks symbols
θ Dimensionless temperature
εp Porosity
α Thermal diffusivity (m2/s)
ν Kinematic viscosity (m2/s)
φ Volume fraction
β Thermal expansion coefficient (1/K)
µ Dynamic viscosity (kg/m·s)
ρ Density (kg/m3)
σ Electrical conductivity (Ω·m)−1

ψ Nondimensional stream function
Subscripts
b f Base fluid
hn f Hybrid-nanofluid
np Nanoparticles
avg Average
loc Local
h Hot
c Cold
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