
applied
sciences

Article

A Vital Sign Analysis System Based on Algorithm Block Broker
for Interoperability between Algorithm Development Tools

Moon-Il Joo 1 and Hee-Cheol Kim 1,2,*

����������
�������

Citation: Joo, M.-I.; Kim, H.-C. A

Vital Sign Analysis System Based on

Algorithm Block Broker for

Interoperability between Algorithm

Development Tools. Appl. Sci. 2021,

11, 1913. https://doi.org/

10.3390/app11041913

Academic Editor: Roger Narayan

Received: 8 January 2021

Accepted: 19 February 2021

Published: 22 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Digital Anti-aging Healthcare, Inje University, Gimhae-si 50834, Korea; joomi@inje.ac.kr
2 Department of Computer Engineering, Inje University, Gimhae-si 50834, Korea
* Correspondence: heeki@inje.ac.kr; Tel.: +82-55-320-3720

Abstract: With the recent development of artificial intelligence and data mining technology, various
and intelligent vital sign analysis technologies have been developed. Vital sign analysis algorithms
and technologies are primarily developed using MATLAB and open source technologies, such as
Python and R. The analysis algorithms developed with such programming languages can only be
employed and run in their own respective development environments and, hence, are unfortunately
not considered as platform independent. In that respect, the interoperability between development
tools is needed to ensure efficiency in terms of development time and efforts and reusability between
analysis technologies and algorithms developed in different languages. This paper presents the
development of a vital sign analysis system that ensures interoperability, which leads to one common
environment connecting different development platforms. To maintain the interoperability between
MATLAB and R programming, we designed and implemented the Algorithm Block Broker (AB
Broker). AB Broker is composed of AB Adapter and AB Broker. Here, the AB Broker uses AB Adapter
to request execution of analysis algorithms developed in different languages, such as MATLAB,
R, and Python. It also searches and runs the algorithm, helping implement the requested analysis
technique. The AB Broker-based vital sign analysis system enables the integrated management
of analysis and data mining technologies developed in different languages. From a developer’s
point of view, therefore, it is convenient and efficient to develop techniques using existing different
programming technologies.

Keywords: interoperability; data mining; vital sign; vital sign analysis

1. Introduction

The efficient handling and use of the considerable information and data currently
available is recognized as an issue directly linked to the competitiveness of the industry in
most fields of the Fourth Industrial Revolution [1]. Most industries take significant effort
to handle the information and data overflow more efficiently and productively; the issue is
directly related to the survival of the company in terms of business activities. Therefore, the
importance of artificial intelligence technology to handle and analyze extensive information
is increasing [2,3].

The application of artificial intelligence is also expanding in the medical sector; it
has evolved from the mere creation of new information and knowledge through the use
of data well, and has become more focused on developing and evaluating services [4].
In particular, in the field of medical and healthcare, services can be received anytime,
anywhere other than in hospitals, unlike in the past, with the advent of wearable devices
capable of measuring vital signs in daily life. Therefore, healthcare, which manages the
health conditions of individuals, has shifted from being “disease treatment-oriented” to
“prevention and management-oriented” [5,6].

Vital signs data have been increasing exponentially recently due to wearable devices
capable of measuring various vital signs [7]. The increased information on vital signs has

Appl. Sci. 2021, 11, 1913. https://doi.org/10.3390/app11041913 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7021-9049
https://doi.org/10.3390/app11041913
https://doi.org/10.3390/app11041913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11041913
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/4/1913?type=check_update&version=3

Appl. Sci. 2021, 11, 1913 2 of 12

the characteristics of big data, and various studies are being conducted to identify methods
of disease prevention, management, diagnosis, and treatment using vital signs that have
been converted to big data [8–10].

Vital sign analysis technology is important to provide healthcare services because of
the development of artificial intelligence technology. Various artificial intelligence and
data analysis technologies are distributed in an open source format using programming
language with open source features, such as Python and R Programming [11,12]. Numerous
vital sign analysis algorithm technologies are being developed because of the advancement
of artificial intelligence technology.

In recent times, vital sign analysis algorithms have been developed using develop-
ment tools, such as MATLAB, Python, and R Programming. These development tools
are used, either by utilizing libraries or by being customized. However, the developed
algorithms cannot be used in other programming languages because they are dependent
on the programming language. Therefore, various studies have been conducted to obtain
interoperability between different programming languages [13]. In particular, studies
on interoperability between systems developed in different languages in a distributed
environment have been conducted progressively [14]. However, studies have not been
conducted on the interoperability between programming languages to develop artificial
intelligence, which is important in the era of the Fourth Industrial Revolution. Therefore,
interoperability studies are required to secure reusability between algorithms developed in
different languages.

The algorithm block broker (AB Broker) was designed to secure interoperability
between different languages; a vital sign analysis system, applying this AB Broker was de-
veloped in this paper. AB Broker calls and executes different algorithm functions between
algorithm programming languages, such as MATLAB, Python, and R Programming. It has
an algorithm block adapter (AB Adapter) and AB Broker. The AB Adapter designates the
function to be called. The Broker will then obtain the execution result value by executing
the function called from the AB Adapter. For example, R Programming calls a function
developed in MATLAB through the AB Adapter. The Broker then executes the function
developed in MATLAB and sends the result value to R Programming. Similarly, the algo-
rithm source file itself developed in MATLAB and R Programming needs to be executed in
the system to implement the vital sign analysis technology using AB Broker. Therefore, the
functions are called using the Broker developed in Java to build an integrated environment.

The languages used for algorithm development have their own characteristics. Python
has strengths in artificial intelligence by utilizing many open-source libraries. R program-
ming has strengths in text mining from the beginning. In addition, MATLAB features
an integrated development language, such as artificial intelligence and signal processing.
However, MATLAB has traditionally been strong in signal processing and provides various
libraries. It will be a cornerstone for developing better algorithms by taking advantage of
the strengths of these development languages. Thus, the AB Broker of this paper has an
operator that executes a function by passing arguments to execute a function and returns
a result value. Such an operator automatically executes the function through the Java
interface when the developer requests function execution through the AB Adapter. These
operators have the advantage that developers can easily integrate functions or libraries
developed in various languages. In addition, there is no interference between the de-
velopment languages because the development languages utilize the results obtained by
independently executing them. With the development of an interoperability-based system,
research and development focused on simple vital sign analysis algorithms will shift to a
high-level, service-oriented development that easily utilizes various algorithm sources.

2. Related Studies and Backgrounds
2.1. Related Studies

Data analysis tools, such as Python, MATLAB, R programming, and application
development tools, such as C, C++, C#, and Java are being studied for interoperability with

Appl. Sci. 2021, 11, 1913 3 of 12

development languages. Representatively, there is Common Object Broker Architecture
(CORBA) [15].

CORBA is an interface protocol that allows software components written in different
languages and running on different platforms to interact with each other. The method
calling method between different languages uses Object Request Broker (ORB) [16]. In the
early days, various studies were conducted by using ORB to call methods between Java and
C++ languages. With the development of distributed computing with the improvement
of high-performance PCs and networks that provide high bandwidth, research has been
conducted to secure interoperability using CORBA in a distributed environment [17].

CORBA can easily integrate between different languages by calling methods. However,
the calling method is a calling technique and combining methods developed by each
language. In this way, different languages cannot connect to each other and execute
methods of different languages. For example, while developing a method in Java, it is
necessary in C++ language. You cannot use a method in Java.

A technology that allows different languages to connect and directly execute functions
and commands of different languages has been studied. Representatively, there are rJava
and Matlabcontrol.

rJava can execute R programming functions and commands by interlocking with R
programming in Java [18]. These studies are being conducted to secure interoperability be-
tween java and R Programming. Interoperability research using rJava uses Java’s graphical
user interface (GUI) to overcome sophisticated graphic work, which is a drawback of R
programming [19]. Representatively, this study graphically shows data analyzed using R
Programming using JavaFX [20].

Matlabcontrol can execute MATLAB source code by connecting to MATLAB engine
in Java. Representatively, research has been conducted on remote and virtual laboratories
that remotely connect to the server where MATLAB is installed and execute MATLAB
commands using Java and MATLAB interface, Matlabcontrol.

Research on the linkage between application development tools and data analysis tools
has been conducted. However, until now, research on applying analysis tools developed
in different languages is insufficient. Hence, research is needed to execute the desired
algorithm by applying the source code developed with various analysis tools to the system.

2.2. Vital Sign Data Mining Techniques

Data mining is technology to explore and discover knowledge by modeling and search-
ing for relations, patterns, and rules existing in the (big) data [21]. Study on algorithms to
extract and mine useful and meaningful information from accumulated data are important,
and it has been conducted in various areas, such as finance, medicine, education, and so
on. In particular, data mining research for personal healthcare services becomes more
and more important and actively carried out [22]. For example, IBM’s Watson began to
diagnose cancers at human level with artificial intelligence.

Vital signs that we tackle in the paper are largely divided into two types. The first
type is the data by which its value is meaningful, e.g., blood pressure and body tempera-
ture, and the second one is time-series data to measure continuously over time, such as
electrocardiogram (ECG), acceleration, respiration, and so on, which usually have wave-
forms. The second type is much more complex to analyze, requiring signal preprocessing.
For example, ECG is the signal combined with five waves of P, Q, R, S, and T. One can
measure useful information including exercise intensity, stress, and heart rates, and the
like from ECG data. In particular, heart rate variability (HRV) extracted from ECG is also
a valuable vital sign to get parameters, such as standard deviation of normal to normal
interval (SDNN), low frequency (LF), high frequency (HF), and heart rate per minute.
One can diagnose arrhythmia from HRV data. Recently acceleration data becomes crucial.
Acceleration sensors are attached in many wearable devices and in smartphones, and
so, acceleration data will play an important role as big data in a near future, in that they
are collected everywhere and easily. Typical examples of the information analyzed from

Appl. Sci. 2021, 11, 1913 4 of 12

acceleration data are: the number of steps, walking distance, activity patterns of sitting,
standing, walking, and running.

3. AB Broker Design for Interoperability

The AB Broker proposed in this paper secures interoperability by developing algo-
rithms developed in different environments in an integrated environment. The use of AB
Broker is expected to improve the reusability of various algorithms and provide time for
algorithm development.

In this paper, AB Broker was developed to secure interoperability between MAT-
LAB, which is conventionally used for algorithm development among various algorithm
development tools, such as Python, MATLAB, and R Programming, and open-source
R Programming.

The application of AB Broker is not limited to only vital sign analysis. In this paper, the
proposed approach is the first of its kind developed for vital sign analysis. However, this
framework is applicable for other frameworks because it is a generalized framework and
there are no restrictions. As shown in Figure 1, AB Broker consists of an algorithm search,
algorithm specification agent, execution agent, Algorithm Block Registry (AB Registry),
and AB Adapter.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 13

Figure 1. Algorithm Block (AB) broker diagram consisting of search, specification agent, execution agent, and AB adapter.

The algorithm search and algorithm specification agent analyze data using algorithm
information. Algorithm information is stored in the algorithm information database
shown in Figure 2. The algorithm details Table stores information on developer ID, algo-
rithm file name, vital sign analysis algorithm explanation, vital sign type, date sent, and
vital sign development tool. algorithm_inp_out stores information on input values, input
parameters, and input values.

Figure 2. Algorithm specification table modeling: ① is a table defining algorithm information; ② is a table that defines the
input and output values of the algorithm.

Figure 1. Algorithm Block (AB) broker diagram consisting of search, specification agent, execution agent, and AB adapter.

• Algorithm search searches for an algorithm to be executed.
• The algorithm specification agent checks the information on the algorithm to be

executed and displays information on the type of development tool, the input value,
and the output value required for execution.

• AB Registry is a repository for storing algorithm source files. It has the algorithm
source file to execute the algorithm by searching for the algorithm that AB Broker
requests to execute.

Appl. Sci. 2021, 11, 1913 5 of 12

• AB Adapter has a service that stores information to call R programming functions
in MATLAB and a service that saves information to call MATLAB functions from R
programming. The information for executing functions is composed of parameters
having the name of the function to be executed and an input value.

• Execution Agent executes the algorithm requested by AB Adapter. Algorithm execu-
tion has four steps. First, the presence of an algorithm is checked through algorithm
search. Second, the algorithm function source is checked in the AB Registry. Third, the
input and output values are checked according to the algorithm specification. Fourth,
the algorithm is executed by inputting an input value to the algorithm function.

The algorithm search and algorithm specification agent analyze data using algorithm
information. Algorithm information is stored in the algorithm information database shown
in Figure 2. The algorithm details Table stores information on developer ID, algorithm file
name, vital sign analysis algorithm explanation, vital sign type, date sent, and vital sign
development tool. algorithm_inp_out stores information on input values, input parameters,
and input values.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 13

Figure 1. Algorithm Block (AB) broker diagram consisting of search, specification agent, execution agent, and AB adapter.

The algorithm search and algorithm specification agent analyze data using algorithm
information. Algorithm information is stored in the algorithm information database
shown in Figure 2. The algorithm details Table stores information on developer ID, algo-
rithm file name, vital sign analysis algorithm explanation, vital sign type, date sent, and
vital sign development tool. algorithm_inp_out stores information on input values, input
parameters, and input values.

Figure 2. Algorithm specification table modeling: ① is a table defining algorithm information; ② is a table that defines the
input and output values of the algorithm.

Figure 2. Algorithm specification table modeling: 1© is a table defining algorithm information; 2© is a table that defines the
input and output values of the algorithm.

The structure of AB Adapter is shown in Figure 3. MATLAB Adapter and R program-
ming Adapter request information to execute functions in MATLAB and R Programming.

The working principle of Algorithm Block Broker is shown in the Figure 4. AB
Broker requests execution of functions developed in MATLAB or R Programming from AB
Adapter. AB Adapter sends information for the execution of the algorithm to the Broker
object. The Broker searches for a function in the AB Registry according to the function
execution service request. The searched function checks information on the function of
the algorithm specification agent. The accurate input and input value required for the
execution of the function are checked according to this information. Then, for the function
developed in R Programming, the R Programming function is executed through the Java/R
Interface (JRI) in MATLAB and the result value is sent to MATLAB. In addition, for the
function developed in MATLAB, the MATLAB function is executed through Matlabcontrol,
and the result value is sent to R Programming.

Appl. Sci. 2021, 11, 1913 6 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 13

The structure of AB Adapter is shown in Figure 3. MATLAB Adapter and R program-
ming Adapter request information to execute functions in MATLAB and R Programming.

Figure 3. AB Adapter source code: ① is MATLAB adapter source code for requesting R program-
ming execution in MATLAB; ② is the R programming adapter source code for requesting
MATLAB execution in R programming.

The working principle of Algorithm Block Broker is shown in the Figure 4. AB Broker
requests execution of functions developed in MATLAB or R Programming from AB
Adapter. AB Adapter sends information for the execution of the algorithm to the Broker
object. The Broker searches for a function in the AB Registry according to the function
execution service request. The searched function checks information on the function of the
algorithm specification agent. The accurate input and input value required for the execu-
tion of the function are checked according to this information. Then, for the function de-
veloped in R Programming, the R Programming function is executed through the Java/R
Interface (JRI) in MATLAB and the result value is sent to MATLAB. In addition, for the
function developed in MATLAB, the MATLAB function is executed through Matlabcon-
trol, and the result value is sent to R Programming.

Figure 3. AB Adapter source code: 1© is MATLAB adapter source code for requesting R programming execution in
MATLAB; 2© is the R programming adapter source code for requesting MATLAB execution in R programming.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 13

Figure 4. Scenario for calling and executing MATLAB and R programming in AB broker.

4. Vital Sign Analysis System Based on AB Broker
The proposed architecture is a model based on service oriented architecture (SOA)

[23] in Figure 5, a type of web service. By SOA, the system searches services in the server
that the developer wants and responds to the application, which is a suitable architecture
for request/response concerning data mining techniques.

The vital sign analysis system architecture based on AB Broker has four scenarios:
• Requesting to execute vital sign analysis algorithm through Simple Object Access

Protocol (SOAP) message.
• Retrieving vital sign data from vital sign storage.
• Executing vital sign analysis algorithm using AB Broker of execution engine.
• Saving the analyzed result in the data warehouse.

SOAP message provides a service to execute a vital sign analysis algorithm. The ser-
vice is divided into a service that can search for a vital sign, a service that uploads a source
file of a vital sign algorithm developed in MATLAB or R programming, and a service that
extracts a vital sign feature value by executing a vital sign analysis algorithm.

Figure 4. Scenario for calling and executing MATLAB and R programming in AB broker.

4. Vital Sign Analysis System Based on AB Broker

The proposed architecture is a model based on service oriented architecture (SOA) [23]
in Figure 5, a type of web service. By SOA, the system searches services in the server that
the developer wants and responds to the application, which is a suitable architecture for
request/response concerning data mining techniques.

The vital sign analysis system architecture based on AB Broker has four scenarios:

• Requesting to execute vital sign analysis algorithm through Simple Object Access
Protocol (SOAP) message.

• Retrieving vital sign data from vital sign storage.
• Executing vital sign analysis algorithm using AB Broker of execution engine.
• Saving the analyzed result in the data warehouse.

Appl. Sci. 2021, 11, 1913 7 of 12

SOAP message provides a service to execute a vital sign analysis algorithm. The
service is divided into a service that can search for a vital sign, a service that uploads
a source file of a vital sign algorithm developed in MATLAB or R programming, and a
service that extracts a vital sign feature value by executing a vital sign analysis algorithm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 13

Figure 5. Vital sign analysis system architecture based on AB broker.

The NoSQL database stores various bio signals, in this case the vital signs. For such
a design, a criterion for classifying vital signs is important. For example, signals such as
electrocardiogram, electromyogram, respiration, etc., have continuous data. However,
since the acceleration signal has continuous data of three axes (X-, Y-, Z-axis), the data of
three axes must be stored at the same time. We designed a NoSQL-based vital sign storage
that can collect and analyze a large amount of data, according to the characteristics of
these vital sign.

The engine to execute vital sign analysis algorithm intends to apply the vital sign
analysis algorithm developed by MATLAB and R programming to the health care service
system. An interface for inputting an input value is required based on the specification of
the vital sign analysis algorithm. In particular, an interface for retrieving a necessary input
value from a vital sign storage is essential. Based on the input value, the vital sign execu-
tion engine performs pre-processing to convert the input value according to the develop-
ment language to be executed, and then executes the vital sign analysis algorithm source.

The data warehouse stores the results from the execution engine. The data extracted
by applying the vital signs analysis algorithm may be a great amount in a single column.
Thus, the data are needed to save into the data warehouse for big data analysis.

5. Implementation and Application
In this paper, we have developed a vital sign analysis system based on AB Broker.

This study executed the evalQRSDetection Function developed in MATLAB as shown in
Figure 6. ① in Figure 6 is an AB Adapter used for executing the low-pass filter function
developed in R programming, as shown in Figure 7. The evalQRSDetection function is an
algorithm that analyzes the value of R Peak on the electrocardiogram (ECG). The
evalQRSDetection function has two input values, electrocardiogram data, and sampling
frequency. The two result values are the R peak index and R peak value.

In this paper, you can check the source code shown below that calls the R Program-
ming function using the AB Adapter in the MATLAB. Conversely, R Programming is a
system that can call MATLAB function using the AB Adapter. Thus, the role of the adapter

Figure 5. Vital sign analysis system architecture based on AB broker.

The NoSQL database stores various bio signals, in this case the vital signs. For such
a design, a criterion for classifying vital signs is important. For example, signals such
as electrocardiogram, electromyogram, respiration, etc., have continuous data. However,
since the acceleration signal has continuous data of three axes (X-, Y-, Z-axis), the data of
three axes must be stored at the same time. We designed a NoSQL-based vital sign storage
that can collect and analyze a large amount of data, according to the characteristics of these
vital sign.

The engine to execute vital sign analysis algorithm intends to apply the vital sign
analysis algorithm developed by MATLAB and R programming to the health care service
system. An interface for inputting an input value is required based on the specification of
the vital sign analysis algorithm. In particular, an interface for retrieving a necessary input
value from a vital sign storage is essential. Based on the input value, the vital sign execution
engine performs pre-processing to convert the input value according to the development
language to be executed, and then executes the vital sign analysis algorithm source.

The data warehouse stores the results from the execution engine. The data extracted
by applying the vital signs analysis algorithm may be a great amount in a single column.
Thus, the data are needed to save into the data warehouse for big data analysis.

5. Implementation and Application

In this paper, we have developed a vital sign analysis system based on AB Broker.
This study executed the evalQRSDetection Function developed in MATLAB as shown in
Figure 6. 1© in Figure 6 is an AB Adapter used for executing the low-pass filter function
developed in R programming, as shown in Figure 7. The evalQRSDetection function
is an algorithm that analyzes the value of R Peak on the electrocardiogram (ECG). The
evalQRSDetection function has two input values, electrocardiogram data, and sampling
frequency. The two result values are the R peak index and R peak value.

Appl. Sci. 2021, 11, 1913 8 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 13

function is to keep away from the duplicated code when the interface of two languages is
different, but the classes are same. The code shown below is an example, which shows
that, originally, the codes are written in MATLAB; however, by using the adapter func-
tion, some of the code is written in R language, since both the classes are the same, alt-
hough their interface is different. Grimmer et al. proposed framework, which was mainly
developed for cross-language interoperability, to provide good runtime performance [24].
This shows that the proposed developed system shows interoperability between lan-
guages, which will be useful for the development of the better system for superior perfor-
mance.

Figure 6. R peak extraction algorithm from electrocardiogram (ECG) developed by MATLAB: ① is
the AB adapter to request the lowpassfilter. R function.

Figure 7. The lowpassfilter extraction function developed by R programming.

Figure 6. R peak extraction algorithm from electrocardiogram (ECG) developed by MATLAB: 1© is the AB adapter to
request the lowpassfilter. R function.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 13

function is to keep away from the duplicated code when the interface of two languages is
different, but the classes are same. The code shown below is an example, which shows
that, originally, the codes are written in MATLAB; however, by using the adapter func-
tion, some of the code is written in R language, since both the classes are the same, alt-
hough their interface is different. Grimmer et al. proposed framework, which was mainly
developed for cross-language interoperability, to provide good runtime performance [24].
This shows that the proposed developed system shows interoperability between lan-
guages, which will be useful for the development of the better system for superior perfor-
mance.

Figure 6. R peak extraction algorithm from electrocardiogram (ECG) developed by MATLAB: ① is
the AB adapter to request the lowpassfilter. R function.

Figure 7. The lowpassfilter extraction function developed by R programming.

Figure 7. The lowpassfilter extraction function developed by R programming.

In this paper, you can check the source code shown below that calls the R Programming
function using the AB Adapter in the MATLAB. Conversely, R Programming is a system
that can call MATLAB function using the AB Adapter. Thus, the role of the adapter function
is to keep away from the duplicated code when the interface of two languages is different,
but the classes are same. The code shown below is an example, which shows that, originally,
the codes are written in MATLAB; however, by using the adapter function, some of the
code is written in R language, since both the classes are the same, although their interface
is different. Grimmer et al. proposed framework, which was mainly developed for cross-
language interoperability, to provide good runtime performance [24]. This shows that
the proposed developed system shows interoperability between languages, which will be
useful for the development of the better system for superior performance.

Appl. Sci. 2021, 11, 1913 9 of 12

The vital sign analysis algorithm execution SOAP message and response SOAP mes-
sage of Figure 5 are as shown in Figure 8.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 13

The vital sign analysis algorithm execution SOAP message and response SOAP mes-
sage of Figure 5 are as shown in Figure 8.

The request to execute the vital sign analysis algorithm is sent by inputting the ID
that sends the vital sign analysis algorithm source to be executed, the vital sign analysis
algorithm file name, input value, and the vital sign analysis development tool as shown
in ① in Figure 8. The vital sign analysis algorithm is executed on the server and the result
value is sent as shown in ② in Figure 8.

Figure 8. SOAP message of vital sign analysis algorithm execution: ① is a SOAP message to request algorithm execution;
② is the response SOAP message with the algorithm executed.

The evalQRSDetection Function execution UI and request result UI are as shown in
Figure 9. The UI to execute the evalQRSDetection Function is as shown in ① in Figure 9.
The execution result value is as shown in ② in Figure 9, where the first chart is the result
value maxIdx in Figure 5 and the second chart is the result value of maxVal.

Figure 8. SOAP message of vital sign analysis algorithm execution: 1© is a SOAP message to request algorithm execution;
2© is the response SOAP message with the algorithm executed.

The request to execute the vital sign analysis algorithm is sent by inputting the ID
that sends the vital sign analysis algorithm source to be executed, the vital sign analysis
algorithm file name, input value, and the vital sign analysis development tool as shown in
1© in Figure 8. The vital sign analysis algorithm is executed on the server and the result

value is sent as shown in 2© in Figure 8.
The evalQRSDetection Function execution UI and request result UI are as shown in

Figure 9. The UI to execute the evalQRSDetection Function is as shown in 1© in Figure 9.
The execution result value is as shown in 2© in Figure 9, where the first chart is the result
value maxIdx in Figure 5 and the second chart is the result value of maxVal.

Appl. Sci. 2021, 11, 1913 10 of 12Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 13

Figure 9. Implementation of vital sign system user interfaces: ① is a UI for requesting algorithm
execution; ② is the response UI where the algorithm was executed.

6. Conclusions
AB Broker has been designed to secure interoperability between algorithms devel-

oped in different languages. The vital sign analysis system applying AB Broker provides
an architecture that can easily apply various analysis algorithms to the system. In this
paper, we implemented a vital sign analysis system using AB Broker-based MATLAB and
R programming language.

Algorithm techniques developed in various development languages with the method
presented in this paper can be easily used on one platform to secure interoperability. In
addition, it has a software structure that can improve the reusability and convenience of
analysis technology, which is expected to improve the quality of vital sign analysis tech-
nology and secure system competitiveness.

The limitation of this study is that in this paper, the proposed approach was tested
only for the bio signals. However, the framework is developed by keeping in mind that it
will be used as a generalized framework and can be used for other applications. In this
paper, since our study is limited to bio signals, we only mentioned the bio signals.

Finally, in the future, AB Broker demands research on architecture that can be ap-
plied to systems that require various artificial intelligence technologies by adding Python
and other development languages and analyzing vital signs.

Author Contributions: Conceptualization, M.-I.J. and H.-C.K.; methodology, H.-C.K.; software, M.-
I.J.; validation, M.-I.J. and H.-C.K.; formal analysis, H.-C.K.; investigation, M.-I.J.; resources, M.-I.J.;
data curation, M.-I.J.; writing—original draft preparation, M.-I.J.; writing—review and editing, H.-

Figure 9. Implementation of vital sign system user interfaces: 1© is a UI for requesting algorithm
execution; 2© is the response UI where the algorithm was executed.

6. Conclusions

AB Broker has been designed to secure interoperability between algorithms developed
in different languages. The vital sign analysis system applying AB Broker provides an
architecture that can easily apply various analysis algorithms to the system. In this paper,
we implemented a vital sign analysis system using AB Broker-based MATLAB and R
programming language.

Algorithm techniques developed in various development languages with the method
presented in this paper can be easily used on one platform to secure interoperability. In
addition, it has a software structure that can improve the reusability and convenience
of analysis technology, which is expected to improve the quality of vital sign analysis
technology and secure system competitiveness.

The limitation of this study is that in this paper, the proposed approach was tested
only for the bio signals. However, the framework is developed by keeping in mind that it
will be used as a generalized framework and can be used for other applications. In this
paper, since our study is limited to bio signals, we only mentioned the bio signals.

Finally, in the future, AB Broker demands research on architecture that can be applied
to systems that require various artificial intelligence technologies by adding Python and
other development languages and analyzing vital signs.

Appl. Sci. 2021, 11, 1913 11 of 12

Author Contributions: Conceptualization, M.-I.J. and H.-C.K.; methodology, H.-C.K.; software,
M.-I.J.; validation, M.-I.J. and H.-C.K.; formal analysis, H.-C.K.; investigation, M.-I.J.; resources,
M.-I.J.; data curation, M.-I.J.; writing—original draft preparation, M.-I.J.; writing—review and
editing, H.-C.K.; visualization, M.-I.J.; supervision, H.-C.K.; project administration, H.-C.K.; funding
acquisition, H.-C.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Trade, Industry, and Energy (MOTIE),
Korea, through the Education Program for Creative and industrial Convergence. (Grant Num-
ber N0000717).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Basic Science Research Program through the National Research Foundation of
Korea (NRF), supported by the Ministry of Science, ICT & Future Planning (NRF2017R1D1A3B04032905).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brondoni, S.M.; Zaninotto, E. Ouverture de ‘The 4th Industrial Revolution. Business Model Innovation & Global Competition’.

Symph. Emerg. Issues Manag. 2018, 2, 1–7.
2. Pan, Y. Heading toward Artificial Intelligence 2.0. Engineering 2016, 2, 409–413. [CrossRef]
3. Huang, M.H.; Rust, R.T. Artificial intelligence in service. J. Serv. Res. 2018, 21, 155–172. [CrossRef]
4. Miller, D.D.; Brown, E.W. Artificial intelligence in medical practice: The question to the answer? Am. J. Med. 2018, 131, 129–133.

[CrossRef] [PubMed]
5. Lee, K.Y.; Kim, J. Artificial intelligence technology trends and IBM Watson references in the medical field. Korean Med. Educ. Rev.

2016, 18, 51–57. [CrossRef]
6. Kim, T.W.; Park, K.H.; Yi, S.H.; Kim, H.C. A big data framework for u-healthcare systems utilizing vital signs. In Proceedings of

the 2014 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 10–12 June 2014; pp. 494–497.
7. Gaskin, J.; Jenkins, J.; Meservy, T.; Steffen, J.; Payne, K. Using wearable devices for non-invasive, inexpensive physiological data

collection. In Proceedings of the 50th Hawaii International Conference on System Sciences, Honolulu, HI, USA, 4–7 January 2017.
8. Elgendi, M. Less is more in biosignal analysis: Compressed data could open the door to faster and better diagnosis. Diseases 2018,

6, 18. [CrossRef] [PubMed]
9. Ta, V.D.; Liu, C.M.; Nkabinde, G.W. Big data stream computing in healthcare real-time analytics. In Proceedings of the 2016 IEEE

International Conference on Cloud Computing and Big Data Analysis, Chengdu, China, 5–7 July 2016; pp. 37–42.
10. Chen, C.P.; Zhang, C.Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Inf. Sci. 2014,

75, 314–347. [CrossRef]
11. Milne, D.; Witten, I.H. An open-source toolkit for mining Wikipedia. Artif. Intell. 2013, 194, 222–239. [CrossRef]
12. Rao, A.R.; Clarke, D. A fully integrated open-source toolkit for mining healthcare big-data: Architecture and applications. In

Proceedings of the 2016 IEEE International Conference on Healthcare Informatics, Chicago, IL, USA, 4–7 October 2016; pp.
255–261.

13. Grimmer, M.; Seaton, C.; Schatz, R.; Würthinger, T.; Mössenböck, H. High-performance cross-language interoperability in a
multi-language runtime. In Proceedings of the 11th Symposium on Dynamic Languages, New York, NY, USA, 21 October 2015;
pp. 78–90.

14. Blair, G.S.; Bennaceur, A.; Georgantas, N.; Grace, P.; Issarny, V.; Nundloll, V.; Paolucci, M. The role of ontologies in emergent
middleware: Supporting interoperability in complex distributed systems. In Proceedings of the ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed Processing, Lisbon, Portugal, 12 December 2011; pp. 410–430.

15. Zinky, J.A.; Bakken, D.E.; Schantz, R.E. Architectural support for quality of service for CORBA objects. Theory Pract. Object Syst.
1997, 3, 55–73. [CrossRef]

16. Schmidt, D.C.; Levine, D.L.; Mungee, S. The design of the TAO real-time object request broker. Comput. Commun. 1998, 21,
294–324. [CrossRef]

17. Vinoski, S. CORBA: Integrating diverse applications within distributed heterogeneous environments. IEEE Commun. Mag. 1997,
35, 46–55. [CrossRef]

18. Urbanek, S. rJava: Low-level R to Java interface. Available online: http://cran.rediris.es/web/packages/rJava/ (accessed on 11
September 2020).

19. Furtuna, T.F.; Vinte, C. Integrating R and Java for Enhancing Interactivity of Algorithmic Data Analysis Software Solutions. Rom.
Stat. Rev. 2016, 64, 29–41.

20. Bistak, P. Remote laboratory server based on Java Matlab interface. In Proceedings of the 2011 14th International Conference on
Interactive Collaborative Learning, Piestany, Slovakia, 21–23 September 2011; pp. 344–347.

http://doi.org/10.1016/J.ENG.2016.04.018
http://doi.org/10.1177/1094670517752459
http://doi.org/10.1016/j.amjmed.2017.10.035
http://www.ncbi.nlm.nih.gov/pubmed/29126825
http://doi.org/10.17496/kmer.2016.18.2.51
http://doi.org/10.3390/diseases6010018
http://www.ncbi.nlm.nih.gov/pubmed/29495261
http://doi.org/10.1016/j.ins.2014.01.015
http://doi.org/10.1016/j.artint.2012.06.007
http://doi.org/10.1002/(SICI)1096-9942(1997)3:1<55::AID-TAPO6>3.0.CO;2-6
http://doi.org/10.1016/S0140-3664(97)00165-5
http://doi.org/10.1109/35.565655
http://cran.rediris.es/web/packages/rJava/

Appl. Sci. 2021, 11, 1913 12 of 12

21. Jain, N.; Srivastava, V. Data mining techniques: A survey paper. Int. J. Res. Eng. Technol. 2013, 2, 116–119.
22. Birnbaum, E.B.D. Application of data mining techniques to healthcare data. Infect. Control Hosp. Epidemiol. 2004, 25, 690–695.
23. Sprott, D.; Wilkes, L. Understanding service-oriented architecture. Archit. J. 2004, 1, 10–17.
24. Grimmer, M.; Schatz, R.; Seaton, C.; Würthinger, T.; Luján, M.; Mössenböck, H. Cross-language interoperability in a multi-

language runtime. ACM Trans. Program. Lang. Syst. 2018, 40, 1–43. [CrossRef]

http://doi.org/10.1145/3201898

	Introduction
	Related Studies and Backgrounds
	Related Studies
	Vital Sign Data Mining Techniques

	AB Broker Design for Interoperability
	Vital Sign Analysis System Based on AB Broker
	Implementation and Application
	Conclusions
	References

