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Abstract: In this study, based on the policy iteration (PI) in reinforcement learning (RL), an optimal
adaptive control approach is established to solve robust control problems of nonlinear systems with
internal and input uncertainties. First, the robust control is converted into solving an optimal control
containing a nominal or auxiliary system with a predefined performance index. It is demonstrated
that the optimal control law enables the considered system globally asymptotically stable for all
admissible uncertainties. Second, based on the Bellman optimality principle, the online PI algorithms
are proposed to calculate robust controllers for the matched and the mismatched uncertain systems.
The approximate structure of the robust control law is obtained by approximating the optimal cost
function with neural network in PI algorithms. Finally, in order to illustrate the availability of the
proposed algorithm and theoretical results, some numerical examples are provided.
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1. Introduction

It is ineluctable to contain uncertain parameters and disturbances in practical systems
due to modeling errors, external disturbances, and so on [1]. Thus, it is of great practical
significance to study robust control of the uncertain systems. In recent years, the control
problem of uncertain systems has been extensively studied. The literature on robust
control of uncertain systems mainly includes linear systems and nonlinear systems. For the
uncertain linear systems, algebraic Riccati equations (ARE) or linear matrix inequalities
(LMI) were mostly used to deal with them in the classical research methods [2–6]. In this
literature, both matched and mismatched systems were involved. For nonlinear systems,
the early research methods include feedback linearization, fuzzy modeling, nonlinear H∞
control, and so on [7–11]. However, in recent decades, neural networks (NN) and PI in RL
were used to approximate the robust control law numerically [12–14].

The PI method in RL was initially utilized to calculate the optimal control law for
some deterministic systems. Werbos first proposed an idea of approximating the solution
in Bellman’s equation using approximate dynamic programming (ADP) [15]. There have
been many results of using the PI method to calculate the optimal control law for some
deterministic systems [16–19]. There are two major benefits of using the PI algorithm to deal
with such optimal problems. On the one hand, it can effectively solve some problems of the
“curse of dimensionality” in engineering control [20]. On the other hand, it can be utilized
to calculate the optimal control law without knowing the system dynamics. In the practice
of engineering control, it is difficult to obtain system dynamics accurately. Therefore, it is a
good choice to use the PI algorithm to solve unknown model control problems.

Within the last ten years, the PI method was also developed to calculate the robust
controller for some uncertain systems, which is based on the optimal control method of
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robust control [21]. For an input constraint nonlinear system with continuous time, a novel
RL-based algorithm was prosposed to deal with the robust control problem in [22]. Based
on network structure approximation, an online PI algorithm was developed to solve robust
control of a class of nonlinear discrete-time uncertain systems in [23]. Using a data-driven
RL algorithm, a robust control scheme was developed for a class of completely unknown
dynamic systems with uncertainty in [24]. In addition, there are many other examples of
literature on robust control based on RL, such as [25–27]. In all the literature listed above,
the solution to the Hamilton Jacobi Bellman (HJB) equation was approximated by neural
network. In fact, solving the HJB equation is a key problem in optimal control problem [28].
The HJB equation is difficult to solve because it is a nonlinear partial differential equation.
For a nonlinear system, the HJB equation is solved with neural network approximation in
many cases. Meanwhile, for the linear system, ARE is used to solve it instead of a neural
network. However, for all we know, most of the current studies have not considered the
input uncertainty in system. The input uncertainty does exist in the actual control system.

In this study, a class of continuous-time nonlinear systems with internal and input
uncertainties is considered. The main objective is to establish robust control laws for the
uncertain systems. By solving the optimal control problem constructed, the robust control
problem is converted into calculating an optimal controller. The online PI algorithms
are proposed to calculate robust control by approximating the optimal cost with neural
network. The convergence of the proposed algorithms is proved. Numerical examples are
given to illustrate the availability of the method.

Our main contributions are as follows. First, more general uncertain nonlinear systems
are considered, in which the uncertainty entered both the system and the input. For the
matched and the mismatched uncertain systems, it is proved that the robust control can
be converted into calculating an optimal controller. Second, the online PI algorithms
are developed to solve the robust control problem. The neural network is utilized to
approximate the optimal cost in PI algorithm, which fulfilled a difficult task of solving the
HJB equation.

The rest of this paper is arranged as follows. We formulate the robust control problems
and propose some basic results for the issues under consideration in Section 2. Solving the
robust control problem is converted to calculate an optimal control law of a nominal or
auxiliary system in Sections 3 and 4. Based on approximating optimal cost with neural
network, the online PI algorithms are developed to solve the robust control problem in
Section 5. To support the proposed theoretical framework, we provide some numerical
examples in Section 6. In Section 7, the study is concluded, and the scope for future research
is discussed.

2. Preliminaries and Problem Formulation

Consider an uncertain nonlinear system as follows:

ẋ(t) = f (x(t)) + ∆ f (x(t)) + [g(x(t)) + ∆g(x(t))]u(t), x(0) = x0 (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, f (x(t)) ∈ Rn, g(x(t)) ∈
Rn×m are known function, ∆ f (x(t)) ∈ Rn, ∆g(x(t)) ∈ Rn×m are uncertain disturbing function.

The control objective is to establish a robust control law u = u(x) in order that the
closed-loop system is asymptotically stable for all allowed uncertain disturbances ∆ f (x(t))
and ∆g(x(t)).

As a general case, we first make the following assumptions to ensure that the state
Equation (1) is well defined [1,29].

Assumption 1. In (1), f (x) + g(x)u is Lipschitz continuous with respect to x and u on the set
Ω ⊆ Rn containing the origin.

Assumption 2. For the free vibration system, f (0) = 0, ∆ f (0) = 0, that is, x = 0 is the
equilibrium point of the free vibration system.
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Definition 1. The system (1) is called to satisfy the system dynamics matched condition if there is
a function matrix h(x) ∈ Rm×1 such that

∆ f (x) = g(x)h(x). (2)

Definition 2. System (1) is called to satisfy the input matched condition if there is a function
m(x) ∈ Rm×m such that

∆g(x) = g(x)m(x), (3)

where m(x) ≥ 0.

Definition 3. If the system (1) satisfies the conditions (2) and (3) for any allowed disturbances
∆ f (x) and ∆g(x), then the system (1) is called a matched uncertain system.

Definition 4. If the system (1) does not satisfy the condition (2) or (3) for any allowed disturbances
∆ f (x) and ∆g(x), then the system (1) is called a mismatched uncertain system.

Next, we consider the robust control problem of nonlinear system (1) with matched
and mismatched conditions, respectively.

3. Robust Control of Matched Uncertain Nonlinear Systems

This section considers the problem of robust control when the system (1) meets the
matched conditions (2) and (3). By constructing appropriate performance indexes, the
problem of robust control is transformed into calculating the optimal control law of a
corresponding nominal system. Based on the optimal control of the nominal system, a PI
algorithm is proposed to obtain robust feedback controller.

For the nominal system

ẋ = f (x) + g(x)u, (4)

find the controller u = u(x) to minimize performance index

J(x0, u) =
∫ ∞

0
[ f 2

max(x) + xTx + uTu]dt (5)

where fmax(x) is the supremum function of uncertainty h(x), that is ‖h(x)‖ ≤ fmax(x).
The definition of admissible control in optimal control problem is given below [26].

Definition 5. The control policy u(x) is called an admissible control of the system (4) with regard
to the performance function (5) on compact set Ω ⊆ Rn if u(x) is continuous on Ω, u(0) = 0, it
can stabilize the system (4) on Ω, and the performance function (5) is limited for any x ∈ Ω.

According to the performance index (5), the cost function corresponding to the admis-
sible control u(x) is given by

V(x, u) =
∫ ∞

t
[ f 2

max(x) + xTx + uTu]dt (6)

Taking time derivative on both side of (6), it follows the Bellman equation

f 2
max(x) + xTx + uTu +∇VT [ f (x) + g(x)u] = 0, (7)

where ∇V is the gradient vector of the cost function V(x, u) with respect to x.
Definite Hamiltonian function

H(x, u,∇V) = f 2
max(x) + xTx + uTu +∇VT [ f (x) + g(x)u] (8)
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Determining the extremum of the Hamiltonian function yields the optimal control
function

u∗(x) = −1
2

gT(x)∇V (9)

By substituting (9) into (7), it follows that optimal cost V∗(x) satisfies the following
HJB equation

f 2
max(x) + xTx +∇V∗T f (x)− 1

4
∇V∗T g(x)gT(x)∇V∗ = 0 (10)

and initial conditions V∗(0) = 0.
Solving the optimal cost V∗(x) from the HJB Equation (10), we can get the solution to

the optimal control problem. Thus, the robust control problem can be solved.
The following theorem shows that optimal control u∗(x) = − 1

2 gT(x)∇V∗ is a robust
controller for matched uncertain systems.

Theorem 1. Assume that the conditions (2) and (3) hold in system (1) and the solution V∗(x) in HJB
Equation (10) exists. Considering the nominal nonlinear system (4) with performance index (5), then
the optimal control policy u∗(x) = − 1

2 gT(x)∇V∗ can globally asymptotically stabilize the nonlinear
uncertain system (1). That is to say, the closed-loop uncertain system ẋ(t) = f (x(t)) + ∆ f (x(t)) +
[g(x(t)) + ∆g(x(t))]u∗(x) is globally asymptotically stable.

Proof. In order to prove the stability with controller u∗(x) = − 1
2 gT(x)∇V∗, V∗(x) is cho-

sen as the Lyapunov function. Considering the performance index (5), V∗(x) is obviously
positive, and V∗(0) = 0. Taking time derivative of the function V∗(x) along closed-loop
system (1), it follows that

dV∗

dt
= ∇V∗T [ f (x) + ∆ f (x)]− 1

2
∇V∗T [g(x) + ∆g(x)]gT(x)∇V∗ (11)

Using the matched conditions (2)and (3), it follows from (11) that

dV∗

dt
=∇V∗T f (x) +∇V∗T g(x)h(x)− 1

2
∇V∗T g(x)gT(x)∇V∗

− 1
2
∇V∗T g(x)m(x)gT(x)∇V∗

(12)

From HJB Equation (10), one can obtain

∇V∗T f (x) = − f 2
max(x)− xTx +

1
4
∇V∗T g(x)gT(x)∇V∗ (13)

Substituting (13) into (12) yields

dV∗

dt
=− f 2

max(x)− xTx +
1
4
∇V∗T g(x)gT(x)∇V∗ +∇V∗T g(x)h(x)− 1

2
∇V∗T g(x)gT(x)∇V∗

− 1
2
∇V∗T g(x)m(x)gT(x)∇V∗

=− f 2
max(x)− xTx− 1

4
∇V∗T g(x)gT(x)∇V∗ +∇V∗T g(x)h(x)− 1

2
∇V∗T g(x)m(x)gT(x)∇V∗

(14)

It follows from m(x) ≥ 0 that − 1
2∇V∗T g(x)m(x)gT(x)∇V∗ ≤ 0. Therefore, from (14),

we can have
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dV∗

dt
≤− f 2

max(x)− xTx− 1
4
∇V∗T g(x)gT(x)∇V∗ +∇V∗T g(x)h(x)

=− f 2
max(x)− xTx− 1

4
[∇V∗T g(x)gT(x)∇V∗ − 4∇V∗T g(x)h(x) + 4h(x)Th(x)] + h(x)Th(x)

=− xTx + h(x)Th(x)− f 2
max(x)− 1

4
[gT(x)∇V∗ − 2h(x)]T [gT(x)∇V∗ − 2h(x)]

≤− xTx

(15)

Therefore, by Lyapunov stability theory [30], the optimal control u∗(x) = − 1
2 gT(x)∇V∗

can make the matched uncertain system (1) asymptotically stable. Thus, for a constant
c > 0, there is a neighborhood N = {x : ‖x‖ < c} such that if the state x(t) enters the
neighborhood N, then x → 0 when t→ ∞. However, x(t) cannot stay out of the domain N
forever; otherwise, for all t > 0, there is ‖x(t)‖ ≥ c. This implies that

V∗[x(t)]−V∗[x(0)] =
∫ t

0
V̇∗(x(τ))dt

≤
∫ t

0
(−xTx)dt

≤ −
∫ t

0
c2dt

= −c2t

Therefore, when t → ∞, V∗[x(t)] ≤ V∗[x(0)] − c2t → −∞. This contradicts that
V∗[x(t)] is positive definite. Consequently, the system (1) is globally asymptotically stable.

Remark 1. For matched nonlinear systems, the robust controller can be obtained by solving the
optimal cost function V∗[x(t)] from HJB Equation (10). In Section 4, we will use the PI algorithm
to solve the HJB equation, which is a difficult partial differential equation.

4. Robust Control of Nonlinear Systems with Mismatched Uncertainties

In this section, we consider the robust control problem when the system (1) does
not satisfy the matched condition (2). At this time, the system is a mismatched nonlinear
uncertain system. By constructing the appropriate auxiliary system and performance index,
the robust control for the mismatched uncertain system is transformed into solving optimal
control law of an auxiliary system.

Firstly, the following assumptions are given.

Assumption 3. Suppose that the uncertainty of system (1) satisfies ∆ f (x) = c(x)h(x), ∆g(x) =
g(x)m(x), where c(x) is a known function matrix of appropriate dimensions, h(x) and m(x) are
uncertain functions, and m(x) ≥ 0.

The goal of robust control is to find a control function u(x), which makes the closed-
loop system

ẋ = f (x) + c(x)h(x) + [g(x) + g(x)m(x)]u(x) (16)

globally asymptotically stable for all uncertainties h(x) and m(x).
In order to obtain the robust controller, an optimal control problem is constructed as

follow. For the following auxiliary systems

ẋ = f (x) + g(x)u + [I − g(x)g(x)+]c(x)v (17)
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find the controller u = u(x), v = v(x), such that the performance index

J(x0, u) =
∫ ∞

0
[ f 2

max(x) + g2
max(x) + β2xTx + uTu + vTv]dt (18)

is minimized, where β is the design parameter, g(x)+ = [gT(x)g(x)]−1gT(x) is a pseudo
inverse of the matrix function g(x). Moreover, fmax(x) and gmax(x) are nonnegative
functions and satisfy the conditions

‖g(x)+c(x)h(x)‖ ≤ fmax(x), ‖h(x)‖ ≤ gmax(x) (19)

According to the performance index (18), the cost function corresponding to the
admissible control (u(x), v(x)) is

V(x) =
∫ ∞

t
[ f 2

max(x) + g2
max(x) + β2xTx + uTu + vTv]dt (20)

The following Bellman equation is obtained by taking the time derivation on both
sides of (20)

f 2
max(x) + g2

max(x) + β2xTx + ūT ū +∇VT [ f (x) + ḡ(x)ū] = 0, (21)

where∇V is the gradient vector of V(x)with respect to x, ḡ(x) = [g(x), (I− g(x)g(x)+)c(x)],
ū = [uT , vT ]T .

Defining Hamiltonian functions as

H(x, u,∇V) = f 2
max(x) + g2

max(x) + β2xTx + ūT ū +∇VT [ f (x) + ḡ(x)ū] (22)

Assuming that the minimum value exists and is unique in (22), the optimal control
law is given by

ū∗(x) =
[

u∗(x)
v∗(x)

]
= −1

2
ḡT(x)∇V∗

= −1
2

[
gT(x)∇V∗

cT(x)[I − g(x)g(x)+]T∇V∗

] (23)

By substituting (23) into (21), the HJB equation is given by

f 2
max(x) + g2

max(x) + β2xTx +∇V∗T f (x)− 1
4
∇V∗T ḡ(x)ḡT(x)∇V∗ = 0 (24)

and the initial value V∗(0) = 0.

Remark 2. Generally, the pseudo-inverse of g(x), g(x)+ will exist if its columns are linearly
independent when Assumptions 1 and 2 are true [31]. In practical control systems, the function,
g(x), is usually column full-rank. Therefore, the pseudo-inverse of the function g(x) is generally
satisfied. Furthermore, the pseudo-inverse g(x)+ satisfies g(x)+g(x) = I. However, it does not
satisfy g(x)g(x)+ = I. In addition, the auxiliary system constructed above is not a nominal system,
but a compensation control term v(x) is added to the nominal system.

If we can choose an appropriate parameter β, the optimal cost V∗(x) can be computed
from HJB Equation (24). Then, we can get the optimal control law of system (17) with perfor-
mance index (18). The following theorem shows that optimal control u∗(x) = − 1

2 gT(x)∇V∗

is a robust controller for uncertain systems.

Theorem 2. Assume that the mismatched uncertain system (16) satisfies Assumptions 4.1, 4.2
and (19). Consider the auxiliary system (17) corresponding to the performance index (18). There
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exists a solution V∗(x) in HJB Equation (24) for a selected parameter β, and for a constant β′

satisfying |β′| < |β|, such that

2v∗T(x)v∗(x) ≤ β′2xTx

Then, the optimal control policy u∗(x) = − 1
2 gT(x)∇V∗ can globally asymptotically stabilize

the nonlinear uncertain system (16). That is to say, the closed-loop uncertain system ẋ(t) =
f (x) + c(x)h(x) + [g(x) + g(x)m(x)]u∗(x) is globally asymptotically stable.

Proof. In order to prove the global asymptotic stability of the closed-loop system, V∗(x)
is chosen as the Lyapunov function. Considering the performance index (18), V∗(x) is
obviously positive, and V∗(0) = 0. Taking the time derivative of the function V∗(x) along
the system (16), we have

dV∗

dt
=∇V∗T [ f (x) + c(x)h(x) + g(x)u∗(x)] +∇V∗T g(x)m(x)u∗(x) (25)

Using u∗(x) = − 1
2 gT(x)∇V∗ yields

dV∗

dt
=∇V∗T f (x) +∇V∗Tc(x)h(x) +∇V∗T g(x)u∗(x)− 1

2
∇V∗T g(x)m(x)gT(x)∇V∗

≤∇V∗T f (x) +∇V∗Tc(x)h(x) +∇V∗T g(x)u∗(x)

=∇V∗T [ f (x) + g(x)u∗(x) + c(x)h(x)]−∇V∗T(I − g(x)g(x)+)c(x)v∗(x)

+∇V∗T(I − g(x)g(x)+)c(x)v∗(x)

=∇V∗T [ f (x) + g(x)u∗(x) + (I − g(x)g(x)+)c(x)v∗(x)] +∇V∗T g(x)g(x)+c(x)h(x)

−∇V∗T(I − g(x)g(x)+)c(x)v∗(x) +∇V∗T(I − g(x)g(x)+)c(x)h(x)

by u∗(x) = − 1
2 gT(x)∇V∗ and v∗(x) = − 1

2 cT(x)(I − g(x)g(x)+)T∇V∗,

dV∗

dt
≤∇V∗T f (x)− 2u∗(x)Tu∗(x)− 2v∗T(x)v∗(x) +∇V∗T g(x)g(x)+c(x)h(x)

−∇V∗T(I − g(x)g(x)+)c(x)v∗(x) +∇V∗T(I − g(x)g(x)+)c(x)h(x)

It follows from (24) that

∇V∗T f (x) =− f 2
max(x)− g2

max(x)− β2xTx + u∗(x)Tu∗(x) + v∗T(x)v∗(x)

As a result,

dV∗

dt
≤− f 2

max(x)− g2
max(x)− β2xTx− u∗(x)Tu∗(x) + v∗T(x)v∗(x)

− 2u∗(x)T g(x)+c(x)h(x)− 2v∗T(x)h(x)
(26)

On the other hand

−2u∗(x)T g(x)+c(x)h(x) ≤ [g(x)+c(x)h(x)]T [g(x)+c(x)h(x)] + u∗(x)Tu∗(x)

Therefore,

−u∗(x)Tu∗(x)− 2u∗(x)T g(x)+c(x)h(x) ≤ [g(x)+c(x)h(x)]T [g(x)+c(x)h(x)]

≤ f 2
max(x)

(27)
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It follows from the basic matrix inequality that

−2v∗T(x)h(x) ≤ v∗T(x)v∗(x) + hT(x)h(x)

≤ v∗T(x)v∗(x) + g2
max(x)

(28)

So, it can be obtained from (26)–(28) that

dV∗

dt
≤− β2xTx + 2v∗T(x)v∗(x)

=2v∗T(x)v∗(x)− β′2xTx− (β2 − β′2)xTx

≤− (β2 − β′2)xTx

Therefore, by Lyapunov stability theory, the optimal control u∗(x) = − 1
2 gT(x)∇V∗

can make the closed-loop uncertain nonlinear system asymptotically stable. Thus, for a
constant c > 0, there is a neighborhood N = {x : ‖x‖ < c} such that if the state x(t)
enters the neighborhood N, then x → 0 when t→ ∞. However, x(t) cannot stay out of the
domain N forever; otherwise, for all t > 0, there is ‖x(t)‖ ≥ c. This implies that

V∗[x(t)]−V∗[x(0)] =
∫ t

0
V̇∗(x(τ))dt

≤
∫ t

0
−(β2 − β′2)xTxdt

≤
∫ t

0
−(β2 − β′2)c2dt

= −(β2 − β′2)c2t

Hence, when t→ ∞, V∗[x(t)] ≤ V∗[x(0)]− (β2 − β′2)c2t→ −∞. This contradicts the
positivity of V∗[x(t)]. Therefore, system (16) is globally asymptotically stable. We complete
the proof.

5. Neural Networks Approximation in PI Algorithm

In the first two sections, the robust control of uncertain nonlinear systems was transformed
into solving the optimal control of an auxiliary system. However, whether the uncertain system
is matched or mismatched, the key issue is how to obtain the solution to corresponding HJB
equation. As is well known, it is a nonlinear partial differential equation that is hard to solve.
Moreover, solving the HJB equation may lead to the curse of dimensionality [21]. In this section,
an online PI algorithm is used to solve the HJB equation iteratively, and neural networks are
utilized to approximate the optimal cost in PI algorithm.

5.1. PI Algorithms for Robust Control

For the system with matched uncertainty, the optimal control problem (4) with (5) is
considered. For any admissible control, the corresponding cost function can be expressed as

V[x(t)] =
∫ ∞

t
[ f 2

max(x) + xTx + uTu]dt

=
∫ t+T

t
[ f 2

max(x) + xTx + uTu]dt +
∫ ∞

t+T
[ f 2

max(x) + xTx + uTu]dt

where T > 0 is a selected constant. Therefore, it follows that

V[x(t)] =
∫ t+T

t
[ f 2

max(x) + xTx + uTu]dt + V[x(t + T)] (29)

Based on the integral reinforcement relationship (29) and optimal control (9), the PI
algorithm of robust control for matched uncertain nonlinear systems is given below.
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The convergence of Algorithm 1 is illustrated as follows. The following conclusion
gives an equivalent form of the Bellman Equation (30).

Algorithm 1 PI algorithm of robust control for matched uncertain nonlinear systems

(1) Select supremum fmax(x) to satisfy ‖h(x)‖ ≤ fmax(x);
(2) Initialization: for the nominal nonlinear system (4), select an initial stabilization control

u0(x);
(3) Policy evaluation: for control input ui(x), calculate cost Vi(x) from the Bellman equation

Vi[x(t)] =
∫ t+T

t
[ f 2

max(x) + xT x + uT
i (x)ui(x)]dt + Vi[x(t + T)] (30)

(4) Policy improvement: compute the control law ui+1(x) using

ui+1(x) = −1
2

gT(x)∇Vi. (31)

By repeatedly iterating between (30) and (31), until the control input is convergent.

Proposition 1. Suppose that ui(x) is a stabilization controller of nominal system (4). Then the
optimal cost Vi(x) solved from (30) is equivalent to solving the following equation

f 2
max(x) + xTx + uT

i (x)ui(x) +∇Vi[ f (x) + g(x)ui(x)] = 0. (32)

Proof. Dividing both sides of (30) by T and finding the limit yields

lim
T→0

Vi[x(t + T)]−Vi[x(t)]
T

+ lim
T→0

∫ t+T
t [ f 2

max(x) + xTx + uT
i (x)ui(x)]dt

T
= 0

From the definition of function limit and L’Hospital’s rule, we can get

dVi[x(t)]
dt

+ lim
T→0

d
dT

∫ t+T

t
[ f 2

max(x) + xTx+uT
i (x)ui(x)]dt = 0 (33)

It follows that

f 2
max(x) + xTx + uT

i (x)ui(x) +∇Vi[ f (x) + g(x)ui(x)] = 0

Thus, we can deduce (32) from (30). On the other hand, along the stable system ẋ =
f (x) + g(x)ui(x), finding the time derivative of Vi(x) yields

dVi[x(t)]
dt

= ∇Vi[ f (x) + g(x)ui(x)]

Integrating both sides from t to t + T, yields

Vi[x(t + T)]−Vi[x(t)] =
∫ t+T

t
∇Vi[ f (x) + g(x)ui(x)]dt

Therefore, we can get the following result from (32)

Vi[x(t)] =
∫ t+T

t
[ f 2

max(x) + xTx + uT
i (x)ui(x)]dt + Vi[x(t + T)]

This proves that (32) can deduce (30).

According to [32–34], if the initial stabilization control policy is given u0(x), then
the follow-up control policy calculated by the iterative relations of (30) and (31) is also a
stabilizing control policy, and cost sequence Vi[x(t)] calculated by iteration converges to the
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optimal cost. By Proposition 1, it is known that (30) and (32) are equivalent, so the iterative
relations (30) and (31) in Algorithm 1 converge to the optimal control and optimal cost.

Similarly, we give a PI algorithm of robust control for nonlinear systems with mis-
matched uncertainties.

The steps of policy evaluation (34) and policy improvement (35) are iteratively calculated
until the policy improvement step does not change the current policy. The optimal cost
function is calculated as V∗(x), then u∗(x) = − 1

2 gT(x)∇V∗(x) is the robust control law.
The convergence proof of Algorithm 2 is similar to Algorithm 1, which will not be

repeated here.

Algorithm 2 PI algorithm of robust control for nonlinear systems with mismatched uncertainties

(1) Decompose the uncertainty properly so that ∆ f (x) = c(x)h(x) and ∆g(x) = g(x)m(x),
select constant parameter β, β′ such that |β′| < |β|, and then calculate the nonnegative
function fmax(x) and gmax(x) according to (19);

(2) For auxiliary system (17), select an initial stabilization control policy u0(x);
(3) Policy evaluation: Give a control policy ui(x), the cost Vi(x) is solved from the following

Bellman equation

Vi[x(t)] =
∫ t+T

t
[ f 2

max(x) + g2
max(x) + βxT x + ūT

i (x)ūi(x)]dt + Vi[x(t + T)]; (34)

(4) Policy improvement: Calculate the control policy using the following update law

ūi+1(x) = −1
2

ḡT(x)∇Vi; (35)

(5) Check if the condition 2v∗T(x)v∗(x) ≤ β′2xT x is satisfied. Return to step (1) and select the
larger constants β and β′ when it does not hold.

Remark 3. In Step (3) of Algorithm 1 or Algorithm 2, solving Vi[x(t)] from (30) or (34) can be
transformed into a least squares problem [17]. By reading enough data online along the system
trajectory, the cost function V(x) can be calculated by using the least square principle. However,
the cost Vi[x(t)] has no specific expressions. In next subsection, along the system trajectory, online
reading of sufficient data on the interval [t, t + T], the cost Vi[x(t)] can be approximated by neural
network in PI algorithms. Moreover, implementation of the algorithm does not need to know the
system dynamics function f (x).

5.2. Neural Network Approximation of Optimal Cost in PI Algorithm

In the implementation of the PI algorithms, we need to use the data of the nominal
system and use the least square method to solve the cost function. However, the cost
function of nonlinear optimal control problem has no specific form. Therefore, it is nec-
essary to use neural network structure to approximate the cost function, carry out policy
iteration, update weights, and then obtain the approximate optimal cost function. In this
subsection, neural network is utilized to approximate the optimal cost in the corresponding
HJB equation.

Based on the continuous approximation theory of neural network [35], a single neural
network is utilized to approximate the optimal cost in HJB equation. For matched uncertain
systems, suppose that the solution V∗(x) of HJB Equation (10) is smooth positive definite,
and the optimal cost function on compact set Ω is expressed as

V∗(x) = WTφ(x) + ε(x) (36)

where W ∈ RL is an unknown ideal weight, and φ(.) : Rn → RL is a linear independent
basis vector function. It is assumed that φ(x) is continuous, φ(0) = 0, and ε(x) is the error
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vector of neural network reconstruction. Thus, the gradient of the optimal cost function (36)
can be expressed as

∇V∗ =
∂V∗

∂x
= ∇φT(x)W +∇ε(x) (37)

where ∇ε(x) = ∂ε
∂x . On the basis of approximation property of neural network [35,36],

when the number of neurons in hidden layer L → ∞, the approximation error ε(x) → 0,
∇ε(x)→ 0. Substituting (36) and (37) into (9), the optimal control is rewritten as follows

u∗(x) = −1
2

gT(x)[∇φT(x) +∇ε(x)] (38)

Assume that Ŵ is an estimated value of the ideal weight W. Since the ideal weight W
in (36) is unknown, the cost function of the i− th iteration in Algorithm 1 is expressed as

V̂i(x) = ŴT
i φ(x) (39)

Using the approximation of neural network in cost function, the Bellman Equation (30) in
Algorithm 1 is rewritten as follows

ŴT
i φ(x(t)) = Ψ + ŴT

i φ(x(t + T)) (40)

where Ψ =
∫ t+T

t
[

f 2
max(x) + xTx + uT

i (x)ui(x)
]
dt. Since the above formula uses neural

network to approximate the cost function, the residual error caused by neural network
approximation is

εi(x(t), T) = Ψ + ŴT
i φ(x(t + T))− ŴT

i φ(x(t)) (41)

In order to obtain the neural network weight parameters of approximation function,
the following objective functions can be minimized in the meaning of least square

E =
∫

Ω
εi(x(t), T)Tεi(x(t), T)dx, (42)

that is
∫

Ω
dεi(x(t),T)

dŴi
εi(x(t), T)dx = 0. Using the definition of inner product, it can be rewritten as

〈dεi(x(t), T)
dŴi

, εi(x(t), T)〉Ω = 0 (43)

It follows from properties of the internal product that

ΦŴi + 〈[φ(x(t + T))− φ(x(t))], Ψ〉Ω = 0 (44)

where Φ = 〈[φ(x(t + T))− φ(x(t))], [φ(x(t + T))− φ(x(t))]T〉. Therefore,

Ŵi = −Φ−1〈[φ(x(t + T))− φ(x(t))], Ψ〉Ω (45)

So far, the neural network weight parameters of approximation function Vi(x) can be
calculated. Thus, the update control policy can be obtained from (35)

ûi+1(x) = −1
2

gT(x)∇φT(x)Ŵi. (46)

According to [32,33,35,36], using the policy iteration of RL algorithm, the cost sequence
Vi(x) converges to the optimal cost V∗(x), and the control sequence ui(x) converges to the
optimal control function u∗(x).

For mismatched uncertain systems, similar neural network approximation can be used.
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6. Simulation Examples

Some simulation examples are presented to verify the feasibility of the robust control
design method for uncertain nonlinear systems in this section.

Example 1. Consider the following uncertain nonlinear systems

ẋ(t) =
[

0 6
−1 1

][
x1
x2

]
+

[
0

p1x1cos(x2
2)

]
+

[
0

1 + p2x2
2

]
u (47)

where x = [x1, x2]
T is the system state, ∆ f (x) =

[
0

p1x1cos(x2
2)

]
is the uncertain disturbance

function of the system, ∆g(x) =
[

0
p2x2

2

]
is input uncertainty function, p1 ∈ [−2, 2], p2 ∈ [0, 10].

Obviously,

∆ f (x) = g(x)h(x), ∆g(x) = g(x)m(x) (48)

where g(x) =

[
0
1

]
, h(x) = p1x1cos(x2

2), m(x) = p2x2
2. Moreover, |h(x)| ≤ |2x1| =

fmax(x). Thus, the original robust control problem is converted into calculating optimal control
law. For nominal system

ẋ(t) =
[

0 6
−1 1

][
x1
x2

]
+

[
0
1

]
u, (49)

find the control function u, such that the performance index

J(x, u) =
∫ ∞

0
[ f 2

max(x) + xTx + uTu]dt

=
∫ ∞

0
[5x2

1 + x2
2 + u2]dt

(50)

is minimized.
In order to solve the robust control problem by using Algorithm 1, it is assumed that the

optimal cost function V∗(x) has a neural network structure: V∗(x) = WTφ(x), where W =
[W1, W2, W3]

T , φ(x) = [x2
1, x1x2, x2

2]
T . The initial weight is taken as W0 = [−1, 5, 1.5]T , and the

initial state of system x0 = [2,−0.5]T . The neural network weights are calculated iteratively
by MATLAB. In each iteration, 10 sets of data samples are collected along the nominal system
trajectory to perform the batch least squares problem. After five iterations, the weight converges to
[1.9645, 2.8990, 5.4038]. The robust control law of uncertain system (47) is u∗ = −1.4495x1 −
5.4038x2. The convergence process of neural network weight is shown in Figure 1, while the
changing process of control signal is shown in Figure 2. The uncertain parameter p1 and p2
in uncertain system (47) take different values, the state trajectories of the closed-loop system are
obtained by the robust control law. Figure 3 shows the trajectory of the closed-loop system when
p1 = −2, p2 = 1. Figure 4 shows the trajectory of the closed-loop system when p1 = −1, p2 = 4.
Figure 5 shows the trajectory of the closed-loop system when p1 = 0, p2 = 7. Figure 6 shows the
trajectory of the closed-loop system is p1 = 2, p2 = 10. From these figures, we can see that the
closed-loop system is stable, which shows the effectiveness of the robust control law.

In this example, because of the linear property of the nominal system, MATLAB software
can be used to solve LQR problem directly. With this method, the optimal control is calculated as
u∗ = −1.4496x1 − 5.4038x2. It is almost the same as the result of neural network approximation,
which shows the validity of Algorithm 1.
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Figure 1. Neural network weight.
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Figure 3. Closed loop system trajectory, p1 = −2, p2 = 1.
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Figure 4. Closed loop system trajectory, p1 = −1, p2 = 4.
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Figure 5. Closed loop system trajectory, p1 = 0, p2 = 7.
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Figure 6. Closed loop system trajectory, p1 = 2, p2 = 10.

Example 2. Consider the following uncertain nonlinear systems
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ẋ(t) =
[

0 8
−5 1

][
x1
x2

]
+

[
0

0.5 + p2x2
2

]
u +

[
p1x1cos(x2

2) + p3x2sin(x1x2)
0

]
(51)

where x = [x1, x2]
T is the system state, p1 ∈ [−2, 2], p2 ∈ [0, 5], p3 ∈ [−1, 1]. Let ∆ f (x) =[

p1x1cos(x2
2) + p3x2sin(x1x2)

0

]
, ∆g(x) =

[
0

p2x2
2

]
. It is easy to know that the system (51)

is a mismatched system. The uncertain disturbance of the system is decomposed as

∆ f (x) = c(x)h(x), ∆g(x) = g(x)m(x) (52)

where, g(x) =

[
0

0.5

]
, c(x) =

[
1
0

]
, h(x) = p1x1cos(x2

2) + p3x2sin(x1x2), m(x) = p2x2
2.

Moreover, fmax(x) and gmax(x) are calculated as follows.

‖g(x)+c(x)h(x)‖ = ‖
[

0 2
][ 1

0

]
h(x)‖ = 0 = fmax(x),

and

‖h(x)‖ = ‖p1x1cos(x2
2) + p3x2sin(x1x2)‖ ≤ |2x1 + x2| = gmax(x)

Select the parameter β = 1. Then the original robust control problem is converted into solving
an optimal control problem. For the auxiliary system

ẋ(t) =
[

0 8
−5 1

][
x1
x2

]
+

[
0 1

0.5 0

]
ū, (53)

find the control policy, ū, such that the following performance index is minimized

J(x, u) =
∫ ∞

0
[ f 2

max(x) + g2
max(x) + β2xTx + ūT ū]dt

=
∫ ∞

0
[5x2

1 + 2x2
2 + 4x1x2 + ūT ū]dt.

(54)

In order to obtain the obust control law by using Algorithm 2, it is assumed that the optimal cost
function V∗(x) has a neural network structure: V∗(x) = WTφ(x), where W = [W1, W2, W3]

T ,
φ(x) = [x2

1, x1x2, x2
2]

T . The initial weight is taken as W0 = [1,−3, 0.5]T , and the initial state
of system is chosen as x0 = [−2, 0.5]T . The neural network weights are calculated iteratively
by MATLAB. In each iteration, 10 sets of data samples are collected along the nominal system
trajectory to perform the batch least squares problem. After six iterations, the weight converges
to W = [2.8983,−0.6859, 5.2576]T . The optimal control of the auxiliary system is calculated

as ū∗ =
[

0.1715x1 − 2.6288x2
−2.8983x1 + 0.3429x2

]
. The robust control law of the original uncertain system is

u∗ = 0.1715x1− 2.6288x2. The convergence process of neural network weight is shown in Figure 7,
while the changing process of control signal is shown in Figure 8. The uncertain parameters p1, p2
and p3 in uncertain system (51) take different values, the state trajectories of the closed-loop system
are obtained by the robust control law. Figure 9 shows the trajectory of the closed-loop system when
p1 = −1, p2 = 1 and p3 = 1. Figure 10 shows the trajectory of the closed-loop system when
p1 = −1, p2 = 2 and p3 = 0. Figure 11 shows the trajectory of the closed-loop system when
p1 = 0.3, p2 = 3 and p3 = −1. Figure 12 shows the trajectory of the closed-loop system when
p1 = −2, p2 = 5 and p3 = 1. From these figures, we can see that the closed-loop system is stable,
which shows the effectiveness of the robust control law.

The nominal system is also a linear system, so MATLAB software can be used to solve LQR problem

directly. With this method, the optimal control is calculated as ū∗ =
[

0.1713x1 − 2.6286x2
−2.8983x1 + 0.3430x2

]
. It

has little difference with the approximate result of neural network, which shows the validity of Algorithm 2.
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Figure 7. Neural network weight.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2
Control signal

Time(s)

 

 

u

Figure 8. Robust control signal.

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1
Trajectory of closed−loop system

Time(s)

x

 

 

x1

x2

Figure 9. Closed loop system trajectory, p1 = −1, p2 = 2, p3 = 1.
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Figure 10. Closed loop system trajectory, p1 = −1, p2 = 2, p3 = 0.
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Figure 11. Closed loop system trajectory, p1 = 0.3, p2 = 3, p3 = −1.
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Figure 12. Closed loop system trajectory, p1 = −2, p2 = 5, p3 = 1.
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The nominal systems corresponding to the above two examples are linear systems.
The following is an example with nonlinear nominal system.

Example 3. Consider the following uncertain nonlinear systems

ẋ(t) =
[

1 1
−1 −2

][
x1
x2

]
+

[
0

2x2
1cos2(x2)

]
+

[
0

p1x2cos2(x1)

]
+

[
0

1 + p2x2
2

]
u (55)

where x = [x1, x2]
T is the system state, ∆ f (x) =

[
0

p1x2cos2(x1)

]
is the uncertain disturbance

function of the system, ∆g(x) =
[

0
p2x2

2

]
is input uncertainty function, p1 ∈ [−2, 2], p2 ∈ [0, 2].

Obviously,

∆ f (x) = g(x)h(x), ∆g(x) = g(x)m(x) (56)

where g(x) =

[
0
1

]
, h(x) = p1x2cos2(x1), m(x) = p2x2

2. Moreover, |h(x)| ≤ |2x2| =

fmax(x). Thus, the original robust control problem is converted into calculating optimal control
law. For nominal system

ẋ(t) =
[

1 1
−1 −2

][
x1
x2

]
+

[
0

2x2
1cos2(x2)

]
+

[
0
1

]
u, (57)

find the control function u, such that the performance index

J(x, u) =
∫ ∞

0
[ f 2

max(x) + xTx + uTu]dt

=
∫ ∞

0
[x2

1 + 5x2
2 + u2]dt

(58)

is minimized.
In order to solve the robust control problem by using Algorithm 1, it is assumed that the

optimal cost function V∗(x) has a neural network structure: V∗(x) = WTφ(x), where W =
[W1, W2, W3]

T , φ(x) = [x2
1, x1x2, x2

2]
T . The initial weight is taken as W0 = [−2, 5, 0.5]T , and the

initial state of system x0 = [2,−0.5]T . The neural network weights are calculated iteratively
by MATLAB. In each iteration, 10 sets of data samples are collected along the nominal system
trajectory to perform the batch least squares problem. After five iterations, the weight converges to
[25.5830, 12.5830, 2.6458]. The robust control law of uncertain system (55) is u∗ = −6.2915x1 −
2.6458x2. The convergence process of neural network weight is shown in Figure 13, while the
changing process of control signal is shown in Figure 14. The uncertain parameter p1 and p2
in uncertain system (55) take different values, the state trajectories of the closed-loop system are
obtained by the robust control law. Figure 15 shows the trajectory of the closed-loop system when
p1 = 1, p2 = 0.8. Figure 16 shows the trajectory of the closed-loop system when p1 = −0.5,
p2 = 1. Figure 17 shows the trajectory of the closed-loop system when p1 = 1, p2 = 2. Figure 18
shows the trajectory of the closed-loop system is p1 = 2, p2 = 1. From these figures, we can see
that the closed-loop system is stable, which shows the effectiveness of the robust control law.
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Figure 13. Neural network weight.
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Figure 15. Closed loop system trajectory, p1 = 1, p2 = 0.8.
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Figure 16. Closed loop system trajectory, p1 = −0.5, p2 = 1.
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Figure 17. Closed loop system trajectory, p1 = 1, p2 = 2.
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Figure 18. Closed loop system trajectory, p1 = 2, p2 = 1.



Appl. Sci. 2021, 11, 2312 21 of 22

7. Conclusions

In this paper, the PI algorithms in RL are proposed to solve robust control problem for a
class of nonlinear continuous time uncertain system. The robust control law is obtained without
knowing the internal dynamics of the nominal system. The considered robust control problem
is converted into solving an optimal control problem containing a nominal or auxiliary system
with a predefined performance index. The online PI algorithms are established to calculate the
robust controller of matched and mismatched system. The numerical examples are given to
show the availability of the theoretical results. The proposed method may be extended to solve
robust tracking problems for some nonlinear systems with uncertainty entering output, which
may be the subject of our future research.
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