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Abstract: This work considered a joint problem of train rescheduling and closure planning. The
derivation of a new train run schedule and the determination of a closure plan not only must
guarantee the satisfaction of all the given constraints but also must optimize the number of accepted
closures, the number of approved train runs, and the total time shift between the resultant and the
original schedule. Presented is a novel nonlinear mixed integer optimization problem which is valid
for a broad class of railway networks. A multi-level hierarchical heuristic algorithm is introduced due
to the NP-hardness of the considered optimization problem. The algorithm is able, on an iterative
basis, to jointly select closures and train runs, along with the derivation of a train schedule. Results
obtained by the algorithm, launched for the conducted experiments, confirm its ability to provide
acceptable and feasible solutions in a reasonable amount of time.

Keywords: railway transportation; timetable; track closure; rescheduling; optimization; simulation

1. Introduction and Contributions
1.1. Introduction

Scheduling of trains resulting in customer-friendly timetables is a crucial management
task in railway transportation. The determination of a schedule of trains is a complex and
a challenging thing in itself, even if solved in the presence of full, crisp, and stable informa-
tion, e.g., References [1–4]. Unfortunately, such information is unavailable in real-world
conditions when different disruptions can occur. Despite a variety of reasons for the disrup-
tions, all of them result in derogation from timetables and delayed arrivals at destinations
for railway customers. The outages can be unplanned, e.g., due to infrastructure and facility
breakdowns, the acts of God or planned, e.g., connected with the preventive maintenance
of infrastructure. Considerations in the paper are focused on the latter case when planned
closures of tracks (also named possessions) are taken into account. From now on, a closure
is understood as a period when a part of a rail network, i.e., a defined collection of rail
tracks, is not available for trains. A case with a given set of closures is only investigated
in the paper. Each closure affects an ongoing timetable. A collection of closures can bring
about the modification of trains’ arrival and departure times at stations (and other points
on of the railway network—further called stations—where merging/division of tracks can
take place or where trains can overtake one another or stop) or even the cancellation of
some trains. The change of an ongoing timetable for trains is called the train rescheduling,
which is obligatory due to the necessity to manage a given set of closures. Depending
on a size of the set of closures, as well as durations of closures and their time and place
relationships, the acceptance of all closures may not be possible. So, the proper closure
planning is necessary as it allows for a trade-off between the possibly highest number of
accepted closures and the as small as possible deterioration of the original timetable for

Appl. Sci. 2021, 11, 2334. https://doi.org/10.3390/app11052334 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9760-0656
https://orcid.org/0000-0001-6425-1691
https://orcid.org/0000-0003-3195-4862
https://orcid.org/0000-0003-0816-8089
https://doi.org/10.3390/app11052334
https://doi.org/10.3390/app11052334
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052334
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2334?type=check_update&version=2


Appl. Sci. 2021, 11, 2334 2 of 41

trains. Such planning and the rescheduling of trains are two important tasks faced by
railway transportation operators.

1.2. Contributions and Structure of the Paper

Unlike most of the existing works, we consider train rescheduling and closure plan-
ning as a joint optimization task modeled as the nonlinear mixed integer optimization
problem. Due to its high complexity, we propose a heuristic algorithm which is based on a
decomposition of the problem into smaller sub-problems.

Current considerations refer to Reference [5] and extend it, taking into account the
possibility of train rerouting. In our approach, a new route may be determined as any track
sequence along a given path (sequence of stations), and it may also include the substitute
transportation for some of them. Moreover, the proposed method of rerouting can be
further enhanced, as it was done in Reference [6], where the authors analyze a rerouting
mechanism that permits changes in the order and the number of tracks visited by a train.

The novelty of our contribution is three-fold:

• First, we formulate a novel joint train rescheduling and closure planning as the
nonlinear mixed integer optimization problem valid for a wide class of railway
networks with the possibility of rerouting and substitutive transport launching.
Moreover, our model allows to control each event (e.g., each train runs conflict)
independently, in contrast to the methods applying aggregated approach e.g., as
the one presented in Reference [7]. The proposed model and resulting algorithms
enable solving investigated decision-making problems for general railway net-
works, but they have been developed taking also into account the specificity of
such networks in Poland.

• Second, due to the high complexity of the formulated initial problem, we propose
a multi-level heuristic solution algorithm based on the decomposition allowing
the solution of smaller-size sub-problems. The choice of the heuristic algorithm
suitable for real-world applications is justified by the NP-hardness of the problem.
The proposed formulation of the optimization problem allows for the rationale of
this property.

• Third, we confirm the usefulness of the algorithm via the extensive simulation
experiments using both randomly generated data but also data originated from
the real-world railway network comprising almost 150 stations and 100 trains.
The remainder of this paper is organized as follows. Closure planning practices
in Poland are outlined in Section 3, and it follows a brief review of related work
given in Section 2. The next section presents the model of the considered joint
problem of train rescheduling and track closure planning which is based on the
graph-matrix representation of a railway network, a train runs timetable, and track
closures. Section 5 is devoted to the detailed description of proposed heuristic
solution algorithm. The results of experimental evaluation of the algorithm, both
for a single track and, first of all, for a real-world case, are given in Section 6. A real-
world railway network consisting of up to 95 train runs and 149 train stations serves
for the evaluation of the algorithm’s quality with respect to different algorithm’s,
as well as problem’s, parameters. Final remarks complete the paper.

2. Related Work

The problem of train rescheduling under planned closures consists of two partial
problems which can be treated separately, and those separate approaches are included in the
literature survey. From the standpoint of this paper, however, simultaneous consideration
of both partial problems is of greater importance, and, for that reason, the literature review
focuses on the joint problem. Finally, since the paper targets the railway network in Poland,
a portion of the review is dedicated to local models and methods.

Since the volume of papers dedicated to scheduling of trains and closure planning
in railway transportation is considerable, only selected works can be included in a non-
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dedicated review paper. For additional survey of recent literature, we refer the reader to
References [8,9].

2.1. Train Rescheduling

The train rescheduling task is a problem quite widely discussed in the literature. It is
understood, in the most cases, as the response to a single unforeseen event that prevents
the further realization of the transportation plan by the original timetable. As detailed in
Reference [10], the problem of rescheduling can be handled as different (re-)scheduling
paradigms: offline, done to establish a primary schedule; and online, done mainly to
reestablish a schedule that is no longer acceptable (feasible). The main difference, from
the standpoint of difficulty of solving is that the former approach can be performed over a
significantly longer period of time, while the latter needs to be done quickly, so as not to
allow operations on an invalid schedule. The latter approach can, and likely will, lead to
such problem formulations and solution algorithms which, in general case, forgo optimality
and focus on providing heuristic, sub-optimal solutions instead. It is this approach that
we focus on in this paper, although the results can also be applied to formulate a primary
schedule. Online approaches can be further divided into static (open-loop) and dynamic
(closed-loop), where, in the dynamic cases, not all of the information is readily available
during the decision-making process. As new information about decision execution becomes
available, it is fed back to the rescheduling algorithm and (possibly) results in new solutions.
Finally, prediction of future states of the system is taken into consideration in proactive
approaches, as opposed to reactive ones.

The mixed integer programming (MIP) model is proposed in Reference [11] for the
train rescheduling problem when a train’s initial delays are given, and the minimization of
the total delay of all passengers is required. However, specific requirements resulting from
the state of railway infrastructure are not taken into account in this work. It is assumed
that every route can hold any number of train runs in the same period. The extension
of this problem is presented in Reference [12], where the limited number of train runs
traveling between two stations at a given time is considered. The problem is formulated
using integer linear programming approach and solved using the branch and bound
method. Real-world data provided by Deutsche Railways have made it possible to test
this approach successfully. A similar model and solution algorithm based on the Lagrange
relaxation is proposed in Reference [13]. As a consequence, the problem is decomposed
into a sequence of simple optimization tasks each corresponding to one train run. Another
integer programming model presented in Reference [14] considers the assumption that,
between any two stations, there is no more than one track, which may be occupied by
no more than one train run at the same time. However, the authors do not propose any
solution to the formulated problem due to its computational complexity. The authors in
Reference [15] assume that there are always two tracks between two connected stations,
and each of them may be occupied by no more than one train run at the same time. In this
case, the genetic algorithm is applied to solve the train rescheduling problem. The discrete
dynamic optimization model for train rescheduling problem is given in Reference [16]. The
main goal in this case is to maximize punctuality and station satisfaction degree. However,
authors also limit their consideration to the single-track railway and, even for this simple
scenario, apply the heuristic approach.

More complex models of railway network infrastructure are presented in Refer-
ence [17], where it is taken into account that tracks are composed of blocks, and there
may be any number of tracks between stations. The optimization model, formulated as a
mixed linear programming task, consists of the minimization of two objectives: the total
cost of delays and the total time of delays. The CPLEX software was applied to solve the
problem. A similar approach is proposed in Reference [18]. Assumptions about railway
infrastructure are also adopted in Reference [19], where two methods are proposed. The
first one is based on MIP, while the second one uses Constraint Programming. Similarly, the
timetable rescheduling, rolling stock rescheduling, and crew (train drivers) rescheduling
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problems are formulated in Reference [20] using integer programming models. In the
mentioned paper, the timetable rescheduling problem is treated as the job shop scheduling,
the rolling stock rescheduling problem is presented using the multi-commodity flow in a
graph model, and the crew rescheduling problem is seen as the extended set covering. Fur-
ther research has been done in providing an approach of exchanging blocks of routes with
permitted alternative blocks through the means of alternative graph formulations [21,22].
One can also find adaptations of graph methods [23], such as time-space models [24].

As models considering the accurate description of railway infrastructure require
too many computational resources to solve problems exactly in an acceptable amount of
time, some more time efficient methods and heuristics are often applied. For example, in
Reference [25], the authors propose a new approach based on the Statistical Analysis of
Propagation of Incidents method, and, in Reference [26], a two-stage procedure is proposed.
The first stage rests on the Simulated Annealing and the Tabu Search metaheuristics,
whereas the second stage solves a simple integer programming problem. An approach
based on MIP that incorporates a possibility of rerouting trains to enable minimizing
the number of canceled and delayed trains, while adhering to infrastructure and rolling
stock capacity constraints, is presented in Reference [27]. A proposition to apply MIP
model to increase a robustness of the timetables is described by authors of Reference [28].
Considerations of the rescheduling problem on a single track unidirectional rail line that
adheres to a cyclic schedule are included in Reference [29], where it is assumed that two
types of trains (express and local) are dispatched from the origin in an alternating manner.
The application of mixed integer programming to minimize combined length of shipping
cycle and total dwell time of local trains at all stations is presented. In Reference [30], the
authors consider the problem of adjusting the timetable in a case of partial or complete
deadlocks. The integer programming formulation is given with the maximization of a
service level.

A recent macroscopic approach was presented in Reference [31], where boundary
passenger runs within an urban network were tackled. The authors propose a mixed
integer programming approach with the use of a space-time network. This is solved
for large instances with the use of decomposition. In Reference [32], the authors turn to
microscopic modeling of the railway network and consider a problem of rescheduling in
dense railway systems which are subject to disturbances. A multi-objective optimization
problem is solved heuristically. In Reference [33], a problem of deadhead routing in an
urban transit line was tackled. The authors formulate it as an MIP problem which is solved
with the use of a CPLEX solver with an embedded branch-and-cut algorithms.

2.2. Closure Planning

The papers on the closure planning and, more generally, maintenance scheduling
problems or even the maintenance management usually take into account the need of
introducing to train timetables a delay as little as possible. Considerations in Reference [34]
are focused on the local impact of maintenance on the railway infrastructure. Moreover,
the limitation to single routes is taken into account in References [35–38]. In these papers,
the problem of timetable planning is not solved. Instead, the scheduling of maintenance
activities is formulated to minimize their impact on a original schedule. According to
the argumentation in Reference [36] that such a problem is NP-hard, the application of
some heuristic algorithms is appropriate, e.g., in Reference [38], the authors proposed
the ant colony optimization method. In Reference [39], authors formulate the problem of
planning maintenance windows, which is a concept incorporated by Swedish railways.
This particular idea consists of the inclusion of train-free time slots into the tracks during
timetable planning. The time windows for potential track closures and their durations are
determined in advance, while the train traffic is described regarding statistical flows instead
of a final timetable. More detailed surveys on railway maintenance planning activities may
be found in References [40,41].
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More recently, in Reference [42], a problem of scheduling maintenances in a large-scale
network of trams was considered. The authors formulate an MIP and solve it with the use
of neighborhood search-like heuristic approach.

2.3. Joint Approaches

Some important suggestions for the joint consideration of the maintenance activities
scheduling and the train run rescheduling are indicated in References [43,44]. It is pointed
out there that a single closure of a track indispensable for the completion of a maintenance
activity could be treated as a particular type of train, but the idea has not been sufficiently
developed. The concept of a system that helps to plan the closure of tracks with the
simultaneous consideration of changes in the timetable is presented in Reference [45].
However, the solution is not based on a formal mathematical model, and the authors
assume that new schedules are determined by external systems rail carriers. The joint
scheduling of maintenance of the infrastructure (track closures) and rescheduling of train
runs is also discussed in References [46,47]. In Reference [47], the author addresses the
case when train arrival and departure times may be changed, but train runs cannot be
canceled. Two analytical approaches are proposed, i.e., MIP (additionally with the bound
and price reduction) and Problem Space Search metaheuristic, which was also presented
in Reference [46]. This heuristic allows to generate alternative timetables and then to
combine obtained solutions into one final timetable. MIP models are also proposed in
References [7,48] for the joint closure planning and timetabling problem. This model
includes the possibility of changing train routes, as well. However, it is assumed that
such train rescheduling may be performed among a finite number of alternatives given
in advance.

Unlike in our work, in Reference [48], the authors assumed that all closures are
obligatory and in Reference [49], the authors do not consider particular events concerning
conflicts between train runs; instead, they apply flow-based approach which is modeled
as MIP with implicit link usage variables and cumulative station entry/exit variables.
This model is solved with a Gurobi solver in Python and tested on a set of self-generated
instances. In Reference [50], a reformulation is made—link usage variables are made
explicit, while entry/exit variables are now binary. This model is further extended in
Reference [51] to include crew scheduling.

Train scheduling and preventive maintenance are also jointly considered in Refer-
ence [52], where the sum of absolute arrival time deviations of real trains at destinations
between the identical and actual timetables is minimized. A proactive approach to planning
maintenance windows is presented as the authors try to ensure that maintenance work is
already included in the schedule. The problem is formulated as an MIP and solved with
the use of Lagrange relaxation. Another MIP approach presented in Reference [53] is aimed
at incorporating new closures in a way that disturbs the original schedule the least. This
approach is tested on date from a cut-out of the Netherlands railway system. An MIP
approach tested on the French railway network can be found in Reference [54].

The authors of Reference [8] develop a microscopic approach, where timetabling
and maintenance scheduling is formulated as a mixed integer programming problem. To
alleviate computational difficulties of finding an exact solution, an iterative algorithm based
on decomposition is proposed. It is shown that it results in near-optimal solutions for the
tested cases. For Reference [55], an MIP formulation was applied to high-speed networks,
where, in order to alleviated maintenance-induced problems, switches to normal-speed
network were employed. Finally, in Reference [9], the authors use a dynamic constraint-
generation technique coupled with Lagrangian relaxation for a double-track network with
transmittable maintenances. The method was proven effective on a small section of a
Chinese railway system.

Mixing the microscopic and the macroscopic approaches leads to intermediate, so-
called mesoscopic models. As an example, in Reference [56], the authors consider a
two-stage algorithm as a means of problem decomposition which speeds-up the algo-
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rithm execution time. The algorithm is tested on a network of 66 stations in case of a
single, full blockade of a selected connection. This approach is further explored in Refer-
ence [57], where online, closed-loop rescheduling is done with the use of model model
predictive control.

Further integration of traffic control and train operation is considered in Reference [58],
where train speeds are considered. The authors formulate a nonlinear integer programming
problem which they then simplify by approximating the nonlinearities with piecewise
linear functions. To solve the many formulated sub-problems, the authors use a solver, a
genetic algorithm and a custom procedure. The method is tested on a railway network
of 40 nodes. In Reference [59], the authors consider two control loops: inner, which is
responsible for managing immediate train operation and outer, where traffic control is
done. The authors focus on Automated Train Operation subsystem of the Automatic Train
Control system, and they provide an extensive review on the subject.

In our paper, we propose a joint approach that focuses on specifics of the Polish
Railways. This leads to a new decision-making problem, which is formulated with a
unique combination of constraints, such as limits in total travel time extension and total
distance extension, that might arise during rescheduling. This problem is, by nature, highly
nonlinear, mainly due to to existence of a large number of binary variables, and it cannot
be solved quickly to optimality (or, in fact, to feasibility), in the general case. We prove that
property by showing that the problem is NP-hard. Our quality criterion consists of three
types of sub-criteria: number of accepted train runs, number of accepted closures, and the
total deviation of the new schedule from the original schedule. To solve such a problem, we
propose a four level solution algorithm that attempts to iteratively include train runs and
closures and optimizes the total deviation. This iterative character, if left unchecked, leads
to long execution times. We reduce those times by providing a Track Grouping Algorithm
that divides the railway network into smaller sub-networks which are easier to optimize.

3. Current Closure Planning Practices in Poland

In Poland, the national company Polish Railways is the owner of the whole railway
infrastructure. Closures are planned due to either maintenance or investment works. All
maintenance activities and investment works are scheduled by local departments and
corresponding investment sections, even though the execution is outsourced. A closure
planning is performed in three-time horizons, i.e.,

• long-term planning—performed once a year; there is no initial timetable and only
long term closures are known in advance and may be taken into consideration, the
aim is to prepare an initial closure plan and a timetable; both may be slightly modified
later during the year;

• periodic planning—carried out every two months; the initial closure plan and a
timetable which were prepared during long-term planning are given, but there is also
number of new closure requests which have been appeared meantime; such closures
impose changes in closure plan and timetable, so the aim is to obtain new closure
plan and modified timetable; however, the new timetable cannot differ much from the
initial one; and

• weekly planning—performed once a week, the valid closure plan and timetable ob-
tained during periodic planning are given, but some new, short-term closure requests
may appear, and they can be added to the closure plan if only no changes in closure
plan and timetable are required.

For each mentioned time horizon, closure plans are made according to the hierarchical
organizational structure of the Polish Railways. Firstly, local departments prepare closures
plans, and they are coordinated between neighboring local departments. Then, the plans
are verified, corrected, and coordinated similarly at the regional level. The precise rules of
the closure planning are defined in the particular instruction Ir-19 [60,61]. From the Polish
Railways’ point of view, the most crucial is the periodic planning, since there are only 48 h
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to prepare final closure plan for the next two months having only limited changes in the
initial timetable. Our approach is, first of all, designed just for such planning process.

4. Joint Problem of Train Rescheduling and Track Closure Planning

The formalization of the considered joint problem is discussed in this section. The
graph-matrix representations of a railway network, a train timetable, and track closures
are given in Sections 4.2–4.4, respectively. It follows the summarization of the most crucial
notation in Section 4.1. The mathematical model of the joint problem presented in Section 4.5
is preceded by the introduction of corresponding models for sub-problems of the track
closure planning and the train scheduling.

4.1. Notation

The mathematical model, which is presented in the next sub-sections, refers to a railway
network, a train timetable, and closures. A unified style of notation is used for matrices and
sets. Entries of matrices are indicated by subscripts, and their number shows the dimension
of a matrix. For example, a single lower index indicates a vector. Superscripts are used
exclusively for indicating the meaning of the variable. Each matrix itself is denoted by a
bold italic type, and its elements are devoid of bold formatting. Sets and their cardinalities
are represented by upper-case letters typed in bold and italics, respectively. The concise
recapitulation of the most important notation is given in Tables 1–3.

4.2. Representation of a Railway Network

Tracks and stations are basic elements of a railway network for the considered problem.
A track is a link connecting directly two different stations. Every pair of stations i and j
can be linked by K tracks of the same length, i.e., di,j = dj,i (di,j is an element of a matrix
D = [di,j]i,j∈V). Track numbers constitute a set K = {0, 1, 2, . . . , K} the same for every pair
of stations. A railway network is described by a multigraph G =< V, E >. The stations
from a set V = {0, 1, 2, . . . , V} represent railway stations, while entries of the incidence
matrix E = [ei,j,k]i,j∈V,k∈K express tracks between particular railway stations. A virtual
railway station denoted as ‘0’ is distinguished to serve as the beginning and the end of
each train run in the model. It is located in zero-distance to other stations (d0,j = dj,0 = 0).
The existence of the track number ‘0’ enables taking into account a substitute transport
between stations of the same distance as real-world links. Consequently, a current entry
ei,j,k of E is equal 1(0) if there exists track k from i to j (otherwise), as in Figure 1.

Table 1. Notation regarding railway network model.

Symbol Description Symbol Description

D matrix of distances between stations (tracks
lengths)

V set of stations in a railway network

di,j element of D representing distance between
stations i and j (tracks length)

V number of stations in a railway network

K set of numbers indicating tracks between two
stations (by default K = {0, 1, 2}, “0” means a
substitute connection which is not a track)

E incidence matrix describing existence of tracks
between stations

K maximal number of tracks allowed between
two stations (by default K = 2)

ei,j,k element of E indicating the existence of track
k connecting stations i and j

G multigraph representing railway network CAPi capacity of station i (the number of trains that
can possess the station in the same time mo-
ment)
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Table 2. Notation regarding train run model.

Symbol Description Symbol Description

TR set of train runs (trains) in the timetable TDL maximal dwell time of a train at a station
TR number of trains in the timetable TTG vector describing the original timetable of

trains
RT

p binary matrix representing the routes of trains TTG
p element of TTG describing the timetable

of train p (route with corresponding ar-
rival/departure times)

RT
p,i,j,k element of RT

p referring to track k connecting
stations i and j and being a part of the route of
train p.

TROB set of obligatory trains

tARR
i,p planned arrival time of train p at station i TROB number of obligatory trains

tDEP
i,p planned departure time of train p from station

i
TE limit of the total travel time extension of a train

regarding the original timetable TTG

TARR
i,p maximal lateness of arrival of train p to station

i
DL travel distance extension of the train regarding

the original timetable TTG used to limit travel
time

TDEP
i,p maximal lateness of departure of train p from

station i
TDE limit of the travel time extension relating to

the distance DL

TD
i,p minimal dwell time of train p at station i

Table 3. Notation regarding track closure model.

Symbol Description Symbol Description

C set of all closures TC
n duration of closure n

C number of all closures tCES
n earliest start time of closure n

COB number of obligatory closures tCLS
n latest start time of closure n

SG matrix of closure parameters O binary matrix of precedence constraints
among closures

SG
n element of SG representing a tuple describing

closure n
on,m element of O representing a precedence con-

straint between closures n and m
RC

n matrix of tracks blocked by closure n TH time horizon of the investigated problem
RC

n,i,j,k element of RC
n representing the existence of a

blockade of track k between stations i and j to
be performed by closure n

Each station i, as a place where trains can stop, start, or finish their runs, has limited
capacity CAPi restricting the number of trains which are allowed to dwell on there at the same
time. Additionally, it is assumed that each train fits every slot at a station, and a single train
may occupy only one station slot. A virtual station (i = 0) can hold up to CAP0 = TR trains.
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Figure 1. Illustration of a very simple railway network.

4.3. Representation of Train Timetable

In the paper, the train transport is considered to handle the flow of people traveling
between stations. Many time demands and restrictions are imposed on resources (trains)
and infrastructure (railway network) involved in such transport. They are reflected in
a timetable, which takes into account not only constraints resulting from the joint use
of resources and infrastructure, as well as their availability, but also nationally oriented
regulations, along with other technical limitations. The railway transport is organized as
a set of TR train runs (or trains) TR = {1, 2, . . . , TR} which have specified routes with
distinguished origins, destinations, and stopping stations provided with departure and
arrival times at each station.

More specifically, each train p ∈ TR consists of a set of stations and a connected
available set of tracks. They are organized in routes denoted by RT

p = [RT
p,i,j,k]i,j∈V,k∈K,

where RT
p,i,j,k = 1(0) if train p goes from station i to j by track k (otherwise). The timetable

determines when the train p arrives and departures at station i, which is a part of a route RT
p .

The arrival and departure times of p at station i belonging to route RT
p are denoted by tARR

i,p ,

tDEP
i,p , respectively. Besides the virtual station i = 0, some obvious relations among the times

are valid, like every departure time at a station must be not less than the corresponding
arrival time, and an arrival time of the consecutively visited station i specified in RT

p must
be not less than the departure time from the previous one. Moreover, maximal arrival
TARR

i,p or departure TDEP
i,p lateness are given for some stations. A minimal dwell time TD

i,p
is defined for each station i and train p. Zero dwell times mean no stops at stations. The
maximal dwell time during the train run for each station (except station 0) is common and
equal to TDL.

The timetable for train run p is represented by a tuple TTG
p =< RT

p , (tARR
i,p , tDEP

i,p )i∈V >,

which forms for all trains the original timetable denoted by TTG = [TTG
p ]p∈TR. The

timetable is not valid if, for any train run, any station exceeds its capacity CAPi (see
Formula (7)). For stations that do not belong to the train route, all arrival and departure
times are equal 0.
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4.4. Representation of Track Closures

Some maintenance tasks of a railway infrastructure require track closures when no
train is allowed to use servicing tracks. Consequently, track closures may affect timetables.
Closures can be brought in periodically during a day or night for short periods, or they
may be planned for longer periods: days, weeks, or even months. They can be assumed as
a factor competing for a track possession together with train runs included in a timetable,
as in Figure 2.

Let C = {1, 2, . . . , C} be a set of C track closures envisaged for the implementa-
tion. It is composed of COB obligatory closures and C − COB optional closures, i.e.,
C = {1, 2, . . . , COB, COB + 1, COB + 2, . . . , C}. The obligatory closures have to be in-
cluded in the maintenance plan, unlike latter ones, which can be discarded if they in-
terfere greatly the original timetable. An individual closure n ∈ C is defined by a tuple
SG

n =< RC
n , tCES

n , tCLS
n , TC

n >. All closures information is gathered in SG = [SG
n ]n∈C. A bi-

nary symmetric matrix RC
n = [RC

n,i,j,k]i,j∈V,k∈K\{0} informs on track possessions by closures,

i.e., the current entry RC
n,i,j,k = 1(0) if track k between stations i and j is planned to be

possessed by the nth track closure (otherwise). Other elements of the tuple comprise time
information on closure n that is TC

n , tCES
n and tCLS

n represent, respectively, its duration, the
earliest starting time and the latest starting time. If parameters tCES

n and tCLS
n have the

same value, the start time of the closure is firm. Otherwise, it can vary between those two
values. Moreover, closures may exist which have to be performed according to a given
order expressed by a matrix O = [on,m]n,m∈C, where on,m = 1(0) if closure n has to be
completed directly before launching closure m.

Figure 2. Illustration of an example of a track closure.

4.5. Mathematical Model

At first, sub-problems of track closure planning and train rescheduling together with
their mathematical models are separately introduced in Sections 4.5.1 and 4.5.2, respec-
tively. Then, in Section 4.5.3, the joint problem is stated in the form of the corresponding
mathematical model as the composition of the models of sub-problems. All optimization
(decision) variables defined in this subsection is summarized in Table 4. Their verbal
descriptions are only given in this subsection.
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Table 4. Decision variables.

Symbol Description Symbol Description

y binary matrix of closure planning ∆tARR
i,p ∈ N element of ∆tARR representing time

shift of train p arrival to station i
yn ∈ {0, 1} element of y indicating the status of clo-

sure n
∆tDEP matrix with time shifts of train depar-

tures from stations
∆tC matrix with time shifts of closure start

moments
S matrix representing the plan of track

closures
∆tC

n ∈ N element of ∆tC representing the start
time shift of closure n

Sn element of S representing plan for clo-
sure n

rT matrix describing routes of all trains rC
n tracks to be closed during closure n

rT
p matrix describing the route of train p

being the element of rT
TT vector with timetable of trains

rT
p,i,j,k ∈ {0, 1} element of rT

p describing the connection
between stations i and j is used in the
route of train p

TTp element of TT given by a tuple repre-
senting the timetable of train p

∆tARR matrix with time shifts of train arrivals
to stations

x binary matrix describing inclusion of
trains into timetable TT

∆tDEP
i,p ∈ N element of ∆tDEP representing time

shift of train p departure from station i
xp ∈ {0, 1} element of x indicating the possible in-

clusion of train p into timetable TT

4.5.1. Track Closure Planning

The problem of track closure planning deals with finding of the possibly largest set of
track closures (containing all obligatory closures) with fixed start times of closures that can
be performed without interfering with a train run timetable. To this end, a binary decision
vector y = [yn]n∈C responsible for the planning of closures is introduced, where yn = 1(0)
if the nth closure is selected for the execution (otherwise). A positive-valued time shift
(shift) of the closure earliest starting time ∆tC = [∆tC

n ]n∈C is the second decision variable
for planning the track closures. When the time shift is determined, the closure must start at
the earliest starting time plus shift. Decision variables ∆tC and y define the resulted track
closure plan S = [Sn]n∈C, where Sn =< RC

n,i,j,k · yn, max{tCES
n , tCES

n +∆tC
n }, min{tCLS

n , tCLS
n +

∆tC
n }, TC

n >, and have to satisfy the constraints concerning obligatoriness, disjointness, and
starting times of closures (see Formulas (2)–(4)). The track closure planning has to take into
account the existing train timetable, which can affect likely conflicts in the track possessions
by trains and closures.

4.5.2. Train Rescheduling

In fact, the train rescheduling deals with the elaboration of decision variables in the
form of a new route plan rT = [rT

p ]p∈TR, rT
p = [rT

p,i,j,k]i,j∈V,k∈K, where rT
p,i,j,k = 1(0) if train

p is planned to run by track k between stations i and j (otherwise). Moreover, arrival
time shifts ∆tARR

i,p and departure time shifts ∆tDEP
i,p constitute the respective matrices of

decision variables ∆tARR = [∆tARR
i,p ]i∈V,p∈TR and ∆tDEP = [∆tDEP

i,p ]i∈V,p∈TR, as well as a

new timetable TT = [TTp]p∈TR, where TTp =< rT
p , (tARR

i,p +∆tARR
i,p , tDEP

i,p +∆tDEP
i,p )i∈V > is a

new timetable for train run p. Both time shifts, together with the arrival and departure times
from the original timetable TTG, define new arrival and departure times. The existence
of some planned closures, unknown while preparing the original timetable TTG, is the
only reason for rescheduling that is for the elaboration of a new timetable TT. No other
unexpected events justifying possible rescheduling are taken into account in this paper.
The considered track closures may directly affect train runs by their delaying, accelerating,
or even canceling. The latter possibility is expressed in the model by an auxiliary decision
variable x = [xp]p∈TR influencing TT by constraint (see Formula (9), where xp = 1(0)
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if the pth train run is present in the new timetable (otherwise). It is important to point
out that some train runs denoted by TROB ⊆ TR may exist and have to be obligatorily
inserted into TT . The train rescheduling has to obey some regulations on any train travel
time extensions concerning timetable TTG. They assure that the total travel time extension
cannot exceed the given limit TE, and the travel time extension on a given distance DL

cannot exceed the given limit TDE (see Formulas (10) and (11)).
The matrices rT, ∆tARR, ∆tDEP, and x, or equivalently TT , comprise all decisions made

while rescheduling of trains.

4.5.3. Final Model and Its Analysis

Two groups of decisions y, ∆tC, as well as TT, together with x introduced in two
previous sub-sections, are mutually dependent. The plan of track closures y, ∆tC usually
entails changes in the timetable TTG, like the cancellation of trains and the shift of departure
and (or) arrival times at stations. On the other hand, it is necessary to bear in mind
strong limitations that are imposed on the plan of track closures by the original timetable
TTG being the basis and the source of technical restrictions for TT. So, the claim is
entitled that ∆tC and y directly influences TT, and the indirect opposite impact is also
valid, which forces the joint making of both groups of decisions ∆tC, y and TT. In the
paper, the decisions are taken in the time horizon limited to the interval [0, TH], where
TH = max( max

i∈V,p∈TR
tARR
i,p + TE, max

n∈C
(tCLS

n + TC
n )) is the greater of times: the latest possible

arrival of a train to the destination railway station according to the timetable TTG and
the greatest completion time of all the possible closures. All mentioned and resulted
time variables have to belong to this interval. However, time shifts ∆tARR

i,p and ∆tDEP
i,p can

be negative.
To achieve a feasible solution, the following constraints are imposed on the deci-

sion variables:

– all obligatory closures are performed (1),
– all closure starting times are feasible (2),
– every pair of closures has to be disjoint (3),
– obligatory train runs from set TROB are present in the new timetable (4),
– run times between adjacent stations are fixed (5),
– substitute transport is allowable for selected paths specified in matrix E and only

possible if other tracks are not free (6),
– capacities of stations are limited (only in artificial station ‘0’ capacity is unlimited) (7),
– at most one train can occupy one track at every time moment (8),
– the train cannot run by any track if it is canceled (9),
– the total travel time extension cannot exceed the given limit TE (10),
– the travel time extension on a given distance DL cannot exceed the given limit TDE (11),
– standing times of trains at stations are limited by the minimum and maximum feasible

values (12),
– trains in both original and new timetables go through the same path of stations, but

they may go through different tracks (13),
– departure and arrival lateness at selected stations are bounded (14),
– the arrival time of every train at every station must not be later than corresponding

departure time (15), and
– no train can occupy a track during a closure (16).

Constraints imposed on track closures:

yn = 1, n = 1, 2, . . . , COB, (1)

tCES
n + ∆tC

n ≤ tCLS
n + M(1− yn), ∆tC

n ≥ 0, n ∈ C, (2)
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min{yn(tCES
n + ∆tC

n + TC
n ), ym(tCES

m + ∆tC
m + TC

m)} ≤ max{yn(tCES
n + ∆tC

n ), ym(tCES
m + ∆tC

m)},
(n, m) ∈ CCON = {(n, m) ∈ C× C : n 6= m, ∃i,j∈V,k∈K(RC

n,i,j,k + RC
m,i,j,k = 2)}. (3)

Constraints imposed on train runs:

xp = 1, p ∈ TROB. (4)

Constraints imposed on train routes:

∑
k∈K

(RT
p,i,j,k − rT

p,i,j,k)(∆tARR
j,p − ∆tDEP

i,p ) = 0, i, j ∈ V, p ∈ TR, (5)

xprT
p,i,j,0 ≤ min{ei,j,0,

1 + ∑
k∈K\{0}

( ∑
q∈TRCON

i,j,p

xqrT
q,i,j,k + ∑

q∈TRCON
j,i,p

rT
q,j,i,kxq + ∑

n∈CCON
i,j,p

rC
n,i,j,kyn)

(1 + ∑
k∈K\{0}

ei,j,k)
},

i, j ∈ V, p ∈ TR, (6)

TRCON
i,j,p

∆
={r ∈ TR\{p} : tDEP

i,p + ∆tDEP
i,p ≤ tDEP

i,r + ∆tDEP
i,r ≤ tARR

j,p + ∆tARR
j,p ∨ tDEP

i,r + ∆tDEP
i,r

≤ tARR
i,p + ∆tARR

i,p ≤ ∆tARR
i,r + ∆tARR

i,r },

CCON
i,j,p

∆
={n ∈ C : tDEP

i,p + ∆tDEP
i,p ≤ tCES

n + ∆tC
n ≤ tARR

j,p + ∆tARR
j,p ∨ tCES

n + ∆tC
n

≤ tARR
i,p + ∆tARR

i,p ≤ tCES
n + ∆tC

n + TC
n },

∑
j∈V

∑
k∈K\{0}

xp max(rT
p,j,i,k, rT

p,i,j,k)(1 + ∑
q∈TRCON

i,p

∑
l∈V

∑
m∈K\{0}

xq max(rT
q,i,l,m, rT

q,l,i,m) ≤ CAPi,

i ∈ V\{0}, p ∈ TR, (7)

min{rT
p,i,j,kxp(tDEP

i,p + ∆tDEP
i,p ) + rT

p,j,i,kxp(tARR
i,p + ∆tARR

i,p ),

rT
q,i,j,kxq(tARR

j,q + ∆tARR
j,q ) + rT

q,j,i,kxq(tARR
i,q + ∆tARR

i,q )}

≤ max{rT
p,i,j,kxp(tDEP

i,p + ∆tDEP
i,p ) + rT

p,j,i,kxp(tDEP
j,p + ∆tDEP

j,p ),

rT
q,i,j,kxq(tDEP

i,q + ∆tDEP
i,q ) + rT

q,j,i,kxq(tDEP
j,q + ∆tDEP

j,q )},

rT
p,i,j,k(t

DEP
i,p + ∆tDEP

i,p ) ≤ rT
p,i,j,k(t

ARR
j,p + ∆tARR

j,p ),

p, q ∈ TR, i, j ∈ V, k ∈ K\{0}. (8)

Constraint imposed on train run times:

rT
p,i,j,k ≤ xp, p ∈ TR, i, j ∈ V, k ∈ K, (9)

(∆tARR
0,p − ∆tDEP

0,p ) · xp ≤ TE, p ∈ TR, (10)

(∆tDEP
j,p − ∆tARR

i,p ) · xp ≤ TDE, (i, j) ∈ DL
p , p ∈ TR, (11)

TD
i,p ≤ tDEP

i,p + ∆tDEP
i,p − (tARR

i,p + ∆tARR
i,p ) ≤ TDL, i ∈ V, p ∈ TR, (12)
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∑
k∈K

RT
p,i,j,k = ∑

k∈K
rT

p,i,j,k, i, j ∈ V, p ∈ TR, (13)

∆tDEP
i,p ≤ TDEP

i,p , ∆tARR
i,p ≤ TARR

i,p , i ∈ V, p ∈ TR, (14)

tARR
i,p + ∆tARR

i,p ≤ tDEP
i,p + ∆tDEP

i,p , i ∈ V\{0}, p ∈ TR. (15)

Constraint imposed on both train runs and track closures:

min{rT
p,i,j,kxp(tARR

j,p + ∆tARR
j,p ), yn(tCES

n + ∆tC
n + TC

n )} ≤ max{rT
p,i,j,kxp(tDEP

i,p + ∆tDEP
i,p ), yn(tCES

n + ∆tC
n )},

p ∈ TR, n ∈ C, i, j ∈ V, k ∈ K\{0} : rC
n,i,j,k = 1. (16)

The auxiliary notions used in (17) and (16) have the following meanings: M—big number,
CCON = {(n, m) ∈ C × C : n 6= m, ∃i,j∈V,k∈K(RC

n,i,j,k + RC
m,i,j,k = 2)}—set of closures

reporting possession of the same track,
TRCON

i,p = {q ∈ {1, 2, . . . , TR} : tARR
i,p ≤ tDEP

i,q ≤ tDEP
i,p ∨ tARR

i,p ≤ tARR
i,q ≤ tDEP

i,p }—sub-set of
trains with dwell time on the station i coinciding with that of the train run p,

TRCON
i,j,p

∆
={r ∈ TR\{p} : tDEP

i,p + ∆tDEP
i,p ≤ tDEP

i,r + ∆tDEP
i,r ≤ tARR

j,p + ∆tARR
j,p ∨ tDEP

i,r + ∆tDEP
i,r ≤

tARR
i,p + ∆tARR

i,p ≤ ∆tARR
i,r + ∆tARR

i,r }—sub-set of train runs going from i to j in time coincided
with the run of train p,

CCON
i,j,p

∆
={n ∈ C : tDEP

i,p + ∆tDEP
i,p ≤ tCES

n + ∆tC
n ≤ tARR

j,p + ∆tARR
j,p ∨ tCES

n + ∆tC
n ≤ tARR

i,p +

∆tARR
i,p ≤ tCES

n + ∆tC
n + TC

n }—sub-set of track closures on the path from i to j in time
coincided with the run of train p,
TRCON

i,p = {q ∈ {1, 2, . . . , TR} : tARR
i,p + ∆tARR

i,p ≤ tDEP
i,q + ∆tDEP

i,q ≤ tDEP
i,p + ∆tDEP

i,p ∨ tARR
i,p +

∆tARR
i,p ≤ tARR

i,q + ∆tARR
i,q ≤ tDEP

i,p + ∆tDEP
i,p }—sub-set of train runs waiting at station i in time

coincided with the run of train p,
DL

p = {(i, j) ∈ TR2 : DL − rT
p,j,i(l),k · dj,i(l) ≥ rT

p,i,i1,k · di,i1 + rT
p,i1,i2,k · di1,i2 + . . . + rT

p,i(l−1),j,k ·
di(l−1),j < DL}—set of stations, for which train run p runs a distance less than DL, but it
will reach or exceed this value on arrival to the next station.

Many interconnections between two groups of decisions ∆tC, y, and TT are also
visible while analyzing the constraints, e.g., (16). They are the additional justification for
joint determination of both groups of decisions.

To evaluate the decisions y, ∆tC, as well as TT , the following criterion is proposed:

Q = α ∑C
n=COB+1 yn + ∑

p∈TR\TROB

xp − β ∑
i∈V,p∈TR

∣∣∣∆τDEP
i,p ,

∣∣∣, (17)

where α and β are positive-valued coefficients satisfying the inequalities α > TR −
TROB, β < 1/[TR(V + 1)TH], e.g., α = TR− TROB + 1, β = 1/[TR(V + 1)TH + 1] .

The introduced criterion reflects the Polish Railways expectations. The most important
is to perform as many closures as possible, since they are crucial for maintenance of railway
tracks and affect the long-term rail traffic management. Thus, the first element of (17)
evaluate number of closures which are to be performed according to the solution. The α
parameter chosen according to the imposed constraint ensures that every closure is more
important than any acceptable change in timetable. While we cannot increase the number
of closures, we should try to limit the number of the train runs that are to be canceled.
Thus, the second element of (17) evaluates number of train runs which remain in the new
timetable. The β parameter chosen according to the given constraint provides that not
canceling any train run is more important than introducing any changes in the departure
times in the new timetable. At last, when we can increase neither the number of closures
nor the number of train runs, we should try to minimize the total time changes in the new
timetable, which is reflected by the last element of the objective function. Such form of the
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criterion ensures the hierarchy of the decisions, i.e., the acceptance of optional closures is
the most important, whereas the differences of departure times in the timetables are the
least important.

To sum up, the following joint train rescheduling and track closure planning problem is
considered and solved. Decisions are made in relation to the railway system which consists
of a railway infrastructure and train runs described by G, V, TR, TROB, TTG, D, CAPi,
TARR

i,p , TDEP
i,p , TD

i,p, i, j ∈ V, p ∈ TR, α,β . The planned closures are also given in the form

of C, C, COB, O, SG(Sn =< RC
n , tCES

n , tCLS
n , TC

n >, n ∈ C). The auxiliary data TDL, TDE, TE

are known, as well. It is necessary to determine the interconnected collection of decisions:
∆tC, y constituting the resulted track closure plan, and rT,∆tARR, ∆tDEP, x defining the
new timetable plan TT subject to constraints (1)–(16) to minimize the criterion (17).

The conducted analysis of the formulated nonlinear mixed integer optimization prob-
lem referred to as PR made it possible to put forward and prove the following theorem.

Theorem 1. Joint train rescheduling and track closure planning problem is NP-hard.

Proof. Let us consider the NP-hard problem of task scheduling around a common date
presented in Reference [62]. Given one executor and J tasks, durations of tasks durationj ≥
0, j = 1, 2, . . . , J and a common deadline deadline ≤ ∑j∈{1,2,...,J} durationj find a schedule,
i.e., task completion times f inishj, that minimizes the total earliness and tardiness of
each task, i.e., quality = ∑j∈{1,2,...,J} | f inishj − deadline|. We show that this scheduling
problem reduces, in polynomial time, to the investigated problem PR. We accomplish this
by showing that we can reduce the scheduling problem to an equivalent problem PR with
only single track and carefully selected set of closures.

We take a time horizon sufficient to encompass the duration of all tasks (TH =

∑j durationj). Let us assume that all closures and train runs are obligatory (yn = 1, xp = 1).
Define the graph G so that there are 3 stations connected in a cycle 0→ 1→ 2→ 0, and
that there are J + 1 tracks between stations 1 and 2. We take J trains, where each train moves
once through the whole cycle of stations but through different track each: pth train takes
pth track between stations 1 and 2 (RT

p,0,1,1 = 1, RT
p,1,2,p = 1, RT

p,2,0,1 = 1). The departure
time for the artificial station is 0 for every train and so is the arrival in station 1. Departure
time in station 1, as well as minimum dwelling time, is set to deadline− durationj. Arrival
time in station 2 for the pth train is equal to deadline. Minimum dwelling time in station
2 is 0. Maximal dwell times are set to be very large (TDL = TH). Note that the schedule
is feasible.

Let us further consider a set of J closures, where the nth closure takes up track n of
the connection between stations 1 and 2 (RC

n,1,2,n = 1) with the earliest and the latest start
times all bound by 0 and very large durations (tCES

n = tCLS
n = 0,TC

n = TH). The addition of
closures forces all the trains onto the last track J + 1, where they cannot proceed in parallel.
Due to dwelling times in station 2, the quality criterion is equal to Q = ∑j∈{1,2,...,J} |∆tDEP

1,j |+
∑j∈{1,2,...,J} |∆tDEP

2,j | = 2 ∑j∈{1,2,...,J} |∆tDEP
2,j | = 2 ∑j∈{1,2,...,J} |tDEP

2,j + ∆tDEP
2,j − deadline|.

Sum tDEP
2,j + ∆tDEP

2,j is the moment the train run ends. Thus, we equate it to f inishj.

Then, quality = 1
2 Q. Please note that all the transformations can be made in the polyno-

mial time.

5. Heuristic Solution Algorithm

The optimization problem PR formulated in the previous section should be solved in
a reasonable amount of time. For example in Poland, at least a single feasible solution is
required within 48 h. It is very tough to fulfill such requirements due to the NP-hardness
of PR, as well as its non-linearity and the huge dimension with respect both to the number
of variables and to the number of constraints. The whole Polish railway network there
is represented by over 1012 binary and 108 integer variables. The transformation of the
considered problem into MIP using ’big M’ to solve it by a known solver failed. It resulted
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in the enormous growth of the problem’s dimension, and, in consequence, the approach
turned out useless due to the non-acceptable computation time. Another considered ap-
proach assumed the application of selected metaheuristics. It also failed as the significant
calculation effort was mostly devoted to checking infeasible solutions. Unfortunately, there
is no a simple method for the generation of any initial train runs timetable and a closure
plan fulfilling all the constraints under consideration. The utmost case is possible for a
metaheuristic-based solution algorithm when the feasible execution time can elapse before
any solution is sought. Therefore, the problem-specific heuristic algorithm is proposed,
which is based on some simplifications and decompositions neglecting some connections
between variables and constraints. However, due to the complexity of the problem, the
solution algorithm might not guarantee feasible solutions for some of the strongly con-
strained cases. The detailed presentation of the algorithm’s components in the subsequent
sub-sections follows the overview of the algorithm.

A multi-level algorithm of the hierarchical parallel structure is proposed, as in Figure 3.
There are four main levels of algorithms which are dependent on one another, i.e., an
upper level algorithm requires (usually multiple) solutions of the lower level algorithm.
Algorithm 1 is responsible for the selection of facultative closures. Algorithm 2 provides
the selection of facultative train runs. Algorithm 3 is responsible for decomposition of
the railway network into smaller, more manageable parts. This is done with the help of a
separate Track Grouping Algorithm (TGA). Finally, Algorithm 4 is responsible for finding
actual schedules under given closures, train runs and decomposition. Algorithm 4 itself
is further divided into Algorithms 5, 6, and 7. Those sub-algorithms are run for every
sub-network that was obtained with the use of Algorithm 3. Algorithm 1 sequentially
approves individual closures for launching in such a way to ensure the generation of
feasible timetables. The feasibility of a current closure is checked by all other algorithms.
Algorithm 1 decides via yn on the inclusion of the current closure into the set of accepted
closures according to information returned by Algorithm 2. However, it is necessary to
cover all obligatory closures. On the analogous basis, Algorithm 2 using x sequentially, i.e.,
one by one, forms the set of accepted trains for the new timetable. It takes into account
information returned by Algorithm 3 which, in turn, is launched at every iteration of
Algorithm 2. Algorithm 3 assumes the decomposition of a railway network performed
by the Track Grouping Algorithm TGA into η groups (railway sub-networks). For each
sub-network, Algorithm 4 is launched to obtain train runs and track closures time shifts
∆tARR, ∆tDEP, and ∆tC for this fragment of the network. If rerouting is needed, then
Algorithm 4 also returns the routes rT.

The following optimization tasks are performed by Algorithm 4 for every sub-network:
a track order, a station order, and a time shift resolution, where first two tasks are Mixed
Integer Linear Programming (MILP), while the last one is the Linear Programming (LP).
All of them are iteratively solved with the combined use of a greedy algorithm and the
numerical solver ‘lp_solve’ [63], giving solutions of resulted LP. As a consequence, the
decision variables of the considered problem, i.e., y, x and ∆tC, rT, ∆tARR, ∆tDEP are
the results of Algorithms 1, 2, 3, 4, together with TGA, respectively. The matrices rT,
∆tARR, ∆tDEP, along with x, form the new timetable TT = [< xp · [rT

p,i,j,k]i,j∈V,k∈K, [tARR
i,p +

∆tARR
i,p ]i∈V, [tDEP

i,p + ∆tDEP
i,p ]i∈V >]p∈TR. Similarly, the time shifts for closures ∆tC, together

with y, define the resulted track closure plan S = [Sn]n∈C, where Sn =< rC
n , tCSE

n , tCSL
n , TC

n >,
rC

n = RC
n,i,j,k · yn, tCSE

n = max{tCES
n , tCES

n + ∆tC
n }, tCSL

n = min{tCLS
n , tCLS

n + ∆tC
n }.

Algorithms 1, 2, 3, 4 and TGA are introduced in the next subsections. The detailed
description of Algorithm TGA can be found in Reference [5]. It is assumed that all algo-
rithms have access to all data concerning infrastructure, train runs, and track closures. The
necessary auxiliary notation is given in Table 5.
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Algorithm 1

Algorithm 2

Algorithm 3

Algorithm TGA

Algorithm 4
(for subnetwork 2)

Algorithm 5
Algorithm 6

Algorithm 7

Algorithm 4
(for subnetwork 1)

Algorithm 5
Algorithm 6

Algorithm 7

...

...

Algorithm 4
(for subnetwork η)

Algorithm 5
Algorithm 6

Algorithm 7

Figure 3. Structure of multi-level algorithm.

5.1. Managing of Closures

Algorithm 1 checks serially the ordered sequences of obligatory and facultative clo-
sures. Each track closure n is numerically evaluated by the ratio

TC
n RC

n,i,j,k ∑TR
p=1 RT

p,i,j,k

∑K
k=1 ∑TR

p=1 (t
ARR
j,p − tDEP

i,p )RT
p,i,j,k

(18)

being the proportion of daily cumulated time of the closure to a daily time occupation by
trains in the original timetable TTG of the trail between stations i and j. The cumulated
time of closure is equal to time TC

n multiplied by the number of trains using the track during
TC

n . The trail is understood as all tracks between adjacent stations. Additionally, both
sequences are sorted to take into account precedence constraints among closures given in
matrix O. A closure is selected on the basis of the real-world completion time of closure tCE

n
returned by the lower level Algorithm 2. The non-positive returned value of tCE

n means that
some constraints do not hold, and closure n cannot be approved. Algorithm 1 is stopped
when whichever obligatory closure cannot be performed. As a result, the algorithm returns
the selected set of track closures, the set of train runs together with new train timetable and
track closure plans obtained, or information that the solution does not exists. The returned
set of train runs defined by x, together with train timetable TT and a set of closures defined
by y, together with closure plan S, are obtained with the use of all subsequent algorithms.
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Table 5. Decision variables.

Notation Used in Algorithm 1

Symbol Description Symbol Description

rC
n tracks to be closed during closure n COB set of obligatory closures

tCE
n actual completion time of closure n CF set of facultative closures

zi sequence of obligatory closures CS set of selected closures to be passed to
Algorithm 2

Notation Used in Algorithm 2

Symbol Description Symbol Description

TRS selected train runs to be passed to Algo-
rithm 3

Wp,k variable indicating the run of train p by
track k between given stations

∆ parameter of Algorithm 2 representing
the limit of time shifts of closures or trains

Up conflict index for the train run p

Notation Used in Algorithm 3

Symbol Description Symbol Description

S′ temporary closure plan Vn set of stations of the decomposed sub-
network n

TT ′ temporary train timetable η number of sub-networks in the decompo-
sition

GR set of track assignments to groups used
for the decomposition

πn,p string of stations representing the path of
train p

E set of tuples describing each arc that exists
in network G

CS
n set of closures in the decomposed sub-

network n
Gn graph representing the decomposed rail-

way sub-network n.
TRS

n set of trains in decomposed sub-network
n

En matrix of tracks (matrix extended by
virtual tracks) for the decomposed sub-
network n

q train run marked for rerouting

Notation Used in Algorithm 4

Symbol Description Symbol Description

Ψi,j,k series of elements indicating tracks that
have trains or track closures and their or-
der

Ci,j,k set of closures on the given track

Ψi,j,k
m element of Ψi,j,k indicating if tracks have

trains or track closures at position m
TRi,j,k set of trains going through track (i, j, k)

θi,j,k matrix representing the order of track us-
age by either trains or closures

TRS_SUB
n sub-set of TRS

n,

θ
i,j,k
m element of θi,j,k Qi,j,k

1 total time shift for trains limited to a sin-
gle track at a time

Θi,j,k number of trains and closures on track k
connecting stations i and j

TRi set of trains on tracks adjacent to station i.

λi matrix representing the order of trains en-
tering station i

KADJ
i set of tracks adjacent to station i.

λi
m element of λi indicating number of train

entering station i in the order m
Qi

2 total time shift of trains for station i.

Λi number of trains entering station i
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5.2. Managing of Train Runs

The management of train runs is performed by Algorithms 2 and 3 supported by
Algorithm TGA, as well as by the solution of an auxiliary sub-problem ZP [64]. It is focused
on obtaining such a sub-set of train runs, which enables the presence of a given set of
track closures. If any obligatory train run cannot be included into the timetable due to a
failing of constraints, information of the closure set infeasibility is returned to the track
closure management part. The initial proposition of a train run set for the inclusion into
the solution is obtained by Algorithm 2. This algorithm uses the decomposition procedure
(Algorithm 3) to check if all suggested train runs could be performed, what is represented
by a new train timetable and a new track closure plan. If Algorithm 3 fails to find a feasible
timetable and a track closure plan, Algorithm 2 is stopped returning the last feasible train
timetable and track closure plan with information if all obligatory train runs are included
in this timetable.

Let us describe Algorithm 2 for indicating train runs to be placed into the new
train timetable starting from the introduction of the following auxiliary variable Up =

∑i ∑j

(
∑k RT

p,i,j,k

)(
∑q:[tARR

i,p ,tDEP
j,p ]∩[tARR

i,q ,tDEP
j,q ] 6=∅ 1

)
∑i ∑j ∑k RT

p,i,j,k
referred to as conflicts index for the train run. The

variable indicates how many other than p trains are located at the same time on the p’s
train trail (or on the railway stations of this trail) in relation to the number of all tracks
traveled by the pth train.

The usage of Algorithm 2 allows estimating whether it is likely to have a feasible
solution of train rescheduling and track closure planning for the whole railway network
when the new closure or the new train run is added. In consequence, Algorithm 2 uses
the solution of the parameterized sub-problem ZP, for which the formal definition is given
in Reference [64]. ZP limits the whole network to a single trail affected by the current
change in the closure plan or the set of accepted train runs. This change is accomplished by
assigning start times of closures and making train run timetable for this trail. The aim is to
settle if we can shift closures and train runs by no more than a given period ∆ (algorithm
parameter), which eliminates conflicts. We also assume that each train run may change its
track between considered stations, so the new track is indicated by the variable Wp,k.

Although ZP is a constraint satisfaction sub-problem, it may be easily solved by a linear
programming solver, e.g., ‘lpsolve’ [63]. Notice that, even if the solution of the problem ZP
can be found, it does not guarantee the existence of solution for the whole railway network.

Whenever Algorithm 3 is launched, it uses the results of Algorithm TGA, which
takes G, TT, and TR as an input and returns the number of groups η and set GR =
E× {1, 2, . . . η}, where E = {(i, j, k) : ei,j,k = 1}. The set GR represents the assignments
of each track to a number corresponding to the index of one of the defined groups. Al-
gorithm 3 divides the railway network into sub-networks and, after the grouping of all
tracks, complements them with artificial ones. Artificial tracks connect stations which were
not yet connected but are consecutive stations of some train run in its route. Then, for
each sub-network, Algorithm 4 is consecutively executed to obtain a new timetable and a
track closure plan corresponding to this fragment of the network. If, for all sub-networks,
the feasible solution is found, then all results are combined into a single train timetable
and track closure plan, as well as returned together with information about the success.
Otherwise, the algorithm returns the original train timetable and track closure plan with
information of the failure. The new train timetable TT and track closure plan S are rep-
resented by values of time shifts ∆tARR, ∆tDEP of train runs and time shifts ∆tC of track
closures regarding the original timetable TRS and closure plan CS.
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Algorithm 1 selection of closures

Require: Data of the problem, in particular sets COB, CF of obligatory, facultative closures, respectively.
Ensure: Values of y, x, as well as closure plan S, and timetable TT .

1: Sort the elements of COB in the ascending order with respect to ratio (18) and then sort resulting sequence to ensure
precedence constraints given in matrix O to have a sequence of obligatory closures (zi)i=1,...,COB as a consequence.

2: Set yn = 0, ∆tC
n = 0, n = 1, 2, . . . , C, xp = 0, p ∈ TR, S = SG, TT = TTG.

3: for i = 1, . . . , COB do
4: Run Algorithm 2 for a set of selected closures CS = {z1, z2, . . . , zi}, current timetable TT, and closure plan S

(together with y), and currently considered closure n
∆
= zi, to obtain updated TT , S, y, and the actual completion time

of closure tCE
n = tCES

n + ∆tC
n + TC

n .
5: if tCE

n = 0 or (tCE
n > tCLS

n+1 when on,n+1 = 1 and i < COB) then
6: Stop the algorithm and return “Cannot find a feasible solution for COB”.
7:

end if
8:

End for
9: Sort the elements of CF in the ascending order with respect to the ratio (18), and then sort resulting sequence to ensure

precedence constraints given in matrix O to have a sequence of facultative closures (zi)i=1,...,M as a consequence.
10: for i = COB + 1, . . . , C− 1 do
11: Run Algorithm 2 for a set of selected closures CS = {j = zm : m ∈ {1, . . . , i}, yj = 1}, current TT, S, y, and

currently considered closure n
∆
= zi, to obtain updated TT , S, y, and tCE

n = tCES
n + ∆tC

n + TC
n .

12: if (tCE
n > 0 and tCE

n ≤ tCLS
n+1 when on,n+1 = 1) then

13: Set yn = 1.
14:

end if
15:

End for
16: Run Algorithm 2 for a set of selected closures CS = {j = zm : m ∈ {1, . . . , C}, yj = 1} current TT , S, y, and currently

considered closure n
∆
= zN , to obtain updated TT , S, y, and tCE

n = tCES
n + ∆tC

n + TC
n .

17: if tCE
n > 0 then

18: Set yn = 1
19:

end if
20: return y, x, S, TT where x, S, and TT are taken from the last run of Algorithm 2.
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Algorithm 2 selection of trains

Require: Data of the problem, x, S, TT , CS, specified closure n.
Ensure: x, S, TT , tCE

n for specified closure n.
1: Let FT be the list of train runs that are allowed to be canceled and sorted in not ascending order with respect to index

Up. Set xp = 1(0) if p ∈ TROB (otherwise). Let TRS = {p ∈ TR : xp = 1}.
2: Solve the task ZP((i, j), x, S, TT , CS, TRS, n), where i, j satisfies: ∑k∈K RC=1

n,i,j,k
3: if the feasible solution is not found in Step 2 then
4: return “No solution”
5: else
6: Run Algorithm 3 for current S, TT, TRS, CS and Null (as currently considered facultative train run) and obtain

new S and TT
7: if the solution is found in Step 6 then
8: calculate tCE

n basing on current S
9: else

10: return “No solution”
11:

end if
12:

end if
13: if the list FT is empty then
14: go to Step 33.
15:

end if
16: Take the first train run out from the list FT and obtain its index p.
17: Set xp = 1
18: Set TRS = {p ∈ TR : xp = 1}.
19: for each pair of stations (i, j) such that ∑k∈K RT=1

p,i,j,k do
20: solve ZP((i, j), x, S, TT , CS, TRS, n)
21: if the feasible solution is not found in Step 20 then
22: Set xp = 0
23: go to step 13.
24:

end if
25:

end for
26: Run Algorithm 3 for current S, TT , TRS, and CS, p, and obtain new S and TT .
27: if the feasible solution is not found in Step 26 then
28: Set xp = 0
29: else
30: calculate tCE

n basing on current S
31:

end if
32: go to step 13
33: return x, S, TT , and tCE

n for specified closure n.
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Algorithm 3 decomposition of the railway network

Require: Data of the problem, in particular sets CS, TRS of selected closures and train runs, respectively, selected train
run for rerouting q ∈ TRS, current train timetable TT and track closure plan S.

Ensure: Closure plan S, train timetable TT .
1: Set S′ = S and TT ′ = TT, get from Algorithm TGA results: grouping set GR, which associates each track with a

group number to which it belongs, and a number of groups η.
2: for n = 1, . . . , η do
3: Construct a railway network Gn =< Vn, En > (not necessary connected) where

Vn = {v ∈ V : w ∈ V, k ∈ K, ((v, w, k), n), ((w, v, k), n) ∈ GR},

En = [en,i,j,k]i,j∈V,k∈K∪{K+1,K+2,...,K+TR}, and en,i,j,k =

{
1 for ((i, j, k), n) ∈ GR
0 for otherwise

4: for each m ∈ TRS do
5: Construct a path πn,m (string of stations v ∈ Vn) composed of stations of the route of the train run m that

belong also to Vn.
6: if πn,m exists then
7: for each pair of consecutive stations (va, vb) from the path πn,m. do
8: if for any track k connecting stations a with b, there is no connection indicated in matrix En

(∀k∈K(en,a,b,k == 0)) then
9: Add a virtual track to En (set en,a,b,K+m = 1).

10:
end if

11:
end for

12: add train run m to a set TRS
n ⊆ TRS (TRS

n = TRS
n ∪ {m})

13:
end if

14:
end for

15: for each cl ∈ CS do
16: if a closure cl is planned on some track in connection indicated in matrix En

({k ∈ K, va, vb ∈ Vn, en,a,b,k = 1, RC
cl,a,b,k = 1} 6= ∅) then

17: Add closure cl to CS
n ⊆ CS (CS

n = CS
n ∪ {cl}).

18:
end if

19:
end for

20: Execute Algorithm 4 for CS
n, TRS

n,
∣∣∣TRS

∣∣∣, Gn, q, S′, and TT ′, to obtain time shifts of the train runs and closures.
21: if Algorithm 4 returned “No solution” then
22: Stop the algorithm and return “Cannot find a feasible solution”.
23:

end if
24: Include time shifts of the train runs and closures obtained by Algorithm 4 into new train timetable TT ′, and

closure plan S′.
25:

end for
26: Update TT ′ by recalculating ∆tARR

i,p = ∑j∈V(∆tDEP
j,p ·∑k∈K rT

p,j,i,k)

27: return S = S′ and TT = TT ′.
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5.3. Determining of Time Shifts for Train Runs and Closures

Even after preceding decompositions, the remaining non-linear optimization problem
is still hard to solve in a reasonable amount of time for realistically sized instances. To obtain
a solution quickly, it is necessary to perform further simplifications. Two-stage decompo-
sition is proposed. Firstly, three types of sub-problems are derived via a decomposition.
Secondly, relatively quick solution algorithms, referred to as Algorithm 4, Algorithm 6,
Algorithm 7, are used to solve each sub-problem. Decomposition is carried out through
the introduction of additional decision variables. At each track separately, let the order
of track usage by either train runs or closures be denoted as θi,j,k = [θ

i,j,k
q ]q∈{1,2,...,Θi,j,k},

where i is the departure station, j is the arrival station, k is the index of a specific track
between stations, and Θi,j,k is the number of runs and closures on that track. Let us define
a series Ψi,j,k = [Ψi,j,k

q ]q∈{1,2,...,Θi,j,k} with elements Ψi,j,k
q = 0(1) if there is a train run (if it

is a closure) on the position q of the ordering θi,j,k. Furthermore, for each station, let us
denote the order in which train runs enter the station as λi = [λi

q]q∈{1,2,...,Λi}, where i is the
index of the station, and Λi is the number of runs entering the station. Determination of
orders θi,j,k and λi for every track and every station reduces the problem of determining
the time shifts for train runs and closures into a linear programming problem which can be
solved with exact methods (i.e., an LP solver).

The first set of sub-problems is solved separately for every track to obtain the orders
θi,j,k. For this purpose, a local criterion being a particular case of criterion (17) is introduced:

Qi,j,k
1 = ∑

p∈TRi,j,k

|∆tDEP
i,p |+ ∑

p∈TRj,i,k

|∆tDEP
j,p |, (19)

where TRi,j,k = {p ∈ TRS
n : RT

p,i,j,k + en,i,j,k = 2} is the set of train runs going through
track (i, j, k). This criterion is the total time shift for train runs limited to a single track at a
time. Furthermore, let us define by Ci,j,k the set of closures on a given track. Algorithm 6,
applied for solving the sub-problem of finding the usage order for a single track, uses, in
addition to problem data passed on to Algorithm 4, set TRS_SUB

n , which is a sub-set of TRS
n,

determined during the execution of Algorithm 4.
The following Algorithm 6, as well as other algorithms presented next in this sub-

section, uses solutions of problems 4.1.lin, 4.2.lin, and 4.lin, which are described in Refer-
ence [64]. The problem 4.1.lin is the problem of determining the time shifts for a single track
under the assumption that the order of train run or closure execution is fixed (the variable
θi,j,k is fixed). Under the assumption, the problem of time shift determination (times when
train enters the track or the closure starts) becomes a linear programming problem and can
be solved quickly and exactly. Similarly, in the problem 4.2.lin, we consider a single station
and assume that the variable λi is fixed; this leads to another linear problem of time shift
determination (times when train enters the station). Finally, under fixed values of θi,j,k for
each track and of λi for each station, the problem of time-shift determination for the whole
network, i.e., 4.lin, is also linear.

The second set of sub-problems is solved separately for every station to obtain or-
derings λi. Analogously to the first set of sub-problems, a local criterion based on (17)
is defined.

Qi
2 = ∑

p∈TRi

|∆tARR
i,p |, (20)

where TRi =
⋃

k∈K
(TRi,j,k ∪TRj,i,k) is the set of train runs on tracks adjacent to station i. This

criterion expresses the total time shift for train runs on a single station. Let us denote the
tracks adjacent to i as KADJ

i = {(l, j, k) : l, j ∈ Vn, k ∈ K, TRl,i,k ∪TRi,j,k 6= ∅}. Algorithm 7,
used for solving the sub-problem of finding the ordering of train runs entering a single
station, is given as follows.
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Finally, the full Algorithm 4 with a distinct auxiliary Algorithm 5 are both given as
follows. Please note that, if Algorithm 7 changes ∆tARR

j,p , the time shifts ∆tDEP
i,p have to be

accordingly changed be Algorithm 4 to satisfy ∀p∈TRi (∆tDEP
i,p − ∆tARR

j,p )∑k∈K rT
p,i,j,k = 0.

The complexity of Algorithm 4 is dependent on the complexity of the selected linear
programming routine. Assuming Karmarkar’s algorithm [65] is used, then the complexity
is given as follows O[(TR + C)3.5 ∗ B ∗ E2 + TR3.5 ∗ B ∗ V2], where B is the number of
bits needed to encode the longer of train and closure data. The complexity of the whole
multi-level algorithm is, therefore, O{(TR ∗ C ∗ [(TR + C)3.5 ∗ B ∗ E2 + TR3.5 ∗ B ∗V2]}.

Algorithm 4 determination of time shifts for train runs and closures

Require: Data for the sub-network: Gn, CS
n, TRS

n. Train run q (q ∈ TRS
n) selected for rerouting. Closure ordering matrix

O.

Ensure: Time shifts ∆tDEP
i,p , ∆tC

n , and new train routes rT
p,i,j,k for i, j ∈ Vn, p ∈ TRS

n, n ∈ CS
n.

1: if q 6= NULL then

2: return solution of Algorithm 5 for Gn, CS
n, TRS

n, q, and O .

3: else

4: Set ∆tDEP
i,p , ∆tC

n , rT
p,i,j,k for i, j ∈ Vn, p ∈ TRS

n, n ∈ CS
n using values returned by Algorithm 5.

5: Let p = 1.

6: Let TRS_SUB
n = TRS

n ∪ TRS
n(p), where TRS

n(p) is the pth element of TRS
n.

7: Let q = TRS
n(p).

8: Execute Algorithm 5 for Gn, CS
n, TRS_SUB

n , q, and O.

9: if solution does not exist then

10: return no solution.

11: else

12: Update ∆tDEP
i,p , ∆tC

n , rT
p,i,j,k for i, j ∈ Vn, p ∈ TRS

n, n ∈ CS
n using values returned by Algorithm 5.

13:
end if

14: if p < |TRS
n| then

15: Let p = p + 1.

16: go to 5.

17:
end if

18:
end if

19: return ∆tDEP
i,p , ∆tC

n , rT
p,i,j,k for i, j ∈ Vn, p ∈ TRS

n, n ∈ CS
n.
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Algorithm 5 determination of time shifts for train runs and closures

Require: Data for the sub-network: Gn, CS
n, TRS_SUB

n . Train run q (q ∈ TRS
n) selected for rerouting. Closure ordering

matrix O.
Ensure: Time shifts ∆tDEP

i,p , ∆tC
n , and new train routes rT

p,i,j,k for i, j ∈ Vn, p ∈ TRS_SUB
n , n ∈ CS

n.
1: Let ∀p ∈ TRS_SUB

n , i ∈ Vn : ∆tDEP
i,p = 0, ∀n ∈ CS

n : ∆tC
n = 0.

2: for each (i, j, k) ∈ En, i < j do
3: Obtain ordering θi,j,k using Algorithm 6.
4: if no ordering was found then
5: go to 11.
6:

end if
7:

end for
8: for each p ∈ Vn do
9: Obtain ordering λi using Algorithm 7.

10: if no ordering was found then
11: go to 11.
12:

end if
13:

end for
14: Solve the linear problem of time shift determination for given orderings (4.lin).
15: if no solution was found and q ∈ TRS_SUB

n then
16: Let TRS_SUB

n := TRS_SUB
n \{q}.

17: go to 1.
18: else
19: if no solution was found then
20: for eachpair of stations (i, j) on the route for the run q. do
21: Find a feasible track k ∈ K.
22: if no track was found and bi,j = 1 then
23: Verify if track k = 0 is feasible.
24:

end if
25: if a feasible track was found then
26: Set ∆tDEP

i,p to the lowest feasible value, set rT
q,i,j,k = 1, ∀l 6= k : rT

q,i,j,l = 0.
27: else
28: return no solution.
29:

end if
30:

end for
31:

end if
32:

end if
33: return ∆tDEP

i,p , ∆tC
n , rT

p,i,j,k for i, j ∈ Vn, p ∈ TRS_SUB
n , n ∈ CS

n.
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Algorithm 6 track usage ordering determination

Require: Selected track (i, j, k). Data for the sub-network: Gn, CS
n, TRS

n. Closure ordering matrix O, sets of train runs

TRi,j,k and closures Ci,j,k on the track.

Ensure: Locally optimal ordering θi,j,k, Ψi,j,k or no solution.

1: Empty the ordering θi,j,k ← (), Ψi,j,k ← ()

2: while either TRi,j,k or Ci,j,k is nonempty do

3: From the sets of every train run TRi,j,k and every closure Ci,j,k and every possible position in θi,j,k, Ψi,j,k find those

that minimize Qi,j,k
1 by solving ) linear time shift resolution problems for a single track (4.1.lin). Preserve ordering

given by O.

4: Add selected train run or closure to θi,j,k, Ψi,j,k. Remove it from TRi,j,k or Ci,j,k.

5: if no train run or closure could be added then

6: return no solution.

7:
end if

8:
end while

9: return θi,j,k, Ψi,j,k.

Algorithm 7 station usage ordering determination

Require: Selected station i. Data for the sub-network: Gn, CS
n, TRS

n. The ordering of runs and closures θi,j,k for tracks

KADJ
i .

Ensure: Locally optimal ordering λi if one was obtained.

1: Empty the ordering λi ← ().

2: while TRi is nonempty do

3: From the set of every train run TRi and every possible position in λi find those that minimize Qi
2 by solving linear

time shift resolution problems for a single station (4.2.lin).

4: Add selected train run to λi and remove it from TRi.

5: if no train run or closure could be added then

6: return no solution.

7:
end if

8:
end while

9: return λi.

6. Simulation Experiments

The heuristic algorithm presented in the previous section was tested via simulation
experiments for particular structures of railway networks. The experiments have consisted
of two parts, i.e., for a single track and a real-world network of tracks. The former experi-
ments have aimed at providing the comparison of solutions obtained with the only use of
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Algorithm 4 to optimal solutions. The latter experiments were conducted to provide the
insight into properties of the heuristic algorithm treated as a whole. Due to the complexity
of the underlying problem, the comparison with optimal solutions was omitted for the
second part. Computations for the first part were performed on a PC with Intel i7-4790K
4 GHz, single core, 2.5 GB RAM; the second part of simulations was done with the use of a
PC with Intel i7-4720HQ 2.6GHz, 16 GB RAM. Calculations were made with the use of a
single processor core only. The software implementation in both cases was made with the
use of Python 2.7 and lpsolve [63].

6.1. Single Track Case

Optimal ordering of runs can change following the addition of closures, even for a
single track case. Unlike for the more complex structure of a train run network, here, it
is possible to obtain, in a reasonable amount of time, optimal solutions to the time shift
resolution problem. The authors find it valuable to exploit this opportunity to relate the
dedicated algorithm to an optimal one in a series of experiments, which were constructed
as follows.

The overall time interval was limited to a single day, i.e., TH = 1440 min. The network
consisted of three stations (one artificial) V = {0, 1, 2} with a single track between the
two non-artificial stations K1,2 = 1. The number of runs TR varied with the experiment.
Standing times were set to TDL = 15, TD

i,p = 1 for all runs p and stations i. No substitutive
transportation was allowed. Each experiment introduced a single closure with parameters
tCES
1 = tCLS

1 = (TH− TC
1 )/2, where closure duration TC

1 varied with experiment. Moreover,
two additional parameters ξ and the movement time cp,1,2 were introduced for each
experiment to increase the flexibility of runs. Values of the former and the latter parameter
were fixed by hand and randomly generated from the interval [c, c̄], respectively. Then,
both parameters were the basis for the generation of arrival time tARR

1,p from the interval

[ξ, TH − ξ − cp,1,2 − 2TD
i,p], as well as for the setting other variables, namely: tDEP

0,p τ̄0,p =

tARR
1,p − ξ, tDEP

1,p = tARR
1,p + TD

i,p, tARR
2,p = tDEP

1,p + cp,1,2, tDEP
2,p = tARR

2,p + TD
i,p, tARR

0,p = tDEP
2,p + ξ,

TDEP
2,p = ξ. Values of other parameters were set to TDEP

i,p = TARR
i,p = TE = TDE = TH,

c̄i = TR, bi,j = 0. Tested were combinations of values ξ, TC
1 , TR, c, c̄. The following cases

were chosen for further presentation.
Case 1. ξ = 60 , TC

1 = 60, TR = {5, 6, ..., 10}, [c, c̄] = [15, 15].
Case 2. ξ = 60 , TC

1 = 120, TR = {5, 6, ..., 10}, [c, c̄] = [15, 15].
Case 3. ξ = 240 , TC

1 = 120, TR = {5, 6, ..., 10}, [c, c̄] = [60, 180].
Case 4. ξ = 240 , TC

1 = 60, TR = {5, 6, ..., 10}, [c, c̄] = [60, 240].
The criterion Q̃ = ∑i∈V,p∈TR |∆tDEP

i,p | used during this experiment is the negative of
the last part of (17), which should be minimized and only evaluates solutions obtained by
Algorithm 4. The other evaluation is the computational time of the algorithm T̃. Due to
the random nature of the experiments, for each case and for each TR, the experiment was
repeated ten times. Results, both the execution time T̃ and the quality Q̃ were averaged.
We present the results in Tables 6 and 7, and Figures 4 and 5, where we provide: the quality
for the optimal algorithm, the quality of the Algorithm 4 algorithm, the execution time for
the optimal algorithm, and execution time for the Algorithm 4 algorithm. They are denoted
as Q̃∗avg, Q̃avg, T̃∗avg,T̃avg, respectively. For some instances, the Algorithm 4 algorithm failed
to provide a solution. The number of such instances is given in the table columns labeled
‘Fail’. All such instances are excluded from the calculation of averages. Times Q̃, and T̃ are
given, respectively, in minutes and seconds. Figures 4 and 5 incorporate data aggregated
over multiple experiments presented with the use of horizontal curly braces. The average
values are represented by dots, as well as minimum, and maximum ones are given by error
bars. For the purpose of comparing results obtained with the use of Algorithm 4 with
optimal solutions, an exhaustive search was used to obtain the latter ones.

As can be seen in Figure 5 and Table 7, computational time of Algorithm 4 grows
in a nearly linear manner concerning the number of runs. This property is crucial to the
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computational time of the heuristic algorithm, which uses Algorithm 3 repeatedly and
for sub-problems of varying sizes. We notice from Figure 4 and Table 6 that Q̃ varies
significantly, with much greater values obtained for longer expected train movement times.
This remark gives a clear message that it is easier to permit closures on the tracks for
fast passenger trains. Slow trains will likely have to change their route or be canceled.
Comparison with optimal solutions leads to a natural conclusion that the Algorithm 4
provides similar results for the majority of all the tested cases. As it can be apparently seen
from Table 6, all of the results obtained by the algorithm were optimal for Cases 1 and 2.
For Cases 3 and 4, the algorithm failed to find a solution in 5% of the experiments even
though one existed. The overall difference in quality between the solution provided by
Algorithm 4 and the optimal solution was under 1% of the latter. The cause of those minor
differences lies in potential sub-optimality of the orderings obtained with the use of greedy
Algorithms 6 and 7.

From the experiments, it is clear that increasing duration of train movement between
stations decreases the efficiency of Algorithm 4. Nevertheless, for the majority of tested
cases, the difference between Algorithm 4 and the optimal solution is slight.

Table 6. Dependence of Q̃ on TR for all cases.

TR Case 1 Case 2 Case 3 Case 4

Q̃∗avg Q̃avg Fail Q̃∗avg Q̃avg Fail Q̃∗avg Q̃avg Fail Q̃∗avg Q̃avg Fail

5 4.6 4.6 0 13.6 13.6 0 597 601.8 0 420.1 420.1 0
6 21.7 21.7 0 45.4 45.4 0 380.22 380.22 1 562.78 570.78 1
7 22.9 22.9 0 39.6 39.6 0 541 541 2 702.67 747.56 1
8 18.2 18.2 0 101.2 101.2 0 320.44 320.44 1 698.4 699.7 0
9 59.2 59.2 0 60.1 60.1 0 924.1 924.2 0 565.71 569.57 3
10 34.3 34.3 0 64.5 64.5 0 1360.22 1361.33 1 1158.8 1162.8 0

Table 7. Dependence of T̃ on TR for all cases.

TR Case 1 Case 2 Case 3 Case 4

T̃∗avg T̃avg Fail T̃∗avg T̃avg Fail T̃∗avg T̃avg Fail T̃∗avg T̃avg Fail

5 0.02 0.09 0 0.02 0.07 0 0.13 0.1 0 0.09 0.09 0
6 0.04 0.13 0 0.05 0.11 0 0.35 0.13 1 0.37 0.14 1
7 0.11 0.19 0 0.1 0.17 0 1.31 0.55 2 1.85 0.21 1
8 0.45 0.28 0 0.49 0.23 0 6.44 0.41 1 7.16 0.31 0
9 1.54 0.38 0 0.87 0.32 0 26.6 0.39 0 60.85 0.4 3
10 2.36 0.5 0 1.36 0.8 0 193.69 0.52 1 168.75 0.52 0
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Figure 4. Dependence of Q̃avg (minutes) on the number of train runs for selected cases.

Figure 5. Dependence of T̃avg (seconds) on the number of train runs for selected cases.

6.2. Single Track Timetable

Let us consider a single track case as in the previous section for closure with the
following parameters TC

0 = 50, tCES
0 = 0, tCLS

0 = 105, RC
0,1,2,1, and four trains with timetable

as follows:

• Run p = 0 station visit order: 0, 1, 2, 0, arrival and departure times tDEP
0,0 = tARR

1,0 =

0, tDEP
1,1 = 5, tARR

2,0 = 55, tDEP
2,0 = tARR

0,0 = 60, tARR
2,0 ≤ 300.
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• Run p = 1 station visit order: 0, 1, 2, 0, arrival and departure times tDEP
0,1 = tARR

1,1 =

50, tDEP
1,1 = 55, tARR

2,1 = 105, tDEP
2,1 = tARR

0,1 = 110, tARR
2,1 ≤ 300.

• Run p = 2 station visit order: 0, 1, 2, 0, arrival and departure times tDEP
0,2 = tARR

1,1 =

50, tDEP
1,2 = 105, tARR

2,2 = 155, tDEP
2,2 = tARR

0,2 = 160, tARR
2,2 ≤ 300.

• Run p = 3 station visit order: 0, 2, 1, 0, arrival and departure times tDEP
0,3 = tARR

2,3 =

155, tDEP
2,3 = 160, tARR

1,3 = 210, tDEP
1,3 = tARR

0,3 = 215, tARR
2,3 ≤ 300.

The timetables of train runs before and after the closure are in Figures 6 and 7. The
figures represent the connection between the time and the distance traveled between nodes
(stations) 1 and 2 for different trains. Red represents the time of the closure.

Figure 6. Timetable before closures.

Figure 7. Timetable after closures.
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6.3. Network of Tracks Case

The second part of experiments was performed on a multi-station network. The
considered network is based on the part of the Polish Railway Network from the region of
Kielce consisting of 167 tracks connecting 149 stations as it is depicted in Figure 8, and there
were originally 95 train runs in the official timetable for one day. The simulations have been
performed for different numbers of train runs TR (i.e., for TR = 10, 11, 12, 13, 14, 15, 20, 30)
using the same railway network. Ten different sub-sets of the original set of train runs
selected at random according to the uniform probability distribution have been generated
for a given number of train runs. Each train run was assumed as obligatory. The standing
times have been set to TDL = 15, TD

i,p = 1 for all runs p and stations i. We also assumed
that there were three closures in the railway network. Each closure was also assumed as
obligatory. Unless otherwise stated, the closures’ duration times have been set to 2h (i.e.,
TC

n = 2h for all n). For each simulation, the closures’ tracks have been randomly chosen
according to the uniform distribution and the closures’ beginning times have also been
chosen analogously from the interval (0, TH − 2h). These assumptions correspond to the
periodic and weekly closure planning when short-term closures caused by the regular
maintenance works are taken into consideration. We have limited our consideration to
the determination of the plan for one day assuming that the train runs timetable and
the closures plan should be repeatable. There stations’ capacities have been unlimited.
As for a single track case, the overall time interval was also limited to a single day, i.e.,
TH = 1440 min. The results are briefly presented in Figures 9–12 and in corresponding
Tables 8–11. Dots, as well as error bars, represent the average value, as well as minimal
and maximal values, respectively. The dimensionless performance index Q̂ = Q

Q̃
, where Q̃

stands for the best value of (17) found for the particular problem instance along with the
computation time T̃, evaluates the heuristic algorithm. Analogously as in Section 6.1, we
denote the average, minimum, and maximum values of Q̂ by Q̂avg, Q̂min, Q̂max, respectively.

Table 8. Dependence of Q̂ on η for different TR.

η
TR = 10 TR = 11 TR = 12 TR = 13

Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max

2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1.09 1 1 1 1 1 1
4 1.26 1 1.64 1.29 1.02 1.79 1.32 1 1.82 1.27 1 1.73
10 1.6 1.2 2.65 1.99 1.47 2.84 2.23 1.68 2.98 2.17 1.4 2.75
20 2.17 1.35 3.14 2.43 1.58 3.24 2.52 1.67 3.33 2.66 1.62 3.34

η
TR = 14 TR = 15 TR = 20 TR = 30

Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max

2 1 1 1 1 1 1 1.04 1 1.15 1 1 1.04
3 1 1 1 1 1 1 1.14 1 1.33 1.01 1 1.14
4 1.38 1 2 1.22 1 1.65 1.34 1.15 1.49 1.39 1.29 1.72
10 2.87 2.17 3.32 2.11 1.12 2.51 2.68 2 2.96 2.67 2.57 2.84
20 2.87 2 3.51 2.8 1.56 3.36 3.19 2.52 3.82 3.32 3.3 3.36
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Table 9. Dependence of T̃ on η for different TR.

η
TR = 10 TR = 11 TR = 12 TR = 13

T̃avg T̃min T̃max T̃avg T̃min T̃max T̃avg T̃min T̃max T̃avg T̃min T̃max

2 15 14 16 14 14 14 14 14 14 14 14 14
3 14 13 15 13 13 13 13 13 13 13 13 13
4 13 13 14 13 13 13 13 13 13 13 13 13
10 13 13 14 13 13 13 13 13 13 13 13 13
20 13 13 14 13 13 13 13 13 13 13 13 13

η
TR = 14 TR = 15 TR = 20 TR = 30

T̃avg T̃min T̃max T̃avg T̃min T̃max T̃avg T̃min T̃max T̃avg T̃min T̃max

2 32 30 35 65 60 67 339 275 421 1308 1193 1419
3 31 29 36 64 61 67 316 251 415 1257 1201 1341
4 31 29 34 53 59 63 300 234 401 1206 1119 1250
10 31 28 33 50 46 61 267 210 326 1216 987 1233
20 29 28 31 48 39 58 242 107 326 301 151 351

Figure 8. The considered part of the Polish Railway Network in the area of Kielce (only selected main stations are indicated by dots).



Appl. Sci. 2021, 11, 2334 33 of 41

Figure 9. Dependence of Q̂ on the number of groups for selected numbers of train runs.

Figure 10. Dependence of T̃ (seconds) on the number of groups for selected numbers of train runs.
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Table 10. Dependence of Q̂ on TR for different η.

TR
η = 2 η = 3 η = 4 η = 10 η = 20

Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max Q̂avg Q̂min Q̂max

10 1 1 1 1 1 1 1.26 1 1.64 1.6 1.2 2.65 2.17 1.35 3.14
11 1 1 1 1 1 1.09 1.29 1.02 1.79 1.99 1.47 2.84 2.43 1.58 3.24
12 1 1 1 1 1 1 1.32 1 1.82 2.23 1.68 2.98 2.52 1.67 3.33
13 1 1 1 1 1 1 1.27 1 1.73 2.17 1.4 2.75 2.66 1.62 3.34
14 1 1 1 1 1 1 1.38 1 2 2.87 2.17 3.32 2.87 2 3.51
15 1 1 1 1 1 1 1.22 1 1.65 2.11 1.12 2.51 2.8 1.56 3.36
20 1.04 1 1.15 1.14 1 1.33 1.34 1.15 1.49 2.68 2 2.96 3.19 2.52 3.82
30 1 1 1.04 1.01 1 1.14 1.39 1.29 1.72 2.67 2.57 2.84 3.32 3.3 3.36

Table 11. Dependence of T̃ on TR for different η.

TR
η = 2 η = 3 η = 4 η = 10 η = 20

T̃avg T̃min T̃max T̃avg T̃min T̃max T̃avg T̃min T̃max T̃avg T̃min T̃max T̃avg T̃min T̃max

10 15 14 16 14 13 15 13 13 14 13 13 14 13 13 14
11 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13
12 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13
13 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13
14 32 30 35 31 29 36 31 29 34 31 28 33 29 28 31
15 65 60 67 64 61 67 53 59 63 50 46 61 48 39 58
20 339 275 421 316 251 415 300 234 401 267 210 326 242 107 326
30 1308 1193 1419 1257 1201 1341 1206 1119 1250 1216 987 1233 301 151 351

Figure 11. Dependence of Q̂ on the number of train runs for selected numbers of groups.
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Figure 12. Dependence of T̃ (seconds) on the number of train runs for selected numbers of groups.

We can observe in Figures 9 and 11 that the growing number of groups η has the
significant influence on the deterioration of solution quality, and it does not improve much
the computation time (Figures 10 and 12), i.e., the computation time for a fixed number of
train runs does not decrease significantly with increasing number of groups. The increase
in the number of groups from 2 to 20 deteriorates the quality of solution up to 320%, with
only about 26% saving of the computational time. However, when the aim is to check fast
the existence of any feasible solution, and the quality of the solution is meaningless, the
decomposition into smaller groups may be justified.

The growth of the number of groups (railway sub-networks) η deteriorates the ob-
tained solutions for the same number of train runs TR (Figure 13 and Table 12). A similar
situation occurs when the number of train runs TR grows for the fixed number of groups η
(Figure 14 and Table 13). Nevertheless, the worsening is less significant in the latter case.

Table 12. Dependence of Q̂ on η for different TR = 10.

η Q̂avg Q̂min Q̂max

2 1 1 1
3 1 1 1
4 1.64 1 1.26
10 2.65 1.2 1.6
20 3.14 1.35 2.17

Table 13. Dependence of Q̂ on TR for different η = 4.

TR Q̂avg Q̂min Q̂max

10 1.64 1 1.26
20 1.49 1.15 1.34
30 1.72 1.29 1.38
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Figure 13. Dependence of Q̂ on the number of groups for 10 train runs.

Figure 14. Dependence of Q̂ on the number of train runs for 4 groups.

The performance indexes Q̂ values are jointly compared with the computational time
T̃ in Figure 15 and Table 14, while the performance index Q̃ are jointly compared with the
computational time T̃ in Figure 16 and Table 15. The values of Q̂ are marked on the abscissa
axis, and Q̃ values are represented by dots, in Figure 15. The opposite presentation is used
in Figure 16, where values of Q̃ are represented on the logarithmic abscissa axis, while Q̂
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are marked by dots. Both figures present the comparison for different values of TR and
η. As it can be observed there, the impact of the number of groups η on the computation
time is slight, unlike the solution quality Q̃. So, it is not recommended to decompose the
problem into many sub-problems, as it deteriorates inadmissibly the quality.

Table 14. Dependence of Q̂ and T̃ for selected TR and η.

η
TR = 10 TR = 20 TR = 30 avg

Q̂avg T̃avg Q̂avg T̃avg Q̂avg T̃avg Q̂avg T̃avg

2 1 15 1.05 339 1 1308 1.02 554
3 1 14 1.15 315 1.01 1257 1.05 529
4 1.27 13 1.34 300 1.4 1206 1.34 506
10 1.6 13 1.69 267 2.68 1216 1.99 499
20 2.17 13 2.2 242 3.33 301 2.56 202

Table 15. Dependence of Q and T̃ for Tn ∈ {2, 4, 6}, TR ∈ {10, 20, 30}, and η = 3.

Tn
TR = 10 TR = 20 TR = 30

Qavg T̃avg Qavg T̃avg Qavg T̃avg

2 239 13 2052 264 11231 1292
4 474 14 4123 274 21452 1290
6 931 14 7905 271 43041 1301

Figure 15. Relation between Q̂ and T̃ (seconds) for selected numbers of train runs and groups
(at stations).
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Figure 16. Relation between Q̂ and T̃ (seconds) for selected closure durations for 10, 20, 30 train runs
and for 3 groups.

However, it is worth noting that the main challenge consists of answering the question
if there is any feasible solution, and it is necessary to obtain the answer in the limited time.
So, the most important issue is to obtain any solution in such time. On the other hand, the
decision-maker has to be aware that the decreasing of computational time by applying
bigger values of η can result in the lack of any solution. Even though the feasible solution
of the considered problem may exist, the algorithm can fail to find it. Such a situation can
be observed in Table 16, where the algorithm for η ≥ 20 did not find any solution in 20% of
all examined cases.

Table 16. Number of cases with feasible solutions found for selected TR and η.

TR η = 2 η = 3 η = 4 η = 10 η = 20 η = 25

10 10 10 10 10 10 10
20 10 10 10 10 10 10
30 10 10 10 10 8 8

7. Final Remarks

The selected management problem on railway transportation under anticipated track
closures is considered. Taking into account the planned closures, caused mainly by the
maintenance of tracks and stations, requires the elaboration of a new timetable for trains.
In consequence, the problems of track closure planning and train rescheduling are jointly
considered in the paper as the strongly multivariable and nonlinear mixed integer opti-
mization problem. A novel approach based on the decomposition is applied, which results
in the heuristic solution algorithm. The conducted simulation experiments confirmed
the usefulness of the algorithm regarding both the performance index applied and the
computational time. In particular, the experiments performed on single tracks have shown
that the results generated by the heuristic algorithm are quite close to the optimal ones.
Such experiments involving optimal solutions are impossible for greater instances of the
problem. Hence, the profound simulation experiments were performed for the real-world
example including 95 train runs. The results confirmed the effectiveness of the algorithm
for a wide range of the algorithm’s parameters, first of all for the different number of groups
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(railway sub-networks) being the result of the applied decomposition. The computational
time did not exceed a half an hour for the real-world instance considered. So, it is possible
to effectively launch the algorithm for substantially big problem instances. The proposed
solution algorithm with the number of railway sub-networks η as the algorithm’s param-
eter also allows for fast checking of the existence of any feasible solution neglecting the
optimization of the criterion. Such property of the algorithm seems to be very important
for real-world applications.

The verification of the current model is now considered for the case when a substitutive
transport with resulted additional costs is possible. Planned further works will consist
mainly of the generalization of the model proposed in Section 3, by taking into account
additional facets important for railway networks management as different categories of
trains and priorities in their running, as well as additional constraints on station capacities
and track forks.
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