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Abstract: The highest costs due to premature failures in wind turbine drivetrains are related to defects
in the gearbox, with bearing failures being overrepresented. Vibration monitoring has been identified
as the primary tool to detect and diagnose these types of failures. However, late or no signs of the
failures are still being reported. Artificial neural networks (ANNs) has been shown to favourably be
used as a classifier of bearing failures to increase the detection and diagnosis performance, which
requires labelled data when training for all types of considered failures. However, less work has
been done with an ANN used to create descriptive functions of the vibration and turbine operation
data relationship and thereby negating inherent variance in the vibration data and increasing the
detectability when a defect appears. Therefore, this study utilizes the relationship between the
rotational speed recorded during a vibration measurement and the calculated condition indicator
values of specific bearing failures in three wind turbine gearbox failures. An ANN establishes a
function between the rotational speed and condition indicator values with healthy training data
collected before the failure occurred. Thereafter, whole datasets leading up to the changing of
the gearboxes is used to predict the condition indicator values without the failure influence. The
difference between the predicted and true values show an increased sensitivity of the detection in
two cases of gearbox output shaft bearing failures as well as indicating a planet bearing failure which
with the previous data had gone undetected.

Keywords: vibration measurements; bearing failure; wind turbine drivetrain bearings; artificial
neural networks

1. Introduction

Wind power is one of the main growing energy generating sectors, which in 2019
saw its second-largest increase in capacity with 60.4 GW, making the total 651 GW [1].
However, wind turbines experience a large number of premature failures, with the most
costly ones being in the drivetrain. Further, the gearbox is the highest contribution to these
costs, partly due to the long downtime associated with these failures and e.g., the price of a
new 2 MW gearbox being as high as 400 ke [2]. Out of these gearbox failures, the bearings
are over-represented compared to the gears by a factor of 76% to 17% [3]. To efficiently
combat the costs associated with the drivetrain failures, online condition monitoring has
become the main method to ensure the health of the bearings and gears [4]. Monitoring by
vibration measurements is employed as it can differentiate vibrations from bearing and
gear components in a sub-system, and thereby can at an early stage effectively diagnose a
detected failure to its origin component. Thereby, the developing failure can be monitored
live, maintenance planning start at an earlier date limiting the downtime and actions in
operation of the turbine, such as limiting the power output for a period of time, can be
taken to reduce the cost of the failure.
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The vibration monitoring is normally done by trend values calculated from consecu-
tive measurements, as well as specific peaks in the frequency domain correlated to different
bearing components experiencing defects or gear contacts. Base values of these indicators
first need to be established before deviations in new data points from this trend can indicate
a defect being present. This procedure is often done by experts needing to make decisions
in small ocular differences in the data, based on experience. Thereby, an as sensitive
monitoring and signal analysis solution as possible is preferable to increase the certainty of
maintenance decisions.

Lately, much research has been done with machine learning techniques to more
efficiently detect, diagnose and predict bearing failures. Most often, techniques such as
artificial neural networks (ANNs) [5–9], is used as it can design a descriptive function
from complex observations [10], or support vector machines (SVMs) [11–13], used for
its high generalization ability [14], are implemented as classifiers if data points can be
considered healthy or a fault is present, and in extension which bearing component has
a defect. Moreover, other techniques such as the random forest classification technique
have been implemented in rolling bearing failure detection and diagnosis to attempt to
fully replace the need for an expert analysis of the data and to better handle a large number
of input variables [15,16]. However, such techniques and the multitude of extensions to
the base neural networks and SVM techniques introduce their own set of complexities
in generalizing an implementation to perform on each individual case and individual
machine. Therefore, value can be gained by introducing a machine learning implementation
as a step in the current condition monitoring methodology to increase the interpretable
signs of deteriorating bearings, which the more complex and advanced techniques are
not designed for. Additionally, labelled data, where the presence of a defect cannot be
argued, are often needed for training the algorithms, which outside of a simulated or lab
environment is difficult to acquire and had up to 2015 largely been overlooked [17]. Thereby,
an implementation that does not require labelled data has an advantage when applied
to existing wind turbine vibration field data. However, studies into various condition
monitoring techniques using vibration field data as opposed to simulated or test rig data
are starting to become more popular. In de Azevedo’s bearing condition monitoring review
from 2016 less than 8% were using field data while in Liu’s review from 2020, this had
increased to 40%. A number of machine learning techniques were employed in some of
these studies, but only one used an ANN [18,19].

Work using wind turbine field data has also been focused on using data from the
turbine Supervisory Control And Data Acquisition (SCADA) system in ANNs to detect
defects [20–22]. Here, parameters such as the wind speed, blade pitch angle, drivetrain
component temperatures and generated power can be used to find abnormal behaviour in
the turbines state and operation which could indicate a defect being present. Keeping in
mind that among the typical monitoring techniques, vibration monitoring can detect defect
at an earlier stage compared to lubrication and temperature monitoring, this would still be
used as the main indicator for a defect being present. However, the integration between
the SCADA and condition monitoring systems data sources is often non-existent [23].
Therefore, a lot of hands-on work is needed in each individual case to prepare the data
which greatly hampers a machine learning solution to be widely introduced in wind turbine
monitoring. An implementation that at most only requires the input of operational data
which is stored as metadata to the vibration measurements, where the integration of the
two data types exists, is therefore of interest. A first step to introduce a machine learning
solution can be to make use of the few operational parameters which exist in the condition
monitoring system and find abnormal behaviour to correlate to the presence of a defect.
Another important advantage to take into consideration with such a solution is the need to
obtain labelled data only when healthy for the learning period, instead of when used as a
classifier where both healthy data and labelled data during all types of failures are needed.

This study utilizes vibration monitoring results leading up to three different wind
turbine gearbox bearing failures. More specifically condition indicator values for the
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specific failures, providing the detection and diagnosis, is used. The three failures consist
of two gearbox output shaft bearing failures which are clearly detectable, and one planet
bearing failure from the second planetary gear stage which is problematic to detect and
diagnose. The novelty of this study is showing the implementation of an ANN regression
solution, chosen for its highly adaptable ability to quickly design functions from complex
observations, between condition indicator results when the healthy and rotational speed
of the gearbox output shaft, an associated measurement to the vibration measurements
within the condition monitoring database, enabling an implementation without the need
for labelled data. Thereby, the ANN implementation can be used to predict the condition
indicator value as it should be during normal operation and when compared to true values
with developing defects affecting the system, exhibit this difference as a more sensitive
detection method than purely the condition indicator values themselves. The goal of this
study is then to improve the sensitivity of the condition monitoring system and highlight
signs of a defect that might not be possible by pure ocular observations of the condition
indicator trends.

In Section 2, the ANN implementation methodology is presented with summarized
failure case information and condition indicator results. The results are presented and
discussed in Section 3 and conclusions in Section 4.

2. Method
2.1. Artificial Neural Networks

The general ANN structure consists of three components denominated as layers, two
“visible” layers being the known input layer to the network and the following output layer,
and between these are either a singular or a multitude of hidden layers. These layers
consist of a number of neurons each, with the input and output layers corresponding to
the input size and the number of neurons in the hidden layers are chosen when setting
up the network. Additionally, each neuron of one layer is connected to all neurons in
the following layer. As the input is passed through the network, weights between each
neuron calculate the output. These weights are initialized with random values and are in
the training phase calibrated by iteratively minimizing the error between the output and
the known target value through the backpropagation algorithm [24]. A schematic structure
with N hidden layers can be seen in Figure 1.
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Figure 1. Schematic of an artificial neural network.
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2.2. Bearing Failure Cases

From three bearing failure cases, datasets of stored vibration measurements from
the condition monitoring system databases were extracted covering different frequency
ranges and measurement lengths. These datasets were processed with the enveloping
technique where bandpass filtering and rectifying extracts the repetition frequency of
impact resonances yielding an early detection of the defect in a bearing [25], and fast
Fourier transform (FFT). Thereafter, condition indicator (CI) values for each failing bearing
was constructed by a summation of three characteristic bearing defect frequency harmonics,
and the failure progression could be analysed. The characteristic bearing defect frequency
is calculated by multiplying the bearing shaft rotational speed and a relation between the
bearing dimensions [26]. As it was on the inner ring of the bearings which experienced the
defects, the ball pass frequency of the outer inner ring (BPFI) was used. This is calculated as:

BPFI =
f ni
2

(
1 +

D
dm

cos (α)
)

(1)

where f is the relative rotational frequency between the raceways, ni number of rolling
elements, D rolling element diameter, dm pitch diameter, and α is the contact angle. Addi-
tionally, as the defects are mounted on rotating components, shaft speed sidebands will
appear on each side of the BPFI harmonics. Three harmonics of the shaft speed sidebands
on each BPFI harmonic were also used when calculating the CI-values, as:

CIn =

√√√√k=3

∑
i=1

l=±3

∑
j=1

p2
i,j. (2)

Here, pi,j is the specific peak acceleration amplitude level of k = 3 fault frequency
harmonics and l = 3 shaft speed sideband harmonics where these theoretically should
exist. An alternative method to convert the enveloped vibration measurements into the
frequency domain which has previously shown to yield a higher CI-value increase, and in
some cases at an earlier stage, is the wavelet packet transform (WPT). More information
into this implementation and how it compares to the FFT, which is the standardized method
in wind turbine drivetrain bearing monitoring to convert the enveloped measurements
into the frequency domain, can be found in a previous study by the authors [27]. CI-values
can therefore be calculated from two different spectra per measurement and trended over
time. Henceforth, to differentiate between the two sets of CI-values these are denominated
enveloped WPT and enveloped FFT CI-values.

The three bearing failure cases consists of two gearbox output shaft bearing failures,
cases 1 and 3, and one planet bearing failure, case 2. For all cases, defects appeared on the
inner raceways. Note: case 1 is partially reproduced results from [27]. The relevant failure
case information is compiled in Table 1. The specific envelope filters were determined
to replicate the set filters in the vibration measurement systems mounted in the wind
turbine drivetrains, as was the case in the authors previous study [27]. Comparative results
between the enveloped FFT and the enveloped WPT CI-values for failure cases 1 and 2 can
be seen in Figure 2a,b respectively with the enveloped FFT CI-values in blue and enveloped
WPT CI-values in black trended over measurement number in the dataset as a parameter
of time.

For the gearbox output shaft bearing failure in case 1 show an increase of the nor-
malized, by z-score using the first 20 measurements as a healthy reference, CI-values as
the defect has appeared. The enveloped WPT CI-value results can both yield a higher
as well as an earlier increase, which is important for the monitoring to be as sensitive as
possible. For the planet bearing failure in case 2 however, no apparent increase of the
CI-values can be seen. A small difference can be seen in the last 200 measurements where
the spread has decreased. However, these measurements have consistently been taken
during high rotational speeds compared to earlier in the dataset and cannot be attributed
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to the present defect with any high degree of certainty. For failure case 3, enveloped FFT
CI-values from 1.28 s long measurements and with a frequency range of 0–5 kHz were
compared to CI-values extracted directly from the database from in-system enveloped
measurements where the frequency range was extended to 0–10 kHz and the measurement
time was taken over 32 revolutions of the gearbox output shaft, between 1.5 and 2.75 s.
This type of in-system enveloped measurement is generally not stored in the databases and
cannot, therefore, be used in a post-failure investigation. This comparison can be seen in
failure case 3 in Figure 3 with the 0–5 kHz CI-values in blue in the top graph and 0–10 kHz
in red in the bottom graph.

Table 1. Bearing, damage and measurement information for each failure case.

Failure Case 1 2 3

Bearing Output Pl.2 Planet Output
position shaft shaft
Bearing SKF SKF SKF
designation NU2230E RN2238 32236J2
Damage Inner ring Inner ring Inner ring

spalling spalling and flaking spalling
Meas. type Time sync Time sync Time sync and enveloped
Meas. time and 1.28 s, 0–5 kHz 6.4 s, 0–1 kHz 1.28 s, 0–5 kHz,
freq. range 32 rev, 0–10 kHz
Envelope filters 0.5–6.4 kHz, 0.2–1 kHz, 0.5–6.4 kHz, 0.2 kHz

0.2 kHz 0.2 kHz 0.5–10 kHz, 0.5 kHz
Dataset size 562 1377 2102 and 754

Additionally, since the number of CI-values for each frequency range differs, each
CI-value is trended with respect to the number of days from the start of the dataset.
The resonance frequencies demodulated by the enveloping technique primarily exist above
the 5 kHz max frequency range of the extracted measurements until the last days of the
dataset time period. Therefore, the 0–10 kHz CI-values can indicate the defect at a much
earlier date.

(a) Failure case 1, gearbox output shaft bearing IR failure.
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(b) Failure case 2, 2nd stage planet bearing IR failure.

Figure 2. Normalized CI-values from FFT spectra in blue and WPT in black on enveloped measure-
ments from failure case 1 in (a) and failure case 2 in (b).

Figure 3. Normalized condition indicator CI-values from FFT spectra on 0–5 kHz and 0–10 kHz
frequency range enveloped measurements in blue and red respectively from failure case 3.

2.3. Data Pattern and Filtration

An example of the relationship between the rotational speed measurement of the
gearbox output shaft and the calculated CI-values, before normalization, can be seen in
Figure 4a where the enveloped FFT CI-value results before the defect develops in failure
1 are used. Included in this is CI-values from measurements taken under two different
scenarios. As this specific type of turbine has been at standstill, it will need to reach a
rotational speed above 880 rpm before the generator starts to produce. Thereafter, it can
be allowed to decrease in rotational speed to roughly 750 rpm before the generator stops
producing again. However, the limitations set on the monitoring system regarding when
to store a vibration measurement does not take this into account. Instead, limits have
been set on the rotational speed between 700–1300 rpm and the rotational speed variance
during the measurement to no more than 30 rpm. Thereby, measurements will exist in
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the database where the resistance in the drivetrain from the generator will be much lower,
and this will in turn affect the general amplitude level of the vibration spectra. Additionally,
the three measurements taken during the highest rotational speed of the gearbox output
shaft do not follow the established pattern. It was shown that the variance in speed as
these measurements was relatively high at 13.7, 8.96 and 17.8 rpm respectively.

(a) Absolute CI-values dependent on rotational speed

(b) Absolute CI-values dependent on the variance of rotational speed

Figure 4. Absolute CI-values dependent on rotational speed in (a) and variance in rotational speed
in (b). CI-values filtered out with respect to the generator not producing in red and CI-values filtered
out with respect to high variance in rotational speed in black.

Therefore, another input data filtering operation was added where measurements
taken with more variance in rotational speed of 8 rpm were eliminated from the dataset.
In Figure 4b, the enveloped FFT CI-values dependent on the variance in rotational speed
during the measurement is presented. Therefore, the invalid CI-values, seen in red when
taken during generator not producing and in black respect to the high variance in rotational
speed in Figure 4a,b, has been identified in the failure case 1 and 3 datasets and removed,
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leaving the valid CI-values in blue. For the planet bearing failure in failure case 2 however,
the variance in rotational speed of that bearing was only at most 4.3 rpm due to the
downshift in rotational speed compared to the tachometer measurement position. Thereby,
no further data elimination with respect to rotational speed variance was made in that case.

2.4. Procedure

After this, the first 300 CI-values with accompanying rotational speed value in each
dataset was chosen as training data for each respective case. Two sets of ANNs, one for
the enveloped FFT CI-value results and one for the enveloped WPT CI value results, were
trained for each failure case. These had three hidden layers with 64, 8 and 64 neurons
respectively. In the early stage of this investigation, a multitude of structures concerning
the number of hidden layers and neurons, were tested. While it was shown that a simpler
one or two hidden layer structure could produce comparable prediction results, as long as
the number of neurons was sufficiently high, this three-layer structure was shown to yield
more stable and repeatable results without any decrease in performance. Therefore, it was
decided to use this structure for each failure case. The rotational speed measurements were
used as input and CI-values before normalization as output. The ANNs were set up in
Matlab using the fitnet function and trained using the Levenberg–Marquardt algorithm
for optimal computational speed. By using these trained ANNs to predict the CI-values for
the remaining measurements in the datasets, the effect of the defect on the measurements is
separated from the inherent rotational speed dependant, CI-value variance. The difference,
dn between the true CI-values, CIn, and the predicted values, pn, were calculated for each
measurement, n, in the datasets by

dn =

√
(CIn − pn)

2. (3)

Z-score normalization was used to be able to compare the differentiation results
between the true and predicted CI-values between the two signal analysis methods, and the
detectability performance of the true CI-values by themselves. The normalization of one
value of the difference between the true and predicted values is calculated by

Zn =
dn − µ(d1,2,...,20)

σ(d1,2,...,20)
, (4)

where the µ and σ values are calculated from the first 20 values.

3. Results and Discussion
3.1. Failure Case 1 Results

In Figure 5a, the ANN’s predicted enveloped FFT CI-values from failure case 1 can
be seen together with the comparison with the true values and the normalized difference
between them, before data filtration with respect to rotational speed variance.

At the top graph, the ANN’s predicted CI-values are seen in red and closely followed
the true values, in blue, until the defect appeared except for three distinct peaks. These
three predicted values coincided with the three mentioned measurements in Section 2.3
which were taken during a high rotational speed and large variance. The ANN learned
that such a high rotational speed should coincide with a high CI-value but failed to take
into account the flattening effect of the spectrum when the variance in rotational speed was
high. Thereby, the calculated difference, using Equation (3) and seen in normalized form
by Equation (4) in the bottom graph of Figure 5a, also highlighted these peaks. When the
defect appeared at measurement 510, this calculated normalized difference permanently
increased to roughly 20 on the normalized scale, indicating the defect being present in the
measurement. Studying the CI-values by themselves, seen in the top graph of Figure 2a,
only showed a relative increase of 8. Additionally, the incorporation of the ANN could
indicate the defect earlier than purely using the enveloped FFT CI-values from Figure 2a
by themselves.
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After the rotational speed variance data filtration, the normalized difference between
the ANN’s predicted and true CI-values can be seen in Figure 5b. Here, the three peaks
before the defect appears were eliminated and the trend curve indicated normal operation
of the bearing until the defect appeared at measurement 510. Additionally, the relative
increase as the defect appears now increased to roughly 30 compared to 20 from before
the data filtration. Thereby, the incorporation of the ANN increased the sensitivity of the
monitoring by a factor of 3.75.

<------------------------------------ Training data ------------------------------------>

(a) Comparison and normalized difference between ANN’s predicted and true CI-values without
rotational speed variance data filtration.

(b) Normalized difference between ANN’s predicted and true CI-values with rotational speed
variance data filtration.

Figure 5. Gearbox output shaft bearing failure case 1, enveloped FFT CI-values. Comparison of
ANN’s predicted CI-values in red and true CI-values in blue at the top graph in (a) and normalized
difference between them at the bottom graph without rotational speed variance data filtration.
Normalized difference between predicted and true CI-values with rotational speed variance data
filtration in (b).

In Figure 6, the comparative results to Figure 5 using the enveloped WPT CI-values
can be seen.
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<------------------------------------ Training data ------------------------------------>

(a) Comparison and normalized difference between ANN’s predicted and true CI-values without
rotational speed variance data filtration.

(b) Normalized difference between ANN’s predicted and true CI-values with rotational speed
variance data filtration.

Figure 6. Gearbox output shaft bearing failure case 1, enveloped WPT CI-values. Comparison of
ANN’s predicted CI-values in red and true CI-values in blue at the top graph in (a) and normalized
difference between them at the bottom graph without rotational speed variance data filtration.
Normalized difference between predicted and true CI-values with rotational speed variance data
filtration in (b).

Here, the rotational speed variance was unable to produce the large differences
between the ANN’s predicted CI-values and the true values, seen in Figure 6a. Thereby,
the operation of the bearing was read as normal until the defect appears and was indicated
by the normalized difference between the ANN’s predicted and true CI-values. In the
time period when the defect appeared, however, measurements 533 and 536 where the
rotational speed and variance were high resulted in a drop of the CI-values and negated
the increased normalized difference. Thereby, these would be read as normal behaviour
on the normalized scale while in fact, the defect was present. However, the filtration of
these measurements eliminated this drop in Figure 6b. Additionally, the relative increase
of the normalized difference by the data filtration reached a level of 50, which could be
compared to the relative increase of the CI-values seen in the bottom graph of Figure 2a
of 16. Thereby, the sensitivity of the monitoring increased by a factor of 3.125 by the
ANN implementation.
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3.2. Failure Case 2 Results

For failure case 2, the ANN’s predicted CI-values, the true CI-values from the en-
veloped FFT data and the normalized difference between them, by Equations (3) and (4),
can be seen in Figure 7.

<--------- Training data --------->

Figure 7. Planet bearing failure case 2, enveloped FFT CI-values. Comparison of ANN’s predicted
CI-values in red and true CI-values in blue at the top graph and normalized difference between them
at the bottom graph.

Here, the ANN’s predictions in red closely followed the true CI-values in blue until
measurement 1024. This was made apparent in the normalized difference, in the bottom
graph, which stayed consistent. Thereafter, a cluster of peaks appeared which even though
the rotational speed was high the prediction could not replicate. While this behaviour
was not a clear indication of the defect being present, it could indicate a defect appearing
and subsequent over-rolling by the rolling elements flattening the defect and lowering
the strength of the repeated impact resonances being monitored. At measurement 1226
however, a steady increase of the CI-values could not be replicated by the ANN’s prediction.
This appeared in the normalized difference as a relative increase to 10 and clearly indicated
the defect. The comparative normalized CI-values in the top graph of Figure 2b only
reached a level of 3 for the same measurements, with the added uncertainty if this slight
increase depended on the rotational speed being consistently high during this period,
as hinted as by the high predicted values.

In Figure 8, the results using the enveloped WPT CI-values can be seen. Compared to
the results from Figure 7, the ANN did not predict the CI-values as closely before the signs
of the defect appeared. This was deemed to be a result of the enveloped WPT CI-values
being less dependent on the rotational speed than the enveloped FFT CI-values, as evident
in Figure 2b. The increase from measurement 1226 did appear, however, in this case also to
a larger extent than the results in the bottom graph of Figure 2b leading to an improvement
of the monitoring by the ANN’s implementation.
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<--------- Training data --------->

Figure 8. Failure case 2, planet bearing failure, enveloped WPT CI-values. Comparison of ANN’s
predicted CI-values in red and true CI-values in blue at the top graph and normalized difference
between them at the bottom graph.

3.3. Failure Case 3 Results

For failure case 3, CI-values directly extracted from the condition monitoring database
were available which had been calculated from the FFT spectra of enveloped measurements
with a 0–10 Hz frequency range. Concurrent CI-values from extracted measurement with a
0–5 kHz frequency range, which was thereafter enveloped and the FFT applied, were also
used. The ANN implementation was employed for both these sets of CI-values to evaluate
the impact of measurement properties on the monitoring results and if more detail could
be obtained to yield an earlier detection of the defect. The ANN’s predicted CI-values,
the true enveloped FFT CI-values from measurements with a 0–5 kHz frequency range and
the normalized difference between them can be seen in Figure 9.

<------------------------- Training data ------------------------->

Figure 9. Gearbox output shaft bearing failure case 3, CI-values trended per day of the dataset starting
at 0 from FFT spectra on enveloped measurements with a 0–5 kHz frequency range. Comparison
of ANN’s predicted CI-values in red and true CI-values in blue at the top graph and normalized
difference between them at the bottom graph.



Appl. Sci. 2021, 11, 3588 13 of 15

Note, the dataset in total spanned 731 days and was trended in accordance to this
value, with the first defined as day 0, to be able to make a comparison to the 0–10 Hz
frequency range CI-value dataset as the number of values in each dataset differ. For the
first 120 days of the dataset, the rotational speed and thereby the predicted CI-values
varied substantially. As these values constitute a large part of training the ANN algorithm,
the ANN started to underperform slightly during long periods of high rotational speed.
At day 728, there was a sudden increase of the true CI-values which the prediction could not
replicate and thereby indicating the defect. When comparing these results to the previous
CI-value results in the top graph of Figure 3, the indication of the defect was improved.
As the sudden increase of the CI-values happened, the normalized difference between
them and the ANN’s prediction reached a level of 17.6, while the CI-value results only
reached a level of 10.75. Therefore, the ANN implementation increased the sensitivity of
the monitoring. However, it was not able to indicate the defect at an earlier stage.

The ANN’s predicted CI-values, the true enveloped FFT CI-values from the 0–10 kHz
frequency range measurements and the normalized difference between them can be seen
in Figure 10.

<------------------------- Training data ------------------------->

Figure 10. Gearbox output shaft bearing failure case 3, enveloped FFT CI-values from measurements
with a 0–10 kHz frequency range trended per day of the dataset starting at 0. Comparison of ANN’s
predicted CI-values in red and true CI-values in blue at the top graph and normalized difference
between them at the bottom graph.

The ANN could closely predict the CI-values for the first 400 days. Thereafter, the nor-
malized difference between the predicted and true CI-values started periods of experiencing
slight increases before decreasing again. At day 510, the normalized difference started to
increase and fully differentiated from normal behaviour, clearly indicating the presence of
the defect in the bearing. In the previous CI-value results in the bottom graph of Figure 3,
this time period between day 400 and 510 with slight indications of the defect were not
indistinguishable. Thereby, the implementation of the ANN had the potential to indicate
the defect at a substantially earlier stage. Additionally, the information of the defect being
present on the bearing raceway lay outside the measured properties of the stored measure-
ments in the database and this disadvantage could not be solved with more intricate signal
analysis and machine learning techniques.
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4. Conclusions

In this study, a simplistic artificial neural network implementation was used on con-
dition indicator (CI) value monitoring results from three cases of wind turbine drivetrain
bearing failures to improve detection sensitivity, without the need for labelled data for
every type of conceivable failure case in the drivetrain before implementation. Feedfor-
ward neural networks with three hidden layers were set up for each bearing failure case.
Rotational speed measurements of the gearbox output shaft, taken simultaneously as the
vibration measurements, used as input to predict the constructed CI-values to trend the con-
dition of the bearings experiencing defects on the inner raceways. In two cases, CI-values
from two different methods of signal processing were used, where the enveloped vibration
measurements were converted into the frequency domain by the fast Fourier transform
(FFT) and the Wavelet Packet Transform (WPT). In the last failure case, enveloped FFT
CI-values with differing measurement time and frequency range were used. By using
CI-values and accompanying rotational speed values collected before the incipient defect
developed to train individual networks for each set of CI-values, the relationship between
the rotational speed and the CI-values is learnt and can be predicted for the whole dataset.
This was then used to calculate the difference between the predicted values to the true
CI-values, which will as the defect starts to affect the vibration measurements start to
increase. The conclusions which could be drawn from the results are:

• Monitoring the difference between the ANN’s predicted and true CI-values was able to
increase the relative sensitivity compared to monitoring the CI-values by themselves.
In a gearbox output shaft bearing failure case, the normalized difference between the
predictions and the true CI-values calculated from WPT spectra increases to a higher
level compared to using the FFT spectra CI-values. By implementing the ANN into
the analysis, the disadvantage of FFT spectra CI-values where the incipient increase
is difficult to distinguish from the earlier variation in the data compared to the WPT
spectra CI-values is eliminated. This as the normalized difference for both methods
dramatically increases simultaneously.

• The variance in rotational speed of the gearbox output shaft during the measurement
time of the vibration measurements was shown to detrimentally influence the results,
with singular peaks appearing in the trended normalized difference value between
the prediction and the CI-results. This increase in non-stationarity lowered the noise
level of the spectrum and the predictions were thereby overestimated, causing peaks
in the normalized difference interfering. Thereby, the elimination of CI-values where
the rotational speed variance was deemed too high from the analysis is recommended.

• By implementing the proposed ANN procedure on the planet bearing failure case
it was shown to improve the sensitivity to such a degree that the defect could be
detected, which was not possible by the CI-values only.

Author Contributions: Conceptualization, D.S.; methodology, D.S.; software, D.S.; validation, D.S.;
formal analysis, D.S.; investigation, D.S.; resources, D.S.; data curation, D.S.; writing—original draft
preparation, D.S.; writing—review and editing, D.S., P.M. and K.B.; visualization, D.S.; supervision,
P.M. and K.B.; project administration, P.M. and K.B.; funding acquisition, P.M. and K.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 3588 15 of 15

References
1. GWEC. Global Wind Report 2019; Technical report; Global Wind Energy Council: Brussels, Belgium, 2020.
2. Crowther, A.; Ramakrishnan, N.; Zaidi, N.A.; Halse, C. Sources of time-varying contact stress and misalignments in wind turbine

planetary sets. Wind Energy 2011, 14, 637–651. [CrossRef]
3. Sheng, S. Wind Turbine Gearbox Reliability Database, Condition Monitoring, and Operation and Maintenance Research Update; Technical

Report No. NREL/PR-5000-68347; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017.
4. Hameed, Z.; Hong, Y.S.; Cho, Y.M.; Ahn, S.H.; Song, C.K. Condition monitoring and fault detection of wind turbines and related

algorithms: A review. Renew. Sustain. Energy Rev. 2009, 13, 1–39. [CrossRef]
5. Samanta, B.; Al-Balushi, K.R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain

features. Mech. Syst. Signal Process. 2003, 17, 317–328. doi:10.1006/mssp.2001.1462. [CrossRef]
6. Castejón, C.; Lara, O.; García-Prada, J.C. Automated diagnosis of rolling bearings using MRA and neural networks. Mech. Syst.

Signal Process. 2010, 24, 289–299. [CrossRef]
7. Unal, M.; Onat, M.; Demetgul, M.; Kucuk, H. Fault diagnosis of rolling bearings using a genetic algorithm optimized neural

network. Meas. J. Int. Meas. Confed. 2014, 58, 187–196. [CrossRef]
8. de Almeida, L.F.; Bizarria, J.W.P.; Bizarria, F.C.P.; Mathias, M.H. Condition-based monitoring system for rolling element bearing

using a generic multi-layer perceptron. J. Vib. Control 2015, 21, 3456–3464. [CrossRef]
9. Li, G.; Deng, C.; Wu, J.; Chen, Z.; Xu, X. Rolling bearing fault diagnosis based on wavelet packet transform and convolutional

neural network. Appl. Sci. 2020, 10, 770. [CrossRef]
10. Zhang, Z.; Wang, Y.; Wang, K. Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial

neural network. J. Intell. Manuf. 2013, 24, 1213–1227. [CrossRef]
11. Widodo, A.; Yang, B.S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process.

2007, 21, 2560–2574. [CrossRef]
12. Soualhi, A.; Medjaher, K.; Zerhouni, N. Bearing health monitoring based on hilbert-huang transform, support vector machine,

and regression. IEEE Trans. Instrum. Meas. 2015, 64, 52–62. [CrossRef]
13. Saari, J.; Strömbergsson, D.; Lundberg, J.; Thomson, A. Detection and identification of windmill bearing faults using a one-class

support vector machine (SVM). Meas. J. Int. Meas. Confed. 2019, 137, 287–301. [CrossRef]
14. Saravanan, N.; Siddabattuni, V.N.S.K.; Ramachandran, K.I. A comparative study on classification of features by SVM and PSVM

extracted using Morlet wavelet for fault diagnosis of spur bevel gear box. Expert Syst. Appl. 2008, 35, 1351–1366. [CrossRef]
15. Cabrera, D.; Sancho, F.; Sánchez, R.V.; Zurita, G.; Cerrada, M.; Li, C.; Vásquez, R.E. Fault diagnosis of spur gearbox based on

random forest and wavelet packet decomposition. Front. Mech. Eng. 2015, 10, 277–286. [CrossRef]
16. Wang, Z.; Zhang, Q.; Xiong, J.; Xiao, M.; Sun, G.; He, J. Fault Diagnosis of a Rolling Bearing Using Wavelet Packet Denoising and

Random Forests. IEEE Sens. J. 2017, 17, 5581–5588. [CrossRef]
17. El-Thalji, I.; Jantunen, E. A summary of fault modelling and predictive health monitoring of rolling element bearings. Mech. Syst.

Signal Process. 2015, 60–61, 252–272. [CrossRef]
18. de Azevedo, H.D.M.; Araújo, A.M.; Bouchonneau, N. A review of wind turbine bearing condition monitoring: State of the art

and challenges. Renew. Sustain. Energy Rev. 2016, 56, 368–379. [CrossRef]
19. Liu, Z.; Zhang, L. A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine

bearings. Meas. J. Int. Meas. Confed. 2020, 149, 107002. [CrossRef]
20. Tautz-Weinert, J.; Watson, S.J. Using SCADA data for wind turbine condition monitoring—A review. IET Renew. Power Gener.

2017, 11, 382–394. [CrossRef]
21. Yang, W.; Court, R.; Jiang, J. Wind turbine condition monitoring by the approach of SCADA data analysis. Renew. Energy 2013,

53, 365–376. [CrossRef]
22. Bangalore, P.; Letzgus, S.; Karlsson, D.; Patriksson, M. An artificial neural network-based condition monitoring method for wind

turbines, with application to the monitoring of the gearbox. Wind Energy 2017, 20, 1421–1438. [CrossRef]
23. Singh, J.; Azamfar, M.; Li, F.; Lee, J. A systematic review of machine learning algorithms for PHM of rolling element bearings:

fundamentals, concepts, and applications. Meas. Sci. Technol. 2020, 32, 012001. [CrossRef]
24. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Technical report; California

Univ. San Diego La Jolla Inst. for Cognitive Science: La Jolla, CA, USA, 1985.
25. McFadden, P.D.; Smith, J.D. Vibration monitoring of rolling element bearings by the high-frequency resonance technique—A

review. Tribol. Int. 1984, 17, 3–10. [CrossRef]
26. Harris, T.A.; Kotzalas, M.N. Essential Concepts in Bearing Technology, 5th ed.; CRC Press: Boca Raton, FL, USA, 2006.
27. Strömbergsson, D.; Marklund, P.; Berglund, K.; Larsson, P.E. Bearing monitoring in the wind turbine drivetrain: A comparative

study of the FFT and wavelet transforms. Wind Energy 2020, 23, 1381–1393. [CrossRef]

http://doi.org/10.1002/we.447
http://dx.doi.org/10.1016/j.rser.2007.05.008
http://dx.doi.org/10.1006/mssp.2001.1462
http://dx.doi.org/10.1016/j.ymssp.2009.06.004
http://dx.doi.org/10.1016/j.measurement.2014.08.041
http://dx.doi.org/10.1177/1077546314524260
http://dx.doi.org/10.3390/app10030770
http://dx.doi.org/10.1007/s10845-012-0657-2
http://dx.doi.org/10.1016/j.ymssp.2006.12.007
http://dx.doi.org/10.1109/TIM.2014.2330494
http://dx.doi.org/10.1016/j.measurement.2019.01.020
http://dx.doi.org/10.1016/j.eswa.2007.08.026
http://dx.doi.org/10.1007/s11465-015-0348-8
http://dx.doi.org/10.1109/JSEN.2017.2726011
http://dx.doi.org/10.1016/j.ymssp.2015.02.008
http://dx.doi.org/10.1016/j.rser.2015.11.032
http://dx.doi.org/10.1016/j.measurement.2019.107002
http://dx.doi.org/10.1049/iet-rpg.2016.0248
http://dx.doi.org/10.1016/j.renene.2012.11.030
http://dx.doi.org/10.1002/we.2102
http://dx.doi.org/10.1088/1361-6501/ab8df9
http://dx.doi.org/10.1016/0301-679X(84)90076-8
http://dx.doi.org/10.1002/we.2491

	Introduction
	Method
	Artificial Neural Networks
	Bearing Failure Cases
	Data Pattern and Filtration
	Procedure

	Results and Discussion
	Failure Case 1 Results
	Failure Case 2 Results
	Failure Case 3 Results

	Conclusions
	References

