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Abstract: A generalized mathematical model of the radial groundwater flow to or from a well is
studied using the time-fractional derivative with Mittag-Lefler kernel. Two temporal orders of
fractional derivatives which characterize small and large pores are considered in the fractional
diffusion–wave equation. New analytical solutions to the distributed-order fractional diffusion–wave
equation are determined using the Laplace and Dirichlet-Weber integral transforms. The influence of
the fractional parameters on the radial groundwater flow is analyzed by numerical calculations and
graphical illustrations are obtained with the software Mathcad.

Keywords: radial diffusion–wave equation; fractional derivative; distributed-order; integral trans-
forms

1. Introduction

Groundwater, in nearly all geological formations, is visible and in movement. Move-
ment is very sluggish in some materials such as rock or clay, as opposed to the groundwater
pouring in sand and gravel patterns. However, highly eroded rock may display discharges
of groundwater identical to or in surplus of sand and gravel aquifers [1]. In almost every
part of the globe, aquifers are essential mineral resources for irrigated agriculture, commer-
cial and drinkable water supply. The study of aquifers is germane to chemical engineers,
agricultural engineers, civil engineers, forestry engineers, ecologists, geologists, geogra-
phers, geotechnical engineers, irrigation engineers, mining engineers, hydraulic engineers,
hydro-geologists, hydrologists, petroleum engineers, soil scientists, and others [2].

In groundwater research, the central issue faced so far is the actual configuration of the
geological structure in which water flows into the aquifer under analysis. However, there
are many fractured rock aquifers where groundwater flow does not conform to traditional
geometries [3], such as the Karoo aquifers in South Africa, described by the existence of a
few parallel bedding fractures that act as the primary water channels in aquifers [4]. For the
Karoo aquifer, Botha et al. [4] established a three-dimensional prototype and demonstrated
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that the dominant flow field in these aquifers is vertical and linear and not, as generally
thought, horizontal and radial. However, subsequent investigations [5] indicate that the
flow is often affected by the geometry of bedding parallel fractures. It was concluded
that the most appropriate modification is to generalize the flow dimension to non-integer
values after considering a number of potential variations on the models, while maintaining
the premises of radial flow and homogeneity [6]. Analogously, in order to investigate a
radially symmetric model for the groundwater flow, Cloot and Botha suggested the idea
of a non-integer fractional derivative by changing the conventional first order derivative
of a piezometric head with a complementary fractional derivative [7]. To investigate
groundwater flow, Cloot and Botha [7] have considered the Riemann–Liouville fractional
derivatives ([8], chapter 1, Equation (1.25)) to formulate the fractional diffusion–wave
equations for the radial solute transport in aquifers, and this formulation is similar to the
equation suggested by Metzler et al. [9].

During aquifer analyses in fractured networks, Cello et al. [10] analyzed the impact
of flow dimensions and irregular diffusion of groundwater. Quite recently, Atangana
and Bildik [11] reused a time-fractional partial differential equation (PDE) proposed by
Metzler et al. [9] and three variants of fractional partial differential equations (fPDEs) in a
radial coordinate that were considered by Atangana and Vermeulen [12], Atangana [13].
More recently, the study of groundwater flows in aquifers using fPDEs for groundwater
transport in unsaturated soils has been addressed [14–18].

In several scientific fields, such as geoscience, demography, physics, mathematics, bi-
ology, and bioengineering, the simulation of complex systems is made with fractional order
differential/integral operators [19]. Many fractional–differential operators have been stud-
ied by researchers. We recall here some of them: namely, the fractional Caputo–Fabrizio
operator [20], the integral/derivative Riemann–Liouville operator [21], fractional Caputo
derivative [22], the fractional Yang–Srivastava–Machado derivative [23], the Atangana–
Baleanu fractional derivative [24,25], etc. The space–fractional diffusion with power–law
super diffusivity formulated with the Riemann–Liouville fractional derivative was ana-
lyzed by Hristov [26]. The time–fractional Caputo–Fabrizio derivative was implemented
by Ahmad et al. [27] to examine the advective diffusion process with low-range memory
and concentrated source.

The fractional derivative with exponential and non-singular kernel defined by Caputo
and Fabrizio is largely used in the modeling of dissipative phenomena by fractional deriva-
tives. The Caputo–Fabrizio integral operator with exponential memory (so called fractional
derivative with a non-singular kernel) is oriented to more complex relaxation processes
than the ones modeled by the classical fractional derivatives with power–law (fractional
derivatives with singular kernel) memories. Applications of the Caputo–Fabrizio integral
operator with memory in the modeling of the dissipative phenomena with exponentially
decaying relaxation functions have been discussed by Hrisotv [28].

It is known that the most popular function fitting the time–domain relaxation patterns
is the Kohlraush stretched-exponential function [29] ϕ(k, t) = exp(−(at)αk ) where αk,
0 ≤ αk ≤ 1 is the stretching exponent and a is an inverse of the characteristic material time
constant. Barbera-Santos et al. [30] showed that the Kohlraush relaxation function is a
kernel derived from experiments.

It is easy to notice that the Caputo–Fabrizio derivative operator has been constructed
with a simple exponential memory; namely, the Kohlraush stretched exponent is set to
one. In a similar way, a generalization of the Caputo–Fabrizio derivative was constructed
by considering a kernel that generalizes the exponential function, namely the Mittag–
Leffler function with a single parameter. The new operator is called the Atangana–Baleanu
fractional derivative.

The choosing of the memory kernel and the recovery of the relaxation function from
the experimental data and fitting it with a well-defined function is a task strongly dependent
on the physics of the process of interest. The memory kernels in the fractional differential
operators used to model linear viscoelasticity correspond to the responses of the material,
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namely to the relaxation moduli and compliances [28]. It is important to note that Mittag–
Leffler functions are solutions of some fractional differential equations; therefore, they are
non-local functions. In consequence, the time–fractional Atangana–Baleanu derivative
is a fractional derivative with non-singular and non-local kernel. It is expected that the
non-locality of the Mittag–Leffler kernel allows better description of the memory within the
structure and media with different scales. Also, it is known that Mittag–Leffler functions are
suitable for interesting generalizations. Thus, generalizations of these functions with three
or four parameters were studied. Considered to be the kernel of fractional derivatives, these
functions become useful in describing some complex physical processes. For example, the
three-parameter Mittag–Leffler functions studied by the Indian mathematician Prabhakar
play an important role in describing anomalous dielectric relaxation, stochastic processes,
or renewal processes [31].

Long et al. [32] studied four fractional viscoelastic models, namely the fractional
Maxwell model, fractional Kelvin–Voigt model, fractional Zener model and fractional
Poynting–Thomson model using the Riemann–Liouvile and Caputo derivatives, as well as
the Caputo–Fabrizio and Atangana–Baleanu derivatives. For each fractional viscoelastic
model, the stress relaxation modulus, creep compliance and dynamic modulus have been
derived and compared. Their results show that the fractional Maxwell model and fractional
Zener model with the Mittag–Leffler function kernel do not provide accurate descriptions
of the stress relaxation modulus at the shortest time and the storage modulus at the
highest frequency. However, these results are not a verdict against the derivatives with
non-singular and non-local kernel that could describe different complex processes.

It is important to emphasize the different assessments of researchers in the field of
fractional calculus and their applications, regarding the criteria according to which such an
operator is really a fractional operator or is the equivalent of an operator of integer order.
Most of the discussions were clarified by Creson and Szafranska, [33], respectively, Tarasov
and Tarasova [34] formulated criteria for this selection.

In [35], the authors have investigated the distributed-order fractional diffusion–wave
equation based on the Caputo fractional derivative in time, and determined solutions for
the fluid flow to or from a well. Two temporal orders of fractional derivatives to describe
large and small pores, respectively, are incorporated in the distributed-order fractional
diffusion–wave equation.

In this paper we investigate a generalized mathematical model of the radial ground-
water flow to or from a well using the time–fractional derivative with Mittag–Lefler kernel
defined by Atangana and Baleanu. Following Su et al. [35], we consider the fractional
diffusion–wave equation with two temporal orders of fractional derivatives to characterize
the diffusion process.

Using the Laplace and Dirichlet–Weber transform, the analytical solutions of the
distributed-order fractional diffusion–wave equation are determined. The obtained so-
lutions are new in the literatures and generate the solutions corresponding to ordinary
process for fractional parameters equal to one. The influence of the fractional parame-
ters on the radial groundwater flow is analyzed by numerical calculations and graphical
illustrations are obtained with the software Mathcad.

2. The Formulation of the Generalized Problem

The flow to or from a well is described by the following diffusion equation [1,36]

∂H
∂t

=
1
r

∂

∂r

(
Dr

∂H
∂r

)
, (1)

which can be written equivalently as

C1
∂H
∂t

=

(
∂2H
∂r2 +

1
r

∂H
∂r

)
, (2)
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where H being the normalized groundwater depth and is given by

H =
h− h0

hm − h0
, (3)

with h is the groundwater height above the datum, h0 is the original height of groundwater
above the datum before the test, hm is the extreme groundwater height following the
injection or pumping, D is the aquifer diffusivity, and r is the radial distance from the
well center. C1 = 1

D or D = 1
C1

for both unconfined and restricted aquifers described by
Bras [36] as:

(1) for an unconfined aquifer, the diffusivity D is

D =
1

C1
=

T
ne

, (4)

(2) for a confined aquifer, the diffusivity D is

D =
1

C1
=

T
S

, (5)

where T = Khm is called the transmissivity with K being the hydraulic conductivity,
ne being the effective porosity in an unconfined aquifer and S being the specific
storage coefficient [37,38].

Equation (4) can also be written

D = Kehm (6)

with Ke being called the effective hydraulic conductivity given as

Ke =
K
ne

(7)

where T = Khm, which occurs in Equation (4) suggests that Equation (1) is a linearization
of Boussinesq’s radial coordinate equation [39]. Equation (6) results when the height
perturbation of injected water or pumped drawdown is small enough to assume that
H ≈ hm.

To take into account the impact of pores of various sizes on saturated flow as a
complement of the distributed-order fractional partial differential equation for water
flow in an unsaturated medium [18], we incorporate distributed-order in Equation (1) to
construct the distributed-order fractional partial differential equation of diffusion.

We rewrite Equation (1) with the Atangana–Balean fractional derivative in time with
the temporal distributed orders in the following form,

aABCDα
t H(r, t) + bABCDβ

t H(r, t) =
D f

r
∂

∂r

(
r

∂H(r, t)
∂r

)
(8)

where: a and b are, respectively, the ratio of immobile and mobile section porosities with
the total porosity and satisfy the relation a + b = 1; 0 < α ≤ 1 and 0 < β ≤ 1 are,
respectively, the fractional derivative parameters for the mobile and the immobile sections;
and D f is the fractional diffusivity, which also takes two forms for unconfined and confined
aquifers as their traditional complements in Equations (4) and (5). As this can be seen in
Equations (4) and (5) for two significant groundwater kinds, i.e., unconfined and confined
aquifers, Df has specific meaning, but the major component of Equation (8) remains
mathematically the same. An alternative approach to describe the differentiated drainage
from the two main forms of pores is the use of the distributed orders in Equation (8). Of
course, further orders to account for main types of pores can be put in temporal–fractional
derivatives, but the determination of their values will become a technical issue.
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The Atangana–Baleanu fractional derivative in the Caputo sense is defined as [24,25,40]

ABCDβ
t g(r, t) =

{ N(β)
1−β

∫ t
0

.
g(r, τ)Eβ(

−β
1−β (t− τ)β)dτ, 0 < β < 1,

∂g(r,t)
∂t , β = 1.

(9)

where N(β) is the normalization function such that N(0) = N(1) = 1,
.
g(r, τ) = ∂g(r,t)

∂t

∣∣∣
t=τ

and Eβ(·) is the Mettag–Leffler function [41]. In this paper we consider N(β) = 1.
If g(r, 0) = 0, the Laplace transform of the Atangana–Baleanu fractional derivative

ABCDβ
t g(r, t) is given by

L
{

ABCDβ
t g(r, t); p

}
=

pβ

(1− β)pβ + β
· g(r, p), (10)

where g(r, p) =
∞∫
0

g(r, t)e−ptdt denotes the Laplace transform of g(r, t).

3. Solution to the Problem

In this section, the analytical solution of the fractional differential Equation (8) will be
determined along with the initial and boundary conditions

H(r, 0) = 0, r ∈ [R, ∞), (11)

∂H(r, t)
∂r

∣∣∣∣∣r=R = − Q
2πRTf

(12)

√
r

∂H(r, t)
∂r

→ 0,
√

r
∂2H(r, t)

∂r2 → 0 as r → ∞. (13)

Applying the Laplace transform to Equations (8), (12) and (13), and by using the initial
condition (11), we get the transformed problem

1
r

∂

∂r
(r

∂H(r, s)
∂r

) =
1

D f
[

asα

(1− α)sα + α
+

bsβ

(1− β)sβ + β
]H(r, s), α, β ∈ (0, 1], (14)

∂H(r, s)
∂r

∣∣∣∣∣r=R = − Q
2πRTf

1
s

(15)

√
r

∂H(r, s)
∂r

→ 0,
√

r
∂2H(r, s)

∂r2 → 0, as r → ∞ (16)

In order to find the solution to Equations (14)–(16) we use the Dirichlet–Weber trans-
form defined as [42]

Ĥ(ξ, s) =
∫ ∞

R
rH(r, s)[Jν(rξ)Yν(Rξ)− Jν(Rξ)Yν(rξ)]dr, (17)

where Jν(·), Yν(·) are Bessel functions of the first kind with order ν.
The inverse formula of the integral transform (17) is [42]

H(r, s) =
∫ ∞

0

Jν(rξ)Yν(Rξ)− Jν(Rξ)Yν(rξ)

J2
ν(Rξ) + Y2

ν (Rξ)
ξ·Ĥ(ξ, s)dξ. (18)

Using the notation,

ϕ0(s) =
1

D f
[

asα

(1− α)sα + α
+

bsβ

(1− β)sβ + β
] (19)
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into Equation (14), we obtain the transformed equation,

∂2H(r, s)
∂r2 +

1
r

∂H(r, s)
∂r

= ϕ0(s)H(r, s) (20)

which can be written in the equivalent form

∂2

∂r2
∂H
∂r

+
1
r

∂

∂r
∂H
∂r
− 1

r2
∂H
∂r

= ϕ0(s)
∂H
∂r

(21)

Making the change of unknown function H(r, s) into u(r, s) = ∂H(r,s)
∂r , Equation (21)

becomes
∂2u
∂r2 +

1
r

∂u
∂r
− 1

r2 u = ϕ0(s)u (22)

The function u(r, s) has to satisfy the boundary condition

u(R, s) = − Q
2πRTf

1
s

(23)

√
r

∂u
∂r
→ 0,

√
ru(r, s)→ 0, as r → ∞ (24)

Using the asymptotic expansions

Jα(z) ∼=
√

2
πz

cos(z− (2α + 1)π
4

); Yα(z) ∼=
√

2
πz

sin(z− (2α + 1)π
4

), z→ ∞

and the identity

J0(Rξ)Y1(Rξ)− J1(Rξ)Y0(Rξ) = − 2
πRξ

it easily turns out that

I =
∫ ∞

R
r[

∂2u
∂r2 +

1
r

∂u
∂r
− u

r2 ][J1(rξ)Y1(Rξ)− J1(Rξ)Y1(rξ)]dr = −ξ2û(ξ, s)− 2
π

u(R, s) (25)

Now, applying the Dirichlet–Weber transform to Equation (22), and using Equation (25)
and the boundary condition (23), we obtain the transformed equation

û(ξ, s) =
k0

s(ξ2 + ϕ0(s))
(26)

where k0 = Q
π2RTf

. Using the function f (r) = R
r with the Dirichlet–Weber transform

f̂ (ξ) = − 2
πξ2 , we write the function of Equation (26) in the suitable form

û(ξ, s) =
k0

ξ2s
−

k0 ϕ0(s)
ξ2s(ξ2 + ϕ0(s))

=

(
−Q

2πRTf

)(
−2

πξ2s

)
−

k0 ϕ0(s)
ξ2s(ξ2 + ϕ0(s))

(27)

We introduce the notation

Û(ξ, s) = −
k0 ϕ0(s)

ξ2s(ξ2 + ϕ0(s))
. (28)

The expression of function Û(ξ, s) is written as

Û(ξ, s) =
−k0

ξ2s
p0sα+β + p1sα + p2sβ

q0(ξ)sα+β + q1(ξ)sα + q2(ξ)sβ + q3(ξ)
. (29)
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where
p0 = a(1− β) + b(1− α), p1 = aβ, p2 = bα, (30)

q0(ξ) = D f (1− α)(1− β)ξ2 + a(1− β) + b(1− α)
q1(ξ) = D f (1− α)βξ2 + aβ

q2(ξ) = D f (1− β)αξ2 + bα

q3(ξ) = D f αβξ2

(31)

We consider here three cases.

3.1. The Case α ≤ β

Û(ξ, s) =
−k0

ξ2

∞

∑
k=0

k

∑
m=0

(−1)k

m!
k!

(k−m)!
qm

1 (ξ)qk−m
3 (ξ)

qk+1
0 (ξ)

(sα + q2
q0
)

k+1

[
p0sα−1+mα−kβ + p1sα−β−1+mα−kβ + p2s−1+mα−kβ

]
(32)

Using the generalized G-functions of Lorenzo–Hartley [43], defined as

Ga,b,c(t, d) = L−1

{
sb

(sa − d)c

}
, Re(ac− b) > 0, (33)

we obtain

Û(ξ, t) = −k0
ξ2

∞
∑

k=0

k
∑

m=0

(−1)k

m!
k!

(k−m)!
qm

1 (ξ)qk−m
3 (ξ)

qk+1
0 (ξ)

 p0Gα,α(m+1)−kβ−1,k+1

(
t,− q2(ξ)

q0(ξ)

)
+ p1Gα,α(m+1)−kβ−1−β,k+1

(
t,− q2(ξ)

q0(ξ)

)
+p2Gα,αm−kβ−1,k+1

(
t,− q2(ξ)

q0(ξ)

)  (34)

3.2. The Case α = β = 1 (The Ordinary Case)

In this case,

p0 = 0, p1 = a, p2 = b,
q0(ξ) = 0, q1(ξ) = a, q2(ξ) = b, q3(ξ) = D f ξ2 (35)

Û(ξ, s) =
−k0

ξ2
1

s + D f ξ2 , (36)

with the inverse Laplace transform

Û(ξ, t) = − k0

ξ2 e−D f ξ2t (37)

3.3. The Case β ≤ α

Equation (32) can be written in following equivalent form

Û(ξ, s) =
−k0

ξ2

∞

∑
k=0

k

∑
m=0

(−1)k

m!
k!

(k−m)!
qm

2 (ξ)qk−m
3 (ξ)

qk+1
0 (ξ)

(sβ + q1
q0
)

k+1

[
p0s(m+1)β−1−kα + p1smβ−kα−1 + p2s(m+1)β−(k+1)α−1

]
(38)

whose inverse Laplace transform is

Û(ξ, t) = −k0
ξ2

∞
∑

k=0

k
∑

m=0

(−1)k

m!
k!

(k−m)!
qm

2 (ξ)qk−m
3 (ξ)

qk+1
0 (ξ)

 p0Gβ,(m+1)β−kα−1,k+1

(
t,− q1(ξ)

q0(ξ)

)
+ p1Gβ,βm−kα−1,k+1

(
t,− q1(ξ)

q0(ξ)

)
+

p2Gβ,β(m+1)−α(k+1)−1,k+1

(
t,− q1(ξ)

q0(ξ)

)  (39)

Applying the inverse Dirichlet–Weber transform to Equation (27), and using the
Dirichlet–Weber transform of the function f (r) = 1

r , r ∈ [R, ∞), namely,

f̂ (ξ) =
∫ ∞

R
1
r r[J1(rξ)Y1(Rξ)− J1(Rξ)Y1(rξ)]dr = Y1(Rξ)

ξ

∫ ∞
Rξ J1(z)dz− J1(Rξ)

ξ

∫ ∞
Rξ Y1(z)dz =

Y1(Rξ)
ξ [−J0(z)]|

∞

Rξ
− J1(Rξ)

ξ [−Y0(z)]|
∞

Rξ
= 1

ξ [J0(Rξ)Y1(Rξ)− J1(Rξ)Y0(Rξ)] = − 2
πRξ2 ,

(40)
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with the inverse Dirichlet–Weber transform,

f (r) =
R
r
=


1, r = R

∞∫
0

J1(rξ)Y1(Rξ)−J1(Rξ)Y1(rξ)

J2
1 (Rξ)+Y2

1 (Rξ)
Rξ
(
− 2

πRξ2

)
dξ, r > R (41)

we obtain

u(r, t) =

(
−Q

2πTf

)
1
r
+
∫ ∞

0

J1(rξ)Y1(Rξ)− J1(Rξ)Y1(rξ)

J2
1 (Rξ) + Y2

1 (Rξ)
ξ·Û(ξ, t)dξ (42)

where Û(ξ, t) is given by Equation (34) for α, β ∈ (0, 1), α ≤ β, respectively Û(ξ, t) is given
by Equation (37) for α = β = 1 and Û(ξ, t) is given by Equation (39) for α, β ∈ (0, 1), β ≤ α.

Using the transformation u(r, t) = ∂H(r,t)
∂r and the following properties of Bessel

functions
∫

J1(z)dz = −J0(z) + C,
∫

Y1(z)dz = −Y0(z) + C, we obtain the expression of
the normalized depth of groundwater as,

H(r, t) =

(
−Q

2πTf

)
ln(r)−

∫ ∞

0

J0(rξ)Y1(Rξ)− J1(Rξ)Y0(rξ)

J2
1 (Rξ) + Y2

1 (Rξ)
·Û(ξ, t)dξ (43)

4. Conclusions and Discussions

The distributed-order fractional diffusion–wave equation for the radial flow to or
from a well has been investigated by considering the time–fractional derivative with the
Mittag–Leffler function of one parameter. The diffusion–wave equation is featured by two
temporal fractional orders α and β to characterize different diffusion types.

It is known that Mittag–Leffler functions are solutions to some fractional differential
equations; therefore, they are non-local functions. In consequence, the time–fractional
Atangana–Baleanu derivative is a fractional derivative with non-singular and non-local
kernel. It is expected that the non-locality of the Mittag–Leffler kernel allows better
description of the memory within structure and media with different scales. Also, it
is known that Mittag–Leffler functions are suitable for interesting generalizations. The
fractional derivatives with Prabhakar kernel are suitable tools to describe complex physical
processes, such as the anomalous dielectric relaxation or the renewal processes.

The analytical solutions of the initial-boundary value fractional problem have been
determined using the Laplace and Dirichlet–Weber integral transforms. The solutions from
the general case are suitable for generating the solutions corresponding to the ordinary
case, namely for the case α = β = 1.

Recall that Su et al. [35] studied a similar problem by using Caputo time-fractional
derivative. It is important to note that the Caputo fractional derivative cannot be obtained
as a particular case of the Atangana–Baleanu derivative, so the results obtained in this
paper cannot be identical to those in Su’s article. However, for the case α = β = 1, the
results obtained by us are equivalent to those obtained by Su for the same values of the
fractional parameters.

To highlight the influence of the fractional parameters α and β on the normalized
depth of flow, numerical values of the function H(r,t) have been determined and plotted
with the software Mathcad. In the performed analysis, we used the following values of the
parameters: D f = 0.5, Q = −0.5, Tf = 20, R = 0.5.

In Figure 1 are the presented profiles of the normalized depth H(r, t), versus r for
a = b = 0.5 and for different values of the time t and the fractional parameters α and β.
Note that the variation with radial distance of the normalized depth is not significant. The
values of the fractional parameters α and β have a significant influence on the values of the
function H(r, t). For α > β, the values of the normalized depth are higher than for α < β.
This is due to the different mode of the diffusion process in areas with different pores.



Appl. Sci. 2021, 11, 4142 9 of 13Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 15 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 1. The profiles of normalized depth ( , )H r t , versus the radial coordinate r, for small time 
values (a), and for large time values (b). 

The influence of the fractional parameters α and β on the normalized depth ( , )H r t  
is analyzed in Figure 2 for a = 0.4 and b = 0.6 for different values of the time t. It is ob-
served in Figure 2 that for a constant value of the fractional parameter α, the function 

( , )H r t  is increasing with the fractional parameter β. A similar behavior is observed for 
β constant and increasing values of the parameter α. The increasing of values of a frac-
tional parameter means that the porosity of the medium is larger; therefore the diffusion 
process will be enhanced. 

The influence of the parameter a on the normalized depth ( , )H r t  is presented in 
Figure 3 for t = 6 and α = 0.885 and different values of the fractional parameter β. As ex-
pected, the normalized depth decreases with the parameter a. This result is due to a 
larger region of the medium with big pores where the flow is faster. 

 
 
 
 
 
 

Figure 1. The profiles of normalized depth H(r, t), versus the radial coordinate r, for small time
values (a), and for large time values (b).

The influence of the fractional parameters α and β on the normalized depth H(r, t)
is analyzed in Figure 2 for a = 0.4 and b = 0.6 for different values of the time t. It is
observed in Figure 2 that for a constant value of the fractional parameter α, the function
H(r, t) is increasing with the fractional parameter β. A similar behavior is observed for β
constant and increasing values of the parameter α. The increasing of values of a fractional
parameter means that the porosity of the medium is larger; therefore the diffusion process
will be enhanced.

The influence of the parameter a on the normalized depth H(r, t) is presented in
Figure 3 for t = 6 and α = 0.885 and different values of the fractional parameter β. As
expected, the normalized depth decreases with the parameter a. This result is due to a
larger region of the medium with big pores where the flow is faster.
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