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Abstract: In this paper, an ultra-scratch-resistant, hydrophobic and transparent coating was fabricated
by the sol–gel method using (3-Glycidyloxypropyl) triethoxysilane (GPTES) and curing agents.
When the silanol was condensated, the ring-opening reaction of the epoxy groups also took place,
which formed a double-cross-linked network (Si–O–Si and R3N). This network structure restricted
the molecule chains from being twisted or dislocated, resulting in a great improvement of the
abrasion resistance of the coating. A pencil hardness grade up to 8H was obtained. The coating
also showed excellent stability after being soaked in pH = 2 and pH = 12 solutions, seawater and
acetone, respectively. In addition, a water contact angle of 121◦ was obtained by post-treatment
with hexamethyldisilazane (HMDS). The average transmittance of the coating reached to 90% in the
wavelength range of 400~800 nm, nearly identical to the glass substrate. With multiple desirable
properties and a simple fabrication process, this low-cost coating shows great potential in many
practical applications.

Keywords: scratch-resistant; hydrophobic; GPTES; transparent; sol–gel

1. Introduction

Multifunctional transparent coatings are closely related to our lives and are categorized
as one of the hot topics of many researchers [1,2]. While maintaining transparency, the coating
is also endowed with multiple properties, such as self-cleaning [3,4], anti-fogging [5,6], oil–
water separation [7], anti-corrosion [8–10], anti-reflection [11,12] and self-healing [13–15].
There are usually two ways to achieve self-cleaning, the super-hydrophilic surface and the
super-hydrophobic surface. When water droplets come into contact with the coating, they
will immediately be spread over the entire surface to form a continuous water film, thereby
taking away the dirt on the surface [16]. The smooth surface that reduces the scattering of
light makes the coating transparent and anti-fogging [5]. On the other hand, when the water
droplets come into contact with the coating with low surface tension, the water droplets
will keep their spherical shape and roll off quickly from the surface [17]. The preparation
of superhydrophobic surfaces often relies on two factors, micro or nano-scaled hierarchical
structures [18] and low surface energy materials [19]. In addition, a transparent coating is
often used as a protective coating to protect metallic substrates from corrosion, because the
dense and inert coating separates the metal from the environment [20]. Furthermore, anti-
reflective coatings are often used in solar cells [12]. The refractive index of the antireflective
coatings is lower than that of the substrate. Through the interference of light, it effectively
reduces the reflection loss of incident light and improves the efficiency of solar cells [21].
What is more, the damaged structure can be recovered spontaneously by self-healing
materials with external stimuli [15]. Self-healing coatings repair damage in two ways,
inherent reversible noncovalent interactions [22–27] and dynamic covalent bonds [28–32].
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However, these coatings are often soft and susceptible to scratches and abrasion.
Scratches may make the surface rough, which will greatly cause the scattering of light,
thereby reducing the transparency of the coating [33]. In addition, self-cleaning, anti-
corrosion and other functions may also be affected, which severely restricts its application
in daily life. Although the self-healing coating can relieve the effects of scratches to a certain
extent, it cannot totally eliminate the damage of scratches [15]. Therefore, scratch resistance
is also an important point for transparent coatings. Zhang et al. prepared a bilayer
antireflective coating with the top layer of ultra-low refractive index from fully dispersing
nano-silica particles by mixing HMDS and achieved an average transmittance of 99.90%
in the visible region [34]. However, the coating with an ultra-low refractive index was
usually rather soft, easily scratched. Mousavi et al. fabricated a transparent scratch-resistant
coating through the direct oxidation of Al-coated glass [35]. After annealing at 600 ◦C, the
pencil hardness of the coating increased to 9H due to the hard Al2O3 particles. However,
the transmittance of the coating declined from 90% to 75%. Hua Zhou et al. prepared
durable and superhydrophobic fabric coatings through simple mixtures of fluorinated
silica nanoparticles and polydimethylsiloxane (PDMS) and showed that the water contact
angle only decreased from 170◦ to 150◦ after 28,000 cycles of abrasion under 12 kPa [36].
However, the transparency of the coating was not mentioned.

In general, the epoxy resin needs to be solidified to increase its hardness [37–39] through
a ring-opening reaction to form an organic network. (3-Glycidyloxypropyl) Trimethoxysi-
lane (GLYMO) and (3-Glycidoxypropyl) Triethoxysilane (GPTES) contain epoxy groups,
as silane coupling agents, often used as surface hardening agents [37]. Zhi et al. provided
a method to fabricate a durable superhydrophobic antireflection coating via introducing
an organic network from KH560 and octadecylamine (ODA) [40]. In detail, the coating
resisted scratches of a 4H pencil and the transmittance was 93%, which represented a 3%
improvement of the uncoated substrate. Omer Kesmez et al. reported a hybrid organic–
inorganic photocatalytic nanocomposite film, composed of Ce-doped TiO2 nanoparticles
and TEOS, GPTES, 1H, 1H, 2H, 2H-perfluorooctyl triethoxysilane [41]. This coating exhib-
ited good transparency and the pencil hardness was >9H. Therefore, silane coupling agents
containing epoxy groups can enhance mechanical damage resistance.

In this work, we prepare an ultra-scratch-resistant and hydrophobic polymer coating,
based on a double-cross-link structure from GPTES and a curing agent, diethylenetriamine
(DETA) or m-Xylylenediamine (MXDA). It protected the substrate from the scratches of
an 8H pencil without deteriorating its transparency. The fabrication process of the coating,
sol–gel method, is a simple and cost-effective thin film preparation method. It can be found
that the coating was relatively durable after being soaked in different corrosive liquids.
From the results of thermogravimetric analysis, it is also demonstrated that this polymer
coating with a wide working temperature and hydrophobicity provided the possibility for
practical applications on metal and/or wood surface.

2. Experimental Procedure
2.1. Materials

(3-Glycidyloxypropyl) Triethoxysilane (GPTES), hexamethyldisilazane (HMDS), tetraethyl
orthosilicate (TEOS), methyltriethoxysilane (MTES), diethylenetriamine (DETA),
m-xylylenediamine (MXDA) and ammonia (25~28%) were purchased from Shanghai Al-
addin Biochemical Technology Co., Ltd., Shanghai, China. Anhydrous ethanol (EtOH),
acetone, sodium hydroxide (NaOH) and sodium chloride (NaCl) were purchased from
Tianjin Zhiyuan Chemical Reagent Co., Ltd., Tianjin, China. All the reagents used in this
work were not purified further. High purity water was prepared by a Purescience water
purification system.
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2.2. Preparation of Coatings
2.2.1. Preparation of the DETA-Organosilicon-Epoxy-Resin (DETA-OSER) Coating and
MXDA-Organosilicon-Epoxy-Resin (MXDA-OSER) Coating

GPTES (5.5 mL) was mixed with the EtOH (43.0 mL) with stirring for 30 min. Then,
high purity water (1.0 mL) and DETA (0.8 mL) or MXDA (1.3 mL) were added to the
solution and the mixture was stirred for 4 h. After stirring, the solution was transferred to
a cool place to age for 7 days. After 7 days, the solution formed a sol. Then, EtOH (50 mL)
was added to dilute the sol for later dip-coating.

Glass and silicon wafer were used as substrates to prepared samples for transmittance
and refractive index measurement directly. The glass substrates were cleaned in an ultra-
sonic bath with high purity water, ethanol and acetone, respectively. After that, they were
dried in the baker at 60 ◦C prior to dip-coating. The DETA-OSER coatings were dip-coated
on glass substrates with a withdrawal rate of 1.5 mm/s. Then, the samples were immersed
in HMDS for 3 days to obtain hydrophobic surface. Finally, the DETA-OSER-coated glasses
were annealed in a muffle furnace at 160 ◦C for 1.5 h, and the MXDA-OSER-coated glasses
were annealed in a muffle furnace at 155 ◦C for 1.5 h.

2.2.2. Preparation of the NH3-Organosilicon-Epoxy-Resin (NH3-OSER) Coating

GPTES (5.5 mL) was mixed with the EtOH (43.0 mL) with stirring for 30 min. Then,
high purity water (1.0 mL) and ammonia (0.9 mL) were added to the solution and the
mixture was stirred for 4 h. After stirring, the solution was transferred to a cool place to
age for 7 days. After 7 days, the solution formed a sol. Then, EtOH (50 mL) was added to
dilute the sol for later dip-coating.

The NH3-OSER coatings were dip-coated on the cleaned glass substrates at the with-
drawal rate 1.5 mm/s. Then, the samples were immersed in HMDS for 3 days to obtain
a hydrophobic surface. Finally, the coated glasses were annealed in a muffle furnace at
160 ◦C for 1.5 h.

2.2.3. Preparation of the TEOS/MTES (TM) Coatings

TEOS (tetraethyl orthosilicate) (2.5 mL) and MTES (methyltriethoxysilane) (7.3 mL) were
mixed with the EtOH (36.0 mL) with stirring for 30 min. Then, high purity water (1.3 mL)
and ammonia (0.9 mL) were added to the solution and the mixture was stirred for 1 h. After
stirring, the solution was transferred to a cool place to age for 7 days. After 7 days, the
solution formed a sol. Then, EtOH (50 mL) was added to dilute the sol for later dip-coating.

The TM coatings were dip-coated on the cleaned glass substrates at the withdrawal rate
1.5 mm/s. Then, the samples were immersed in HMDS for 3 days to obtain a hydrophobic
surface. Finally, the coated glasses were annealed in a muffle furnace at 160 ◦C for 1.5 h.

2.3. Characterization

The optical transmittance spectra of the coated glasses were measured by using a
UV–VIS-NIR spectrophotometer (Hitachi U-4100, Tokyo, Japan) at room temperature.
The refraction index and film thickness were measured by a spectroscopic ellipsometry
(SENTECH SE800PV, Berlin, Germany). The surface morphologies and Young’s modulus
of the coatings were determined by atomic force microscope (Dimension Fastscan, Bruker,
Billerica, MA, USA). The scratch resistance was evaluated by the pencil hardness test. The
pencil hardness test was operated according to ASTM D 3363-2005. The optical micro-
scope images of the scratches were taken by metallurgical microscope (LEICA DM2500M).
FTIR spectra were recorded on the infrared spectrometer (Vertex70 Hyperion3000, with a
diamond crystal plane (single reflection) Attenuated Total Reflection (ATR) attachment),
with a resolution of 4 cm−1 and range of 4000~400 cm−1, to measure the possible groups
on the coatings. Thermogravimetric analysis was performed by using thermogravimetry
(TG209F1 libra) from 30 ◦C to 710 ◦C at a rate of 10 ◦C/min in the air to measure the
decomposition temperature of the coating. The water contact angles were measured at
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room temperature by an optical contact angle system (OCA 20, Dataphysics) with a droplet
volume of 5 µL.

3. Results and Discussion
3.1. Formation Mechanism of the Double-Cross-Link Structure

The simple fabrication process of the coatings is schematically illustrated in Figure 1.
For convenience, GPTES, DETA and MXDA are replaced by simple graphics in Figure 1a.
In general, Si–O–C2H5 can be catalyzed by acids and alkalis to hydrolyze and produce
silanol. At the same time, silanol can also be catalyzed to condense and produce Si–O–Si [4].
Aliphatic polyamine can also catalyze the hydrolysis and condensation of Si–O–C2H5,
as discussed in the next section. Low-temperature epoxy groups ring-opening reaction
and organic network formation can be achieved by the use of amine curing agents. In
principle, each active hydrogen in an amine is capable of opening and linking to one epoxy
groups [42]. That is, 1 mol of DETA react with 5 mol of GPTES and 1 mol of MXDA react
with 4 mol of GPTES. Therefore, as shown in Figure 1b, DETA and MXDA not only catalyze
the hydrolysis of Si–O–C2H5 and the condensation of silanol, but react with GPTES to form
the double-cross-link network. As the reaction proceeds, the molecular chains gradually
expand to achieve the much larger networks in Figure 1c,d (both amorphous from XRD,
not present).
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Figure 1. Schematic illustration of the OSER coating. (a) Simplification of reactant. (b) Reaction
process. (c) DETA-OSER network. (d) MXDA-OSER network.

For the sake of verifying whether the cross-linked network was achieved, the FTIR
spectrum was applied to infer the possible groups in coatings. Figure 2 shows FTIR spec-
trums of NH3-OSER, MXDA-OSER, DETA-OSER and GPTES. Absorption peaks at ~2920,
~2853 and ~1457 cm−1 were observed corresponding to the C–H asymmetric, symmet-
rical stretching vibration and the in-plane deformation vibration, respectively [43]. This
indicated that all the samples contained methylene. Moreover, the characteristic peak
shown at ~3292 cm−1 could be attributed to the stretching vibration of hydroxyl [44],
including hydrogen bonds, which indicated that the Si–O–C2H5 in three coatings have
hydrolyzed, whereas GPTES have not. Since the characteristic peak of O–H is very close
to N–H, this might also suggest the existence of –NH2. The characteristic peak shown
at ~910 cm−1 could be attributed to the vibration of epoxy. This indicated incompletely
reacted epoxy groups. In addition, in terms of the characteristic peak shown at ~1094 cm−1,
which represented the Si–O stretching vibration [45], it could be confirmed that GPTES
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contained unhydrolyzed Si–O–C2H5 and this peak corresponds to the cross-link networks
of Si–O–Si in the other three samples. Furthermore, the presence of amino was observed
at ~1649 and ~1025 cm−1, and was assigned to the symmetric N–H bending modes of
–NH2 groups and C–N stretching modes of R3N, respectively [45]. In other words, the
open-ring reaction occurred between the GPTES and DETA or MXDA. On the contrary,
GPTES was only catalyzed by ammonia to hydrolyze, but not ring-open. In summary,
GPTES achieved the single Si–O–Si cross-link with the help of ammonia, but DETA and
MXDA both catalyzed hydrolysis and condensation, and reacted with epoxy groups to
produce the double cross-links Si–O–Si and R3N.
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3.2. Mechanical Property of Coatings

Scratch resistance is an important property of coatings, especially the ones for optical
applications. The hardness of the coatings was assessed by a pencil hardness test on the
basis of the ASTM D3363 standard [46], using pencils ranging from 6B (the softest) to
9H (the hardest). As shown in Figure 3f, with MTES as the silane coupling agent, the
TM coating had the softest pencil hardness < 6B, due to its low refractive index and high
porosity. In fact, the hydrogen bonds among the methyl-embedded particles are weakened
and the extent of cross-link is greatly reduced, leading to a high porosity [33]. The NH3-
OSER coating, using GPTES as the silane coupling agent, was also soft, which showed a
pencil hardness < 3B, as Figure 3e. That means the single Si–O–Si cross-link is not strong
enough to achieve ultra-scratch resistance. However, as shown in Figure 3a, there were only
minor scratches on DETA-OSER, caused by an 8H pencil, yet it suffered evident scratch
damage by 9H in Figure 3b. What is more, MXDA-OSER was also ultra-scratch resistant,
absolutely none scratches on its surface as Figure 3c showed. In summary, owing to the
double cross-links, the hardness of coatings is greatly enhanced to 8H. GPTES achieved the
cross-link structure of Si–O–Si through hydrolysis and condensation because of ammonia,
but this single cross-link was not very strong. The extent of the cross-link between the
molecular chains is relatively weak, and there are still the possibility of slippage and
dislocation under external force tearing. When introducing the curing agent, molecular
chains are double cross-linked to each other, which strengthens the stability and robustness
of the network and increases the relative molecular mass. Macroscopically, these make
the polymer coatings rather hard, up to 8H. In fact, the extension of the double cross-link
decides the hardness of the coating. As mentioned, each mole of active hydrogen in the
amines react with one mole of epoxy group (H:epoxy = 1:1), theoretically. However, there
is always a dynamic equilibrium in organic reaction, that is, not every epoxy group goes
through a ring-opening reaction. In order to improve the conversion of epoxy groups,
excessive curing agent is supposed to be added to the solution. According to Table 1, when
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the proportion of hydrogen increased, the pencil hardness of both coatings also increased,
proving that the excessive curing agent made the ring-opening reaction more thorough,
and then the double cross-link network was strengthened. In detail, when the curing agent
was less (≤1:1), the curing efficiency of DETA was higher, and the hardness reached to 5H.
In other words, most GPTES was cured by DETA with a low concentration. As for MXDA,
its small amount had a small increase in hardness. When H:epoxy = 2:1, the hardness of
two coatings increased to 8H. However, the sol soon becomes a gel because of excessive
curing in about 8 days. This is because the size of the cross-linked networks continues to
expand as the aging time increases. Macroscopically, the fluidity of the sol is continuously
weakened, and finally becomes a gel, making it impossible to go through the dip-coating
process. So, the sol (epoxy:H = 1:2) needs to be diluted to slow down the growth of the
cross-linked networks to prolong its life. According to experiments, when the concentration
of sol was diluted to half, the sol was kept in a fluidized condition after 180 days.
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Figure 3. Optical microscope images of the scratches on various coatings. (a) DETA-OSER, scratched
with an 8H pencil. (b) DETA-OSER, scratched with a 9H pencil. (c) MXDA-OSER, scratched with
an 8H pencil. (d) MXDA-OSER, scratched with a 9H pencil. (e) NH3-OSER, scratched with a 3B pencil.
(f) TM, scratched with a 6B pencil.

Table 1. Pencil hardness of DETA-OSER and MXDA-OSER in different molar ratios: H:epoxy.

0.5 1.0 1.5 2.0

DETA-OSER 2H 5H 7H 8H
MXDA-OSER 3B H 6H 8H

3.3. Morphology and Optical Property of Coatings

In order to confirm the hardness quantitatively and figure out the surface morphologies
of the coatings, the coatings’ Young’s modulus and surface roughness were determined
by atomic force microscope. Young’s modulus describes the ability of a solid material to
resist deformation. That is, the higher Young’s modulus of the coating, the stronger its
ability to resist bending and the greater its hardness. The black lines marked in Figure 4 are
the center line average, which represents the average of Young’s modulus of the coatings.
The results shown in Figure 4 revealed that MXDA-OSER obtained the highest value of
~10.8 GPa, while TM obtained a minimum value of ~1.5 GPa. This result was approximately
consistent with the scratch-resistance observation shown in Figure 3. The stability of the
double cross-links structure was verified. Figure 5 showed the surface morphologies of
the coatings. The corresponding root-mean-square deviation roughness (Rq) is given in
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Figure 5. Spherical clusters on the surface could be observed as shown in Figure 5c,d. The
roughness of NH3-OSER and TM (Rq = 2.024, 7.651 nm) was much higher than that of
the DETA-OSER and MXDA-OSER (Rq = 0.316 nm, 0.274 nm). The result reflects that the
DETA-OSER and MXDA-OSER had extremely smooth surfaces, which was attributed to
their tightly linked molecular chains with double-cross-link structures. The smooth surface
also greatly reduced the light scattering, resulting in a high transmittance of visible light. It
is noticed that the scratch resistance of TM and NH3-OSER was much weaker. Therefore,
the further investigation on these two coatings will not be carried out.
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According to Figure 6, the transmittance of the DETA-OSER was a little higher than
that of bare glass. This slightly difference is caused by the refractive index. The refractive
index and thickness of the coatings and glass, measured by spectroscopic ellipsometry, are
given in Table 2. The result indicates that DETA-OSER can also be used as an antireflective
coating. However, when using MXDA as a curing agent, phenyl was introduced into
the molecular chains, which increased the density of particles in the molecular chains to
a certain extent. Nevertheless, the large phenyl enhances the rigidity of the molecular
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chains. Consequently, chains are more difficult to deform, curl and shift, which makes
the coating extremely hard and ultra-scratch-resistant. Back to Figure 3c, there were no
scratches, scratched with an 8H pencil, whereas in DETA-OSER, without phenyl, there
were minor scratches on it. In a word, MXDA-OSER was more scratch resistant than
DETA-OSER, but at the cost of a slight decrease in transmittance.
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Table 2. Refractive index and thickness of the DETA-OSER, MXDA-OSER and bare glass.

Refractive Index (±0.003) Thickness

DETA-OSER 1.493 103 nm
Bare glass 1.512 700 µm

MXDA-OSER 1.525 114 nm

3.4. Durability in Different Environments of Coatings

The transmittance of coatings often decreases because of dust in practical applications.
The coating with self-cleaning ability can effectively reduce the influence of dust on transmit-
tance. Owing to being soaked in HMDS, the coating got the self-cleaning ability. Si–CH3 in
HMDS was transferred to the surface of the coating, making the surface hydrophobic. When
the water droplet was dropped on the surface, the contact angle was up to 121◦, which is
shown in Figure 7b. However, in Figure 7a, the contact angle of the unsoaked DETA-OSER
was just 69◦, which was lower than the soaked one. It indicated that the hydrophobic groups
were successfully grafted onto the surface. Additionally, this happened to MXDA-OSER.
Generally, being soaked in the HMDS reduces the surface energy and increases the contact
angle of water droplets, which endows the coating with self-cleaning ability.

The durability of the coating is a key technical concern. In order to study its chem-
ical stability in different environments, DETA-OSER and MXDA-OSER were soaked in
pH = 2 and pH = 12 solutions, seawater (3.5% NaCl aqueous solution) and organic solvent
(anhydrous acetone), respectively. According to Tables 3 and 4, DETA-OSER and MXDA-
OSER showed to be insoluble in acetone because their polarity was weak owing to the large
molecular chains. Besides, DETA-OSER and MXDA-OSER, to a certain extent, could resist
the erosion of the acid and seawater, but the hardness of DETA-OSER decreased slightly.
The possible reason is that the molecular chains with phenyl are more inert due to the steric
hindrance of phenyl. In addition, both DETA-OSER and MXDA-OSER could be soaked in
an aqueous alkali only for a short time. The reason for hardness decline is that the Si–O–Si
framework reacts with NaOH to produce the soluble Na2SiO3. Gradually, the corrosion of
strong alkali destroyed the cross-link structure.
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Table 3. The pencil hardness grade of DETA-OSER being soaked in different solutions.

1 Day 3 Days 5 Days 7 Days

pH = 2 8H 8H 8H 7H
pH = 12 8H <6B <6B <6B
Seawater 8H 8H 8H 6H
Acetone 8H 8H 8H 8H

Table 4. The pencil hardness grade of MXDA-OSER being soaked in different solutions.

1 Day 3 Days 5 Days 7 Days

pH = 2 8H 8H 8H 8H
pH = 12 8H 3B <6B <6B
Seawater 8H 8H 8H 8H
Acetone 8H 8H 8H 8H

To study the thermal behavior of materials, the thermal-oxidative decomposition
processes of samples were investigated. According to the DTG curves shown in Figure 8,
a maximum value with 160 ◦C and 13.4 min was observed. When the temperature was
lower than 160 ◦C, the water adsorbed on the surface and started to evaporate, and the
free Si–OH and the unreacted C2H5–O–Si also began to condense to produce a Si–O–Si
cross-link structure, which reduced the mass during this time. In other words, annealing at
160 ◦C made the cross-link more thorough and then increased the hardness of the coating.
When the temperature was higher than 160 ◦C, the rate of mass decrease began to increase,
which meant that the polymer coating began to decompose intensely. Therefore, the DETA-
OSER coating has the highest working temperature of 160 ◦C. Similarly, a maximum value
of 155 ◦C was obtained at 12.7 min for MXDA-OSER coating. Meanwhile, it is observed
that the DTG curves fluctuated greatly in the high-temperature region (>160 ◦C). This was
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due to the fact that the coatings begun to thermal decompose, producing gases such as
COx, NOx, NH3 and alkanes with a different decomposition temperature and time.
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3.5. The Coating on Different Substrates

OSER can be applied on various substrates to protect the surface. The influence of
the substrate on the scratch resistance was investigated. As shown in Figure 9, there were
evident scratches on the coatings with a 9H pencil, but no scratches with an 8H, which
meant that both DETA-OSER and MXDA-OSER were still ultra-scratch-resistant, even
on iron substrates with a rough surface. Besides, owing to their inert and hydrophobic
properties, OSER could be used as a protective coating to prevent the substrate from being
scratched or becoming wet. Additionally, due to its high transparency, it had almost no
effect on the pattern of the substrate.
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4. Conclusions

In summary, we demonstrated a robust, hydrophobic and transparent coating based
on organosilicon-epoxy resin (OSER). Aliphatic polyamines, as catalysts and reactants at
the same time, make GPTES hydrolyze and condense as well as react with epoxy groups,
thereby forming a double-cross-link structure. The double cross-links allow the coatings to
resist scratching, macroscopically. The coating shows excellent scratch resistance and good
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transparency. Besides, its durable and hydrophobic properties prevent the substrate from
becoming wet by many solutions. The cost-effective coating exhibits great potential value
in commercial applications.
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