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Abstract: In order to reduce the x-direction and Y-direction displacement disturbance of the barrel and
improve the firing accuracy, based on Bernoulli Euler’s theoretical assumption of beam and taking
M134 barrel machine gun as the calculation model, the pre-stress modal analysis and optimization of
cantilever supported rotor under unbalanced force and moving mass are carried out in this paper.
The main work of this paper is as follows: (1) M134 physical model is established, and the unbalanced
force in the motion process of projectile in bore is solved by interior ballistic theory; (2) Based on the
unbalanced rotor theory, the barrel vibration model considering the projectile weight and acceleration
is established; (3) The critical speed model of high-speed rotating system is established, and the
critical speed is determined by finite element modal analysis to determine the rigid/flexible state of
barrel components in different speed regions; (4) Based on the above model, take the x-direction and
Y-direction displacement of the barrel as the output value, and take the elastic modulus of the barrel,
the relative position between the barrel hoop and the fuselage components and the cross-sectional
area as the variable values, carry out the optimization design, and verify the firing accuracy before
and after optimization through experiments.

Keywords: variable structure; rotor; unbalanced axis force; moving mass; shooting effect; rounds per
minute (rpm)

1. Introduction

Other papers have studied vibrations that are rotating but perpendicular to the axis,
as paper [1,2], these aims at rotating machinery dynamics, the paper [3] aims at rotating
unbalanced mass of the propeller system, and this is similar to the asymmetric force of a
Gatling weapon. The paper [4–6] mainly deals with some unbalanced masses, and it is still
moving. Others have studied the rotor vibrations [7,8], but the lack of component motion,
and find their characteristics and better serve the motherland.

Many people study structural vibration such as a horizontal bar. If the axis is the
x-axis, the force is perpendicular to the x-axis [6,9]. This paper [9] studies this kind of
mechanism, which is a motor but only fixed at one end. It belongs to the unilateral motor,
which is different from the common motor at both ends. In addition, there is only one tube
under the force, and a mass moves along the x-axis. The rotary tube weapon studied in this
paper uses a single shaft motor to drive the barrel assembly to rotate through the reducer
to realize high-speed shooting. The vibration model caused by its rotation can refer to the
above literature.

There is also a kind of research on rotors [10,11], but the rotor is supported on both
sides. The paper [10] treats nonlinear dynamic analysis of a lightweight flexible rotor-
disk-bearing system with geometric eccentricity and mass unbalance. A large deflection
model has been derived to represent a nonlinear flexible rotor-bearing system to study the
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bifurcation, stability, and route to chaos. The paper [11] treats novel methodology for a
stochastic representation of non-linear dynamics problems. Application for estimating the
stochastic non-linear responses in rotor dynamics.

Based on the above research theory, combined with the high-speed rotation character-
istics of the barrel assembly of the barrel machine gun and the movement characteristics
of the projectile in the bore, this paper puts forward the prestressed modal analysis and
Optimization Research of the cantilever supported rotor based on the unbalanced force and
moving mass, so as to reduce the displacement disturbance of the barrel in the X direction
and Y direction during the shooting process of the barrel machine gun and improve the
shooting accuracy.

2. M134 Gatling Gun

The vibration of the Gatling rotation axis is consistent with its axis, such as a rotor
just with a cantilever. A Gatling gun will play a major role in short-range air defense and
antimissile combat. The U.S. Army model is called the M134 Gatling gun [12–15]. The
M134 machine gun is a 6-barrel aircraft gun developed by General Electric Company of
the United States. It is mainly equipped on helicopters and can also be used as a vehicle
weapon for mechanized infantry. It is to kill and assemble living targets and air defense.
The M134 Gatling gun is composed of several barrels arranged in a ring, as Figure 1.
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Figure 1. M134 Gatling gun.

In this paper, the critical speed model of high-speed rotating system is established,
and the critical speed is determined through finite element modal analysis to determine the
rigid/flexible state of barrel components in different speed regions; based on trajectory the-
ory and unbalanced rotor theory, the barrel vibration model considering projectile weight
and acceleration is established, and the muzzle is determined through the prestressed
modal analysis of cantilever supported rotor under unbalanced force and moving mass
Firing accuracy of vibrating counter rotating tube machine gun.

Each barrel rotates rapidly around the rotation center axis and reaches the stationary
firing position in turn. Although the high-speed rotating barrel will increase the firing
dispersion due to the centrifugal force, high firing speed and strong firepower can make
up for the lack of accuracy, which makes M134 a very effective weapon to kill the living
targets of the group.

The barrel and machine support of the Gatling, reference paper [16] M134 imitation
barrels and body frame. Since the barrel rotates at high speed, the solution of vibration
characteristics of a Gatling gun is very complicated, as shown in Figure 2.
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When the front and rear diameters D1 and D2 of the Gatling weapon are not equal,
the α is equal to,

α = arctan
∣∣∣∣D1− D2

2L

∣∣∣∣ (1)

when the front and rear diameters D1 and D2 of the Gatling weapon are equal, the angle α
s equal 0.

Coriolis force Fk is showing as:

Fk = −2mdωv0 (2)

Substituting the angle, it is convenient to calculate:

Fk = 2mdωv0 sin(α) (3)

If α t is equal to 0, then the Coriolis force Fk and the moment will be equal to 0.
According to the internal ballistic equation, the p-value can be determined:

SP(l + lψ) = f ωψ− θ

2
ϕmv2 (4)

The pressure P and velocity v are obtained separately as shown in Figure 3:
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Figure 3. Gatling ballistic curve.

When the 7.62 × 51 mm NATO cartridge moves in the barrel, under the joint action
of gunpowder gas and rifling, the projectile moves linearly along the barrel axis on the
one hand and rotates on the other hand. At this time, there is a certain force on the bullet
and barrel. From Equations (5)–(8), the rifling guide side will give the bullet a driving
edge force N and give the barrel’s lateral force and axis force. As shown in Figures 4 and 5,
the OZ axis is parallel to the barrel axis, and the Z axis direction is the bullet movement
direction. N is driving edge force N, fN is friction force. The lateral force on the barrel is F1
and the axial force is F2.

N =
1
n
(

ρ

r
)

2 SPdtgα + ϕ1Kamv2

ϕ1(cos α− f sin α)
(5)

The circumferential torque is:

M = n · r · N(cos α− f sin α) (6)

The lateral force of the barrel is:

F1 = −n · N( f cos α + sin α) (7)



Appl. Sci. 2022, 12, 4940 4 of 17

The axis force of the barrel is:

F2 = n · N(cos α− f sin α) (8)

when: n is the number of rifling elements, from Table 1, n = 4; r is the warhead radius; N is
the driving force; f is the friction coefficient, and the friction coefficient between metals,
generally, it varies from 0.16 to 0.20, f = 0.18.
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Figure 5. Lateral force F1 and axis force F2.

Table 1. Data of M134 [13–15] are shown.

M134 Gatling Gun Data Parameters Value

Whole gun weight 15.9 kg
Gun length 801.6 mm
Barrel length 559 mm
Tube rifling lines 4
Tube rifling lines direction Right
Wrapping distance 254 mm
Warhead Quality 9.75 g
Initial velocity 838 m/s
Maximum pressure 345 MPa
Effective Range 800 m
Stray bullet Range 5000 m
MRBF 250,000 r
Lifetime 600,000 r

Firing-rate 300 rpm (speed of DC motor); 2000 rpm
(practical firing rate); 6000 rpm (maximum firing rate)

Error 800 m 0.2–0.8 m; 5000 m 1.5–3 m
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The N, M is calculated as showing Figures 6 and 7:
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The pressure of internal propellant gas belongs to the impact type of external force.
The force on each rifling F1 and the force on each rifling F2 are shown in Figure 8.
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3. Theoretical Model

Depending on the hypothesis of the Bernoulli-Euler beam theory [7,17–22], the tube
vibration function with moving force and moving mass was solved [10,23–25]. Therefore,
two theories are used, and the first is the ballistic theory, the second is the unbalanced
rotor theory.

The vertical deformation of the barrel axis is represented by y1, and the longitudinal
deformation of the barrel axis is represented by y2, as shown Figure 5, The vibration
equation of the barrel considering the weight and acceleration of the projectile is:

∂2

∂x2 [EI(x)
∂2y1(x, t)

∂x2 ] + c1
∂y1(x, t)

∂t
+ ρ(x)A

∂2y1(x, t)
∂t2 = −(mS + F2)δ(x− ξ) (9)

∂2

∂x2 [EI(x)
∂2y2(x, t)

∂x2 ] + c2
∂y2(x, t)

∂t
+ ρ(x)A

∂2y2(x, t)
∂t2 = (mg + F1)δ(x− ξ) (10)

S =
∂2y1

∂t2 + 2v
∂2y1

∂x∂t
+ v2 ∂2y1

∂x2 (11)

ζ =
∫ t

0
v(t)dt (12)

y =
√

y2
1 + y2

2 (13)

where: E is the elastic modulus of the material; I(x) is the moment of inertia of the cross-
section of a cage-like structure; c1, c2 is the viscous damping coefficient; y1 is the vertical
deformation of the axis; y2 is the longitudinal deformation; y is the resultant displacement.
ρ(x) is the material density; A is the cross-sectional area of the barrel; I(x) and A are
constants under the simplification of uniform section; m is the mass of the projectile; F is
the axial force of barrel from muzzle to tail, v(t) is the moving speed of the projectile; g is
the acceleration of gravity; ξ is the travel of the bullet from interior ballistic calculation; S is
the additional term of an external force acting on the barrel after considering the inertial
effect of the bullet, and δ(. . .) is the Dirac function.

Similar to as Figure 9, the calculation formula of I(x) is as follows:

I(x) = nmsg(
D
2
)

2
+ Izg (14)

where: Izg is the moment of the barrel connector and 6 barrels, msg is the mass of the bullet,
n is the number of the bullet. After calculation, its internal ballistic time is only 1.2 ms. The
practical firing rate of M134 is 2000 rpm, that is, n = 1;

I(x) = msg(
D
2
)

2
+ Izg (15)

The bullet goes through an unbalanced force, under the action of the unbalanced
force, the rotor will produce vibration. At high speed, even a small mass eccentricity will
produce a larger centrifugal force. The data are obtained from their modeling, and some
are obtained from relevant literature [13–15,17].

The gun has an rpm from 300 to 6000, and the time interval is 200 ms to 10 ms. By the
time the second bullet was started, the first bullet was already out of the gun. There is no
interaction between the first and second bullet. In addition, two bullets do not appear in
the barrels at the same time. The Gatling gun rotation rate is at Table 2.

According to the size of each part, the solid is drawn by 3D software, and then
imported into the finite element software, which is divided by hexahedral mesh, and the
calculated model is obtained.
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Figure 9. The position of the bullet in the weapon.

Table 2. Gatling gun rotation rate.

Gatling Gun rpm Speed of Revolution Round/s Rotor Speed (rad/s)

300 0.83 5.21
500 1.38 8.66
1000 2.77 17.39
2000 5.55 34.9
3000 8.33 52.3
4000 11.11 69.77
5000 13.88 87.17
6000 16.66 104.62

During the rotation of the barrel group continuously driven by the motor, the bullet
moves along the barrel from back to front, which will cause the vibration caused by the
additional mass. In addition, it is also a recognition that the bullet causes the additional
vibration of the barrel assembly due to the unbalanced mass. Therefore, it is better that the
lighter mass of the bullet and which will not affect the barrel assembly.

Izg
..
θ = msg(

D
2
)

2
ω2

zg (16)

The above formula shows that once there is ωzg, the acceleration will change, which
aggravates the change of ωzg and aggravates the speed fluctuation.

Simultaneously, there is a discovery that there is no distinction of the energy but
the speed.

4. Distinction between Rigidity and Flexibility of Cantilever Rotor

The cantilever rotor was studied, and the axis coincides with the cantilever beam, the
XY plane is connected with other structures, and the structure rotates around the Z axis, as
Figure 10. It calls a rotary squirrel cage cantilever [3].

Hence, it is necessary to study the influence of the bullet launching process of Gatling
weapon, especially the force and moment are caused when the bullet moves in the barrel.
If the practical firing rate is 2000 rpm, then the rotation rate ω is 34.9 rad/s.

In the rotating system, the mass center of each micro section of the rotor can not
be strictly on the rotating axis. Therefore, when the rotor rotates, there will be lateral
interference, and it will cause strong vibration of the system at some speed. In this case, the
speed is the critical speed [26,27].

The purpose of understanding the critical speed is to try to make the compressor’s
working speed avoid the critical speed, to avoid resonance. Generally, the rated working
speed n of the centrifugal compressor shaft is either lower than the first critical speed n1 of
the rotor, or between the first critical speed n1.
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Figure 10. Rotary cantilever structure with Z axis.

Let’s give it a modal analysis, add it some rotation velocity of 34.9 rad/s, it gives me
some results, let us see that it is a component: a rigid or flexible component comes from at
a certain speed.

Rigid requirements : n ≤ 0.7n1 (17)

Flexible requirements : n = 1.3n1 (18)

This is the Campbell diagram for the M134 Gatling gun, as Figure 11.
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Figure 11. Campbell diagrams for M134 Gatling gun.

From Figure 11, critical speed n1 = 8.0248 rad/s, from the Table 2, Gatling gun rpm is
300–500, this M134 is rigid rotor; and for others, rpm is 1000–6000, the M134 is the flexible
rotor. M134 usually works under a flexible barrel. With or without rotation rate, the M134
Gatling gun has the first 8 frequencies, as shown in Table 3 below:

Table 3. With or without rotation rate, M134 fundamental frequency.

Mode No Rotation Rate/HZ Used Rotation Rate/HZ Prestress
(Rotation Rate)/HZ

1 0 0 0
2 36.056 36.056 0
3 36.075 36.075 28.281
4 88.572 88.572 51.439
5 193.15 193.07 51.76
6 193.34 193.43 105.72
7 329.63 329.63 178.27
8 794.33 794.33 178.31
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As Prestress the mode is shown as Figure 12.
However, under the action of tension force, the structural stiffness will increase and

the frequency will increase. On the contrary, under the action of compression force, the
structural stiffness will decrease and the frequency will decrease. This prestress is a
compression force.
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Figure 12. Prestress modal of M134. The M134 shoots at 2000 rpm, as shown in Table 2, which
is 34.9 rad/s, and the intermediate state of the third and fourth-order. 34.9 Hz is from the third-
frequency (28.281 Hz) to fourth-frequency (51.439 Hz). In addition, with the rpm of 3000, the barrels
are neither twisted nor skewed but stretched along the axis of the barrel, which is very beneficial to
shooting, with the fourth-frequency of 51.76 Hz, as Figure 12 shows.

5. Result Simulation

As we research the force of the rotary cantilever structure, it has to be researched in
the ANSYS workbench. If the practical firing rate is 2000 rpm, then the rotation rate ω is
34.9 rad/s.

It is from the original parameters, such as elastic modulus E which is 2 × 1011 Pa.
maximum results are similar to Figures 13–16. In the plane perpendicular to the barrel
axis, this deformation data is very small, and the data is very large in the root of the barrel.
Additionally, in the simulation, add the bullet’s x displacement as Figure 15 and the force
on the bullet’s as Figure 16, which is as Figure 8.
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6. Optimization of the Cantilever Rotor System
6.1. Increase the Elastic Modulus of Barrel Material

The elastic modulus of the barrel material is at elastic modulus E which is 2 × 1011 Pa.
Let the elastic modulus by 10% of the upper and lower, the upper elastic modulus is
2.2 × 1011 Pa and the lower elastic modulus is 1.8 × 1011 Pa. In addition, the maximum of
X and Y is shown in Figures 17 and 18.
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And the maximum of X and Y is shown in Table 4.

Table 4. Maximum of X (transverse) and Y about elastic modulus.

Elastic Modulus/Pa Maximum of X/mm Maximum of Y/mm

1.8 × 1011 0.0071376 0.011784
2.0 × 1011 0.0064541 0.010885
2.2 × 1011 0.0058397 0.009857
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The reductions are as follows:

δx =
0.0071376− 0.0058397

0.0071376
= 18.09% (19)

δy =
0.011784− 0.009857

0.011784
= 16.35% (20)

Therefore, with the increasing of the elastic modulus, the barrel deformation of X
and Y decreases, reaching nearly 20%. The larger the E value of steel, the smaller the
muzzle deformation.

6.2. Simulation by Changing the Position of the Second Enclosure

The second enclosure of M134 is 225 mm to the body parts of the Gatling gun, and the
L value is 225 mm. We change the L value of the second enclosure, its L value is 200 mm
or 250 mm. The second enclosure is closer to the weapon body if L is equal to 200 mm.
In addition, the second enclosure is farther away from the weapon body if L is equal to
250 mm. The L is shown in Figure 19.
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6.2.1. The Weapon Frequency from L

The frequency from the L changes is from the Ansys Workbench, the frequency is the
list in Table 5.

Table 5. L value brings the frequency of Weapon.

L
Frequency

Fundamental Second-Order Third-Order Fourth-Order Fifth-Order Sixth-Order Seventh-Order Eighth-Order

225 19.477 19.658 61.735 61.911 72.52 166.31 200.43 200.63
200 20.018 20.215 56.419 58.168 65.615 165.17 166.63 178
250 18.489 18.664 54.895 55.108 63.652 165.89 219.77 220.01

From Table 5, the M134 can not fire at 1000 rpm, because this is close to the fundamen-
tal frequency.

As the frequency is shown in Figures 20–22. The L value is 225 mm (which is called
the M134 prototype), the picture is as Figure 20.

If L value is 200 mm, which is as Figure 21.
Else if L value is 250 mm, which is as Figure 22.
By comparing the three schemes, we can see how appropriate the M134 is designed

and far away from the firing frequency.

6.2.2. The Barrel Deformation Closest to rpm

If the L varies from 200 mm to 250 mm, the performance of the M134 Gatling gun is
shown in Figures 23–25 below.

From Figures 23–25, we can see that the frequency close to the launch frequency, the L
value is 225 mm, which can only be regarded as the medium level. After all, the muzzle
has a 1.5 mm offset, which is only about 1 mm offset from the 250 mm muzzle. Compared
with 200 mm, the muzzle has an offset of nearly 6 mm.
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6.3. Simulation of Changing the Cross-Sectional Area

That is not possible, because the cross-sectional area must be accurate. It is about 10%
at most. Since it is a military product, it must be strictly required. If it reduces the effect by
10%, as shown in Figure 26.
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And the maximum of X and Y is shown in Table 6.

Table 6. Maximum of X (transverse) and Y (vertical) about Cross-sectional area.

Cross-Sectional Area Maximum of X/mm Maximum of Y/mm

Original 0.0064541 0.010885
Reduces the effect by 10% 0.0045904 0.0085777

From Table 6, with Table 1, so the barrel is only 801.6 mm, and the original x result is
0.0060 mm, and 0.0108 mm in the Y direction, the new gun X direction is 0.0045 mm and Y
direction is 0.0085 mm in. Now it is equivalent to the 600 m target, then the X offset of the
original gun x0 is 4.49 mm, the Y offset y0 is 7.49 mm, and the X offset of the new gun Xj is
3.37 mm and the Y offset Yj is 6.36 mm. Let’s calculate as follows Equation (21):

η =

√
x2

j + y2
1√

x2
0 + y2

0

=

√
3.372 + 6.362
√

4.492 + 7.492
= 82.3% (21)

By reducing the cross-sectional area by 10%, a good result as Equation (21) can be
achieved. The deformation of X and Y is smaller, but there are other components in it. If
they can’t be put down, they still have to be the same size as before [28].

7. Test and Data

We used the same number of barrels and the same configuration of the front structure
of the barrel to shoot. Simulating shooting with 2000 rpm, and place the target 2000 m
away. The shot image is shown in Figure 27.

Record the target center and the center position of the two shooting methods, and
shown in Figure 28 below, the unit X and Y is meter. The absolute value decreases the range
of R60 m.
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8. Conclusions

After studying the M134 cantilever rotor, the following conclusions are obtained:

(1) If the M134 Gatling gun rpm is 300–500, this M134 rotor is rigid, and for others, rpm
is 1000–6000, the M134 rotor is the flexible rotor. It’s still a good way to distinguish
weapons according to the rpm. With the rpm of 3000, the barrels are neither twisted
nor skewed, but stretched along the axis of the barrel, which is very beneficial to
shooting, with the fourth frequency of 51.76 Hz. The best shooting is 300–500 for
low-frequency shooting and 3000 for high-frequency shooting.

(2) The increase of the elastic modulus is helpful to reduce the displacement of the
barrel. Improve shooting accuracy according to the reduced vibration. The barrel
deformation can be increased from 1.8 × 1011 to 2.2 × 1011. The X and Y directions of
the muzzle can be reduced by 18%. The absolute value decreases the range of R60 cm
from 2000 m away.

(3) It is not by changing the cross-sectional area, although there are some good results,
there are some other military products in it, the other reason is that the dimensions
are fixed.

(4) With the 3000 rpm, the barrels are neither twisted nor skewed, but stretched along
the axis of the barrel, which is very beneficial to shooting, with the fourth-frequency
of 51.76 Hz, the Gatling gun shoots at 3105.6 rpm (51.76 × 60). 3000 rpm is correct
and reasonable.
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