
Citation: Yang, X.; Yu, Y.; Wu, X.

Double Linear Transformer for

Background Music Generation from

Videos. Appl. Sci. 2022, 12, 5050.

https://doi.org/10.3390/app12105050

Academic Editors: Katia Lida

Kermanidis, Phivos Mylonas and

Manolis Maragoudakis

Received: 22 April 2022

Accepted: 13 May 2022

Published: 17 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Double Linear Transformer for Background Music Generation
from Videos
Xueting Yang , Ying Yu * and Xiaoyu Wu

Faculty of Information and Communication Engineering, Communication University of China,
Beijing 100024, China; yangxueting@cuc.edu.cn (X.Y.); wuxiaoyu@cuc.edu.cn (X.W.)
* Correspondence: yuying@cuc.edu.cn; Tel.: +86-10-6577-9427

Abstract: Many music generation research works have achieved effective performance, while rarely
combining music with given videos. We propose a model with two linear Transformers to generate
background music according to a given video. To enhance the melodic quality of the generated music,
we firstly input note-related and rhythm-related music features separately into each Transformer
network. In particular, we pay attention to the connection and the independence of music features.
Then, in order to generate the music that matches the given video, the current state-of-the-art cross-
modal inference method is set up to establish the relationship between visual mode and sound mode.
Subjective and objective experiment indicate that the generated background music matches the video
well and is also melodious.

Keywords: video background music generation; music feature extraction; linear Transformer

1. Introduction

Music can effectively convey information and express emotions. Compared with
silent videos, an appropriate background music can make the video content easier to
understand and accept. However, in daily life, generating video soundtrack is often a
technical and time-consuming work. It requires the selection of suitable music from a large
amount of music and needs people capable of using specific tools to edit the corresponding
audio paragraphs. Furthermore, the existing methods cannot automatically customize the
appropriate background music for the given video. To address these problems, this paper
proposes an automatic background music generation model with two linear Transformers
training jointly. This method ensures the convenience in use as well as the music uniqueness.
At the same time, after a large amount of data training, it ensures both the rhythmicity of
the generated music and a high degree of matching with the given video.

For the tasks related to the automatic generation of video background music, there
have been many excellent achievements, such as music generation and video-audio match-
ing tasks. However, as far as we know, the combination of generated music and video
associations has not been considered for most of the existing works. Many works on music
generation focus on music generation itself [1,2], and recently, more studies have paid atten-
tion to controllable music generation [3–5], while seldom [6] combining music generation
with videos. As a result, the generating music cannot meet the background requirement
for a given video. Furthermore, since there is no paired video–background music dataset,
the existing video background music generation methods [6] skillfully established the
corresponding relationship between video features and music elements, and then used the
video features to change the music elements for different given videos. Although these
approaches have achieved breakthrough results, they have paid less attention to the rela-
tionship and the independence of musical elements, which has led to a weak melodiousness.
In this article, the proposed model improves the extraction of musical elements with two
linear Transformers [7] training jointly and using the above inference method to improve
the rhythm of the generated music as well as matching the given video.
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The compound word Transformer [8] was used to represent music and to consider the
following factors in learning musical features part: beat, density, strength, pitch, instrument
type and duration. The first three factors are related to rhythm and the last three are related
to notes and using types to distinguish the grouping of factors. Compared to RNNs, the
Transformer [9], a multihead model based on a self-attention network is more effective and
explainable in time-based long sequence tasks such as BERT [10] and so on. The proposed
model used two linear Transformers [7] with a time position to train the rhythm and note-
related features separately. Taking into account the correlation between the various musical
elements, the proposed model adjusted the complementary features of the two groups
and trained the network in a joint way. The Lakh Pianoroll Dataset [3] was used in the
training and inference stages. Furthermore, the background music was specified by using
the specific features of the video. To sum up, our work has the following contributions:

1. In this paper, we propose a video background music generation model. Most back-
ground music generation works use only one Transformer to learn and extract all
music elements, which leads to a weak melody. To establish the correlation and
independence between rhythm-related and note-related music features, we use two
linear Transformers training jointly. In particular, the two kinds of music features are
put into each Transformer network separately;

2. Compared to an RNN network such as LSTM and GRU, the proposed model uses
a linear Transformer, considering its lightweight and linear complexity. We use the
timing information of the given video to guide the generation of music by adding a
time beat encoding to the Transformer network;

3. After the model has learned the music features, we replace the density and strength
features of the music with the optical flow information and rhythm of the video in
the inference step, inspired by the state-of-the-art music video inference method.
The proposed model combines the music feature learning step and the inference step
to form a complete video background music generation model.

2. Related Works
2.1. Representation of Music

In earlier research works, music was represented primarily by MIDI-like interfaces [11],
using time-shift to mark time intervals. Another representation, REMI [12], on the other
hand, provides special markups for bars, chords, beat and tempo, and also uses a different
way of marking time intervals than MIDI. The representation of music in some existing
works can be visually seen in Figure 1 below. Compared with MIDI, REMI can better control
the music structure and adjust the rhythm of the music. However, these two methods do
not group the tokens according to their types.

Figure 1. Ways to represent music in recent studies.

In this paper, we use the compound word Transformer [8] to represent the music.
Based on REMI, the compound word (CP) Transformer converts a long sequence of tokens
into a composite word by grouping adjacent symbols, while filling in the missing tokens
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in each time block, making each step consistent. When using the compound word (CP)
Transformer to represent the music, music tokens are divided into rhythm and melody
groups by referring into the Controllable Music Transformer model [6], which is helpful to
consider both local classifications and overall relationship when extracting music elements.

2.2. Music Generation

Music Composition. Music composition is a challenging job for both composers and
algorithms. Research works on music generation firstly focused on music generation itself,
then more studies paid attention to controllable music generation. However, very few
studies have been conducted to combine music models with visual models. DeepBach [1]
is a deep neural network model with good composition effect which focuses on producing
music in the style of Bach. MetaComposer [2] creates harmonious, pleasant and interesting
compositions by using a participant-based evaluation to combine the component of its
framework effectively. Different from the previous work, MuseGan [3] proposes three
multitrack music generation models which provide a method for generating music with
the user’s control. Since then, more studies have considered controllable music generation.
DeepJ [4] is an end-to-end music generative model that is capable of composing music
conditioned on a specific mixture of composer styles. DeepChoir [5] is a system that can
automatically generate a four-part chorus from a given piece of music. However, none of
those jobs combine music generation with the given videos.

Music Generation From Videos. A pioneering work of video background music
generation was put forward by [13]. The algorithm realized the audio generation of music
performance videos collected in the laboratory. A similar tool, Audeo [14], generated back-
ground music for an input pianist video. Another work, Foley-Music [15], was proposed to
generate music for a given body poses video, which achieved outstanding results in silent
performance video tasks. However, the above research work is mainly about generating
music for performance videos. Compared to video background music, the music of these
tasks is fixed to some extent, as it can be speculated by the human pose, and its style and
instrument type are also relatively fixed. In these kinds of work, it is almost impossible to
complete the music for scenery videos or videos without performers. As far as we know,
the only model that generates background music for general purpose videos is Control-
lable Music Transformer(CMT) [6]. Although the rhythm of generated music matches the
video well, it is not as melodic as the training data. In this paper, we propose a model for
background music generation for the given video and we improve the rhythm of the music.

2.3. Technical Architecture

Many classical and popular music generation studies have used deep learning net-
works to model music notes. MuseGan [3] considered multitrack music sequences as 2D
images and builds a model based on generative adversarial networks(GANs). EvoCom-
poser [16] provided an evolutionary algorithm able to compose music. In addition, more
research work is currently drawing on methods from studies with long sequence modeling,
such as language identify [17], pretrained language model [10], semantic segmentation [18]
and so on. Deepbach [1] is a graphical model using recurrent neural networks (RNNs) to
model polyphonic music. DeepChoir [5] used two deep bidirectional RNN and a condition
encoder to infer the harmonic part from the given music. Furthermore, DeepJ [4] used biax-
ial long short-term memory (LSTM) method and achieved valid results on the style-specific
music generation task.

Apart from RNN and LSTM, the Transformer network, which has achieved compelling
results in natural language processing and image processing field [19], has also widely
been used in the music generation field. Music Transformer [20] employed the Transformer
with a relative attention model to generate long-term piano music. Another work, Foley-
Music [15], used a graph Transformer to generate music for a given body poses video. More
recent works such as LakhNES [21] and Jazz Transformer [22] used Transformer-XL [23] as
the backbone to complete the music generation task. Particularly, a model called Guitar
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Transformer used Transformer-XL [23] to generate synthetic guitar finger-playing music
was proposed by [24]. CMT used one linear Transformer [7] to extract all music features and
generate background music for the given video although the melody of the resulting music
was not good enough. In this article, we use two linear Transformers training jointly, which
reduces the algorithm complexity compared with Transformer and use Linear attention
mechanism to learn rhythm-related and note-related music features separately.

3. The Proposed Framework

In this paper, we propose a model to generate video background music based on
training two linear Transformers jointly. The overall model structure is shown in Figure 2.
The model consists of two parts. Firstly, when learning and extracting musical elements,
musical features related to rhythm (beat, density and strength) are input into one Trans-
former, and musical elements related to notes (pitch, instrument type and duration) into
the other.

Figure 2. The overall architecture of the proposed video background music generation method.

Through extensive training of MIDI data, the model can obtain representations of
key music elements based on a given music. In the second part, the model calculates the
visual characteristics and adjusts the value of music elements according to the time and
motion characteristics and light flow changes of the video, and then guides the generation
of background music. In the following of this section, we introduce in turn the presentation
method of music data, the method of joint training and the way of using visual information
to generate music.

3.1. Data Representation

Inspired by PopMAG [25] and CMT [6], we chose beat, density, strength, pitch, in-
strument type and duration as key music elements and used the type to group the related
features. In order to represent the relationship between various states in each musical
feature and reduce the dimension according to the similarity between states, seven musical
elements were represented by embedding vectors in Formula (1).

Ei,n = Embeddingn(statei,n), n = 1, . . . , N, (1)

In Formula (1), N represents the number of musical elements, and N was 7. Statei,n
represents the state of the nth music element at the ith moment, and the embedding
vector representation of the current music element state can be obtained through the
learnable embedding layer Embedding(∗). Then, the musical elements were concatenated
and linearly connected with the related note and rhythm, respectively, as Formulas (2) and



Appl. Sci. 2022, 12, 5050 5 of 13

(3) to obtain two preset embedded-layer-length (512) vectors, which represent rhythm and
note information, respectively.

xtnote = Linearnote
[
Ei,1 ⊕ Ei,2 ⊕ Ei,3 ⊕ Ei,type

]
, (2)

xtr = Linearr
[
Ei,4 ⊕ Ei,5 ⊕ Ei,6 ⊕ Ei,type

]
, (3)

Taking Formula (2) as an example, the temporary embedding vector related to note was ob-
tained using the pitch, instrument type, duration as well as the type embedding. Linear(∗)
represents the learnable full connection layer, the length of the input layer is the result of
the concatenation for each element of the two groups, and the output vector is the preset
embedding length; here it was 512.

xtr = Linearr
[
Ei,4 ⊕ Ei,5 ⊕ Ei,6 ⊕ Ei,type

]
, (4)

xr = xtr + β · xtnote, (5)

Next, before inputting into the linear Transformer, in Formulas (4) and (5), the hyperparam-
eters α and β represent the influence of rhythm features on note features and the influence
of note features on rhythm features, respectively, in order to represent the relationship
between the two groups and make the association between rhythm and note elements.
Finally, the two embedding vectors xnote and xr, which emphasize rhythm and note, were
trained as an input to the Transformer network, which is described in the next section.

3.2. Training Two Linear Transformers Jointly with Position Encoding

As the lightweight and linear attention mechanism of the linear Transformer, the model
uses the linear Transformer as the backbone. Figure 3 depicts the structure of the model,
which utilizes two linear Transformer networks corresponding to musical and rhythmic
elements. In the first step, the seven musical elements were embedded and dimensioned.
After the integration of the seven musical elements with note-related and rhythm-related
features, respectively, the rhythm-related embedding vector was added to the note em-
bedding vector in a certain proportion. Similarly, the note-related embedding vector was
also adjusted to the rhythm embedding vector. Before blending with each other, the two
individual vectors were resized to the preset embedding size by the linear Layer.

Before passing blocks in linear transformer, the time-beat position was encoded to
match time, rhythm and note characteristics better. Furthermore, all musical elements in a
beat should have the same position encoding, ensuring that multiple notes in the same beat
are converted to the same musical fragment. After that, the time-beat position encoding
was added to xnote and xr.

Next, the resized embedding vector was transferred to the linear Transformer for
training. Different from the traditional softmax attention, the linear Transformer uses a
dot-product attention network, which enables the model to have better time and memory
complexity and allows causal models for sequence generation in linear time. There are N
blocks in a Transformer and N was 12 in this article. Each block was composed of a masked
multiple linear attention mechanism and a position-wise forward layer. In particular,
different from the application of a multihead attention in translation tasks, the encoder only
focused attention on the previous notes. The mask was used to avoid the model learning
the next note in advance, as we gave the target input into the Transformer at the training
stage. It was added after the dot product between query and key. In this model, we use
a triangular causal mask with 0 in the lower triangle and 1 × 10−9 in the upper triangle.
After applying the mask matrix to the attention score, the upper triangle values became
very low. Then, these low values became close to zero when passing through the softmax
function, which meant the model could not notice the later notes.

As shown in Figure 3, after N blocks, a Linear layer and softmax function were used to
calculate the result probability of the sequence and compute the possibility of each musical
element. In this structural design, the model dealt with the two kinds of musical elements
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separately . The proposed model computed and summed up the cross-entropy loss of each
sequence to the target loss optimization. We aimed to ensure the relative independence of
note-related and rhythm-related development and considered the mixed influence of them
at the same time.

Figure 3. The structure of training two linear Transformers jointly to learn music elements.

3.3. Video Directs the Generation of Music

As there is no paired video–background music training data to our knowledge, we
used the ingenious inference method proposed in the Controllable Music Transformer [6].
In this paper, they established three rhythm relations between the given video and the
generated music, as shown in Figure 4. Firstly, the model established a positive correlation
between video optical flow speeds and the note density. Larger average optical flow means
a faster motion in the video clip, which matches more intense background music. Secondly,
the position encoding module was added to enhance the relationship between the video
timing and music beats. Furthermore, the authors also built the relation between local
maximum motion saliency and the note strength to speed up the tempo of the generated
music when the motion changes in video clips such as shot boundaries and so on.

Aiming to introduce the video features to the music, we firstly used the Lakh Pianoroll
Dataset (LPD) to train our double linear Transformer network on music feature modeling.
Then, the model understood the note density and strength tokens of the generated music.
The only thing we needed to do was replacing these two attributes to the calculated values
that matched the given video. Through these visual-auditory connections, video variations
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could effectively guide audio generation, thus ensuring that the generated music matched
the rhythm of the given video.

Figure 4. The connection of visual and audio.

4. Experiment

In this paper, both subjective and objective experiments were conducted on the pro-
posed model. In the subjective evaluation, we followed the consensual assessment tech-
nique (CAT) method to evaluate the metrics of the generated music. The main expert
evaluation group consisted of five professors of music-related major at the Communication
University of China and seven musicians with popular music pieces on the Internet. Firstly,
participants rated the music to measure how well it matched the video compared to the
music made by composers using the Likert scale five-point method. Then, they identi-
fied the generated music and music by composers from the disrupted music collection.
For different scenes, the audiences voted on whether the background music was suitable
for the given video, respectively. We finally calculated the Cronbach coefficient of the scores
to prove the result was acceptable. As the feeling about the music varied from person
to person, we also invited 23 people with no knowledge of music theory to do the same
experiment. At the same time, the author paid attention to the quality of the generated
music in the objective evaluation.

4.1. Data and Implementation Details

Referring to the Controllable Music Transformer model [6], we used the Lakh Pianoroll
Dataset [3] as the source of multitrack piano roll data to train the model. This dataset is a
variation of the Lakh MIDI dataset. We used a subset of Lpd-5-cleansed as our training data,
which included 3038 MIDI music pieces of multitrace piano roll from all genres. Lpd-5-
cleansed removed the songs whose first beat was not starting from time zero and kept only
one file that had the highest confidence score in matching for each song. The validation set
was a subset of the Lpd-5-cleansed training data containing 320 MIDI music pieces, and
our test data were selected from Lpd-5-cleansed randomly with 304 MIDI pieces.

We used six NVIDIA Tesla P100-16GB cards on the Matpool cloud server website for
the experiment with the environment of CUDA 11.1, cuDNN 8.0.5 and Python 3.7. The
double linear Transformer network was used to train the data based on the framework from
Figure 3. The number of layers of the Transformer was 12, that of the multiplex attention
mechanism of causal-linear was 8 and the feed forward dimension was 2048. The dropout
ratio was set to 0.1 with gelu [26] as the activation function in the Transformer. The initial
learning rate was set to 0.0001, and we optimized the proposed model with Adam [27]. We
trained 100 epochs in the LPD dataset and ran it for about 20 h in the environment of the
six NVIDIA Tesla P100-16GB cards.

4.2. Subjective Evaluation

In the evaluation experiment, we focused more on the subjective evaluation of users.
Among several subjective evaluation methodologies , the consensual assessment technique
(CAT) was the most suitable method in this case. The CAT method is also called the “Gold
Standard” of creativity assessment and is one of the most effective tools for measuring
creative works, such as arts, engineering as well as business management. It can evaluate
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our results because our creations were open, novel and appropriate. Firstly, we organized
the people familiar with the field of music composition to form an evaluation team. Our
team consisted of five professors of music-related major at the Communication University
of China and seven musicians who had published music pieces on the Internet and had a
certain popularity. Secondly, we told the audiences what aspects of the work they needed
to evaluate. We chose the following metrics as evaluation standards:

1. Rhythm represents how the rhythm of the music fits into the pace of movement in the
given video;

2. Emotional foil indicates whether the emotional expression of music is suitable for the
content of the video;

3. Highlight says whether the music is stressed in key parts of the video;
4. Structure indicates whether the music is suitable for the background music with a

crescendo at the beginning and a weakening at the end of the video.

Finally, the evaluator evaluated all independent evaluation of the heard music pieces.
Inspired by [1], the music pieces of five scenes were chosen, with three pieces of music
for each. The selected five scenes were as follows: night scene, animals in the desert of
snow mountains, battlefield, animated movie of animals and animated movie of characters.
Furthermore, each piece was clipped to thirty seconds to keep the same experiment condi-
tions. We used the Likert scale five-point method to divide the evaluation opinion into five
grades, with a score ranging from one to five. In addition, considering the evaluation of
music has a great relationship with subjective feelings and the feelings vary from person to
person, we also chose 23 students without music knowledge background at the Communi-
cation University of China to make up our second evaluation group, and they also mad
independent evaluation of the same aspects.

As the CAT technique is based on the evaluators’ perception of implicit theories of
creativity, the subjectivity is relatively high. As a result, we calculated the raters’ Cron-
bach score to reflect the reliability of the evaluation method after collecting the scores.
From Figure 5, we find that most of the Cronbach scores of the expert group was higher
than 0.7, which means the results can be accepted. In addition, we also calculated the
statistics of the voting distribution for the two groups of evaluators, which is shown in
Figure 6. One interesting finding is that the expert group voted less for a score of three than
the other group, and they were also less likely to give a score of five.

Figure 5. The Cronbach score of voting scores of the expert evaluation group.
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Figure 6. The voting distribution of the two evaluation groups.

Then, we observed the scores on each evaluation index. Table 1 shows the average
rating results of the expert group of the five scenes fit to the music generated by the
algorithm, compared to the music made by the composer, calculated by Formula (6). N =
12 represents the number of people of the expert group.

Vij =
∑n=N

n=1
(
Sjm1 + Sjm2 + Sjm3

)
N

, (6)

The values in Table 1 represent the expert group’s score of this aspect of the generated music
for each scene, and that in brackets represents the score of the music made by the composer.
It can be seen from the table that although the overall score of the music generated by the
algorithm did not exceed that of the existing composers, the model improved the results in
highlight and structure indexes, indicating that the music generated by the algorithm was
more in line with the rhythm of the video than the existing music searched through a given
scene using the matching function. A major factor affecting the overall score was emotion
foil; the reason was that the music generated by the proposed algorithm did not take into
account the content of the videos, and as a result, it had a great disadvantage in the video
soundtracks with strong emotion, such as war field.

Table 1. The score of the expert group on algorithmically generated music and music made by
composers on 4 indicators. (The values in the table represent the score of the music generated by the
algorithm, and the values in brackets represent the score of the music made by the composer.)

Rhythm Emotion Foil Highlight Structure Avg.

Night scene 3.6 (3.3) 2.8 (3.5) 3.5 (3.7) 4.0 (3.5) 3.48 (3.50)
Desert animal 3.1 (3.4) 3.6 (3.1) 3.1 (3.1) 4.2 (3.6) 3.50 (3.30)

War field 2.8 (3.1) 1.4 (2.8) 3.5 (3.3) 3.1 (2.9) 2.70 (3.03)
Animal movie 3.2 (3.7) 2.4 (3.2) 3.8 (3.3) 3.8 (3.4) 3.30 (3.40)

Character movie 3.5 (3.6) 3.3 (3.5) 2.8 (3.2) 4.0 (3.6) 3.40 (3.48)
Avg. 3.24 (3.42) 2.70 (3.22) 3.34 (3.32) 3.82 (3.40) 3.28 (3.342)

At the same time, we analyzed the results from a single scenario. Figure 7 shows the
average result from the expert evaluation group on the two kinds of music on different
indicators, taking the night scene as an example and Figure 8 shows the average result from
the group without music knowledge background. It can be concluded from the distribution
in the following graphs that for the expert evaluation group, the structure score of the
generated music was much larger than that of the composed music, because of the position
encoder in the Transformer network. To our surprise, combined with changes of the video
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motion speed, the generated music of the night scene was also slightly more rhythmic
than the existing composed music selected using a matching algorithm. Different from
the expert review panel, the listeners with no musical knowledge preferred the highlight
of the generated music, which meant our model also improveds the stress of the music
by building a connection between local maximum motion saliency and note strength.
However, the emotion foil score of the two groups was poorly experienced, which we need
to consider in future works.

Figure 7. The average result from the expert evaluation group on two kind of music pieces on
different indicators of night scene.

Figure 8. The average result from the evaluation group without music knowledge background on
two kind of music pieces on different indicators of night scene.

Apart from the CAT method, we also compared the generated music with existing
matching music of the composers by mixing the generated music and the music written
by the composer into a set and labeled it. Then, we randomly selected the music for the
two groups of participants and asked the user to distinguish whether it was generated
by model or composed by composers. At the same time, participants were also asked
to vote on whether they would have liked to use the heard music as background music
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for the given video. Listeners judged the current music as “It is generated by AI”, “It is
generated by Human” or “Unable to distinguish”. Table 2 shows the percentage of listeners
correctly identifying the music generated by the model and by the composer, as well as
the percentage willing to use this type of music as background music; the percentages in
brackets are the votes of evaluators without knowledge of music theory.

It can be seen from Table 2 that most listeners could identify the music generated
by the model, while more users were willing to use the music generated by the model as
background music, as it matched the rhythm of the video better, and most of the music’s
rhythm and structure also accorded with the video scene compared to the existing music.

Table 2. Audience’s distinction between the two kinds of music and their willingness to use the
generated music as background music (the percentages in the table represent how recognizable the
music generated by the model was when voted by the expert group and those in brackets were from
people with no musical background.)

It Is by AI It Is by Human Want to Use?

Generated music 89% (62%) 11% (35%) 56% (75%)
Composers’ music 5% (23%) 95% (64%) 78% (63%)

4.3. Objective Evaluation

Although the main purpose of this paper was to generate appropriate background
music for a given video, that is, to evaluate the matching degree of music and video in
subjective experiments, we also paid attention to the quality of the generated music itself.
In an objective evaluation, in order to measure the melody of the music, MusDr [22] was
used to calculate the following indicators to measure the quality of the music itself, includ-
ing pitch class histogram entropy (H), grooving pattern similarity (GS) and structureness
indicator (SI):

1. The pitch class histogram entropy measures the tonality of the music by the entropy
of the pitch. The calculated method is shown in Formula (7), mentioned in Jazz
Transformer; here P = 11. The clearer the music piece, the lower the histogram
entropy;

H(~h) = −
P

∑
i=0

hi log2(hi), (7)

2. The grooving pattern similarity computes the music rhythmicity, music with higher
melodies has higher scores;

3. The structureness indicator measures the apparent repetition over a given length of
time. The closer this indicator is to the music by composers, the better.

In the experiment, five songs generated by the models were fed into MusDr for index
computation. For the proposed model, the music of night scene was used to detect the
indicators as this kind of background music had great scores in the subjective evaluation.
A higher value was betteer for the sum of H and GS while a smaller value was better for
the gap between the SI of the model generated music and the standard value. The standard
value was obtained by taking three pieces of music from each of the five scenes and
averaging the output index of MusDr. Compared with the music generated by Jazz
Transformer [22], CMT [6] and VMSI [28], the sum value and the gap were improved
as shown in Table 3. Here, CMT1, representing the control attribute, was only added in
training while CMT2 means the attribute worked both in the training and inference step.
Although the music generated by our model did not get the highest score, the sum of H
and GS reached the top. That means it is effective to learn rhythm-related and note-related
music features separately with two linear Transformers training jointly.
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Table 3. Objective comparison of music generated by different models.

H GS SI SUM of H and GS

Standard Value 4.452 0.968 0.488 5.42
Jazz Transformer ([22]) 2.91 0.76 0.27 3.67

VMSI ([28]) 3.961 0.713 0.265 4.674
CMT_1 ([6]) 3.617 0.81 0.241 4.427
CMT_2 ([6]) 4.113 0.599 0.2 4.712

The proposed model 4.028 0.729 0.221 4.757

5. Discussion and Conclusions

In this paper, we showed that the proposed model improved the rhythm and melody
of music in video background music generation task by using two linear Transformers
training jointly. Compared with the existing research , the proposed model dealt with
musical elements of note-related and rhythm-related features separately to extract and
learn music features. Then, we used the existing multimodel inference method to skillfully
combine the visual features of the given video with the music features while guiding the
generation of the music elements. Objective and subjective experiments showed that the
proposed model could be effective in matching the background music with the given video
in rhythm and notes while also being melodious.

The experimental result showed that our proposed model with two linear Transformers
was better in terms of the rhythm of the generated music. Furthermore, the generated music
also matched most of the given video well. However, we also found that the proposed
model was flawed in videos with strong emotion such as battle scenes, as we did not
focus on the understanding of the video content. Furthermore, due to the double linear
Transformer structure requiring more parameters to learn, the training phase of the model
took a long time. How to reduce the complexity of the model is also a question we will
consider in follow-up research.

In future work, we hope to use different and lightweight Transformer networks,
respectively, combining the differences of rhythm-related and note-related music elements,
so that the music elements can be better extracted and learned. At the same time, we hope
to capture the content and emotional message of the video and make the generated music
more consistent with the content of the given video.
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