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Abstract: This paper focuses on the design of a distributed algorithm for generalized eigenvalue
problems (GEPs) in one-shot communication. Since existing distributed methods for eigenvalue
decomposition cannot be applied to GEP, a general one-shot distributed GEP framework is proposed.
The theoretical analysis of the approximation error reveals its relation to the divergence of the data
covariance, the eigenvalues of the empirical data covariance, and the number of local servers.
If the symmetric data covariance has repeated eigenvalues in GEP, e.g., in canonical component
analysis, we further modify the method for better convergence and prove the necessity experimentally.
Numerical experiments validate the effectiveness of the proposed algorithms both on synthetic and
real-world datasets.

Keywords: generalized eigenvalue problem; canonical correlation analysis; distributed algorithm

1. Introduction

Nowadays, as the data dimension and quantity increases, distributed local servers are
essential in storing large-scale data. The distributed framework enables many equivalent
local servers to seek the solution to the same class of problems, where specific servers may
provide insight for other servers. This process is usually achieved by iteratively exchanging
information between local servers, namely, in multi-round communication, to partially
improve the way they accomplish their tasks. As increasing scenarios, such as financial [1],
medical [2], and biomedical [3] tasks, come into view, where they usually hold the sensitive
and limited scale of datasets in a distributed manner, the distributed systems shall offer
a relatively safe and efficient way to obtain a satisfying result.

There have been many works on distributed systems in the past decades, especially
in classification [4,5] and regression [6–9]. However, the discussion about distributed
generalized eigenvalue problem (GEP) is rare. GEP is known as another important type
of learning task that involves (generalized) eigenvalue decomposition (GED), including
Singular Value Decomposition (SVD) [10], Principal Component Analysis (PCA) [11],
Canonical Correlation Analysis (CCA) [12], etc. In optimization, such problems can be
formulated in the following way:

max
w∈Rd

w∗Aw s.t. w∗Bw = 1, (1)

where A ∈ Rd×d is a symmetric matrix, B ∈ Rd×d is a positive definite matrix, and w∗

denotes the conjugate transpose matrix of w. The optimization problem has an equivalent
solution to λmax(B−

1
2 AB−

1
2 ) [13], which pursues the maximum eigenvalue λ of the symmet-

ric data covariance B−
1
2 AB−

1
2 with an invertible matrix B. In short, (1) finds the generalized
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eigenvector w corresponding to the largest eigenvalue of the data covariance. Then, we can
build the relationship between GEP and GED. The Lagrangian for (1) is given by:

L(w; λ) = w∗Aw− λ(w∗Bw− 1),

where λ ∈ R is the Lagrange multiplier. By equating the derivation of Lagrangian to zero,
we obtain the generalized eigenvalue decomposition as below:

Aw = λBw, (2)

where w ∈ Rd denotes the generalized eigenvector of GEP with respect to the generalized
eigenvalue λ.

Since GEP plays a vital role in a large family of high-dimensional statistical mod-
els, distributed algorithms for GEP are desired. However, only some variant cases are
discussed in the distributed manner. There are two common variants of GEP whose
distributed algorithms are well studied. On the one hand, when the constraint of (1) is
linear, distributed linearly constrained minimum variance (LCMV) is widely used in sig-
nal processing [14,15] with the same objective function in beamforming. However, its
algorithms cannot deal with quadratic constraints in GEP obviously. On the other hand,
when B in (1) is an identity matrix, GEP turns to the ordinary eigenvalue problem (EP).
Moreover, distributed algorithms for EP are numerous due to its good characteristics.
Further in detail, when A is symmetric, it is PCA, and it is SVD otherwise. For one-shot
communication with efficiency, distributed PCA algorithms are given in [16–18]. In ad-
dition, distributed SVD [19] conducts distributed averaging over measurement vectors
in one-shot communication. For iterative communication, a distributed sparse PCA [20]
is proposed based on the power method, which is numerically efficient for the large-scale
data. In addition, distributed SVD methods in [21,22] utilize the distributed power method
in both the centralized and decentralized way. However, the distributed algorithms men-
tioned above cannot be used in distributed GEP because, in distributed systems, the sum
of the local covariance matrices of GEP does not equal to the global centered covariance ma-
trix while it equals in EP. We call this phenomenon the divergence of data covariance, which
has been neglected in the previous work. Thus, although these distributed algorithms above
perform well in theory and practice, they cannot be directly applied to distributed GEP.
Due to the distributed data storage method, some techniques, e.g., partial differential
equations, used in non-linear systems [23,24] cannot be used in distributed GEP. In brief,
there is not a general distributed algorithm for GEP formulated as in (1).

To solve GEP in a distributed manner, in this paper, we propose a one-shot algorithm
with high communication efficiency and bounded approximation error. To our best knowl-
edge, it is the first sample-distributed algorithm for GEP. The key is to estimate the centered
global covariance from local empirical data covariances. Generally, there are two types
of distributed algorithms: multi-round communication and one-shot. Algorithms with
multi-round communication are usually more accurate but suffer from the high communi-
cation cost and the privacy risk. One-shot algorithms overcome these shortcomings but
require better design and approximation analysis. Thus, for the proposed algorithm, we
investigate the upper bound of the approximation error, and show it is concerned with
the eigenvalues of the empirical data covariance and the number of local servers.

To demonstrate the effectiveness of the proposed distributed algorithm in practice,
we consider Fisher’s Discriminant Analysis (FDA) [25] and CCA as specific applications
of GEP. Among them, distributed FDA achieves remarkable performance in the learning
task of binary classification. However, CCA is more special for its symmetric self-adjoint
dilation [26] of the empirical covariance matrix in the GEP form. When using the power
method (PM), which is commonly used to solve GEP for computation efficiency, the itera-
tions become inefficient due to the repeated non-zero generalized eigenvalues of the co-
variance matrix, namely, no eigengap (see Corollary 1 in [27]). Note that such a prob-
lem only exists in sample-distributed CCA while not in feature-distributed ones [28,29].
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To solve this problem in the sample-distributed setting, we reformulate the objective
function of CCA and further propose the distributed multiple CCA algorithm for better
convergence in the experiments.

The main contributions of the paper are summarized as follows:

• The first one-shot distributed algorithm is specially designed for the Generalized
Eigenvalue Problem (GEP) with communication efficiency.

• The efficient reformulated distributed multiple CCA algorithm is established for better
convergence under the distributed GEP framework and proven necessary in some
cases.

• The approximation error is bounded theoretically in relation to the eigenvalues
of the empirical data covariance and the number of local servers.

The remainder of the paper is organized as follows. Section 2 gives a general framework
of the distributed GEP algorithm in one-shot communication and its extensional applications.
In Section 3, we analyze the approximation error of the proposed algorithm. Section 4 puts
forward the distributed multiple CCA algorithm with the power method as one detailed
application. The performance of numerical experiments is shown in Section 5. The conclusion is
presented in Section 6. Based on our former conference paper, we provide thoughtful discussion
about our formulation, the whole process, and extensional applications of distributed GEP
in Section 2. We also complement the experiments both on synthetic and real-word datasets
to illustrate the effectiveness of our proposed methods in Section 5.

2. Distributed GEP Algorithm and Its Extensional Applications

In this section, the GEP is represented as a trace optimization subjecting to fixed
quadratic constraints. Then, a one-shot distributed GEP algorithm (DGEP) is proposed.
We are seeking the generalized eigenvectors of the symmetric empirical data covariance
in distributed settings with one-shot communication.

2.1. Problem Formulation

We consider a kind of distributed generalized eigenvalue problem, where the data
of the same d observations are provided from N local servers to their shared believable
central server. That is, the centered data are established as X = [X1, X2, . . . , XN ] ∈ Rd×num1

and Y = [Y1, Y2, . . . , YN ] ∈ Rd×num2 , where d is the feature dimension and num1 and
num2 are the number of data X and Y. Xi and Yi are i.i.d, respectively, for i ∈ {1, 2, . . . , N}.
Each local server prepares data matrices Ai ∈ Rd×d and Bi ∈ Rd×d according to the different
tasks of GEP from X and Y. The centered GEP is formulated as a maximum optimization
as below:

max
w∈Rd

w∗
(
∑N

i=1 Ai

)
w s.t. w∗

(
∑N

i=1 Bi

)
w = 1. (3)

It is equivalent to:
max
w∈Rd

w∗M0w s.t. w∗w = 1, (4)

where the covariance matrix M0 =
(

∑N
i=1 Bi

)− 1
2

∑N
i=1 Ai

(
∑N

i=1 Bi

)− 1
2 and Ai, Bi, M0 ∈

Rd×d are all symmetric. The solution to (4) is the ground truth of the centered GEP.
In our distributed setting of GEP, the difficulty lies in estimating the centered covari-

ance M0 with local data. Hence, based on the trace maximization method, we formulate
the central optimization problem in the central server as follows:

max
w∈Rd

w∗
(
∑N

i=1 Mi

)
w s.t. w∗w = 1, (5)

where Mi = (Bi)
− 1

2 Ai(Bi)
− 1

2 is the local covariance, calculated and stored locally.
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2.2. Distributed GEP in One-Shot Communication

Then, the general one-shot distributed GEP algorithm (DGEP in Algorithm 1) is shown
as below.

Algorithm 1 One-shot Distributed GEP algorithm (DGEP).

1: In the local servers, calculate local covariance matrix Mi in i-th local server and broad-
cast it to the central server.

2: In the central server, calculate M̂ = ∑N
i=1 Mi as the approximation of M0.

3: Computing the leading k eigenvectors Ŵ of the approximate matrix M̂.
4: Return Ŵ.

We focus on the distributed optimization of GEP in (5) with symmetric Mi ∈ Rd×d

for i ∈ {1, 2, . . . , N}. N local servers broadcast the data covariance Mi to the central server
in one-shot communication for efficiency. Learning the generalized eigenvector ŵ ∈ Rd

occurs in the central server. To be more specific, the whole process is depicted in Figure 1,
among which ’Local calculation’ denotes calculating the local covariance matrix, which is
different from the traditional one-shot method in Figure 2. When solving (5) in the central
server, SVD and the power method [30] can be carried out, among which the power method
is to find a dominant eigenvalue and a corresponding eigenvector and is summarized
in Algorithm 2.

Figure 1. The one-shot communication process of Algorithm 1.

Algorithm 2 The power method (PM) in the central server.

Input: Given the covariance matrix M ∈ Rd×d and the value of max_iter.
1: Initialize w0 ∈ Rd.
2: for t = 1 to max_iter do
3: Calculate wt = Mwt−1.
4: Calculate wt = wt/‖wt‖.
5: end for

Output: ŵ = wmax_iter.
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Figure 2. The classical one-shot communication process of distributed GEP.

2.3. Discussion

In some cases, e.g., [21], they consider that the centered data covariance M0 is divided
into local agents as M0 = [M1, M2, . . . , MN ] such that the distributed GEPs are reduced
to distributed SVDs. However, in our distributed setting, which is more concrete, we can
communicate the data covariance Ai and Bi and obtain the exact solution of the centered
GEP as depicted in Figure 2.

Furthermore, from a data privacy perspective, since data covariance pair (Ai, Bi)
may lose privacy for its simple symmetry, sending local covariance Mi = (Bi)

− 1
2 Ai(Bi)

− 1
2

to the central server is much safer and more efficient than sending Ai and Bi directly.
In addition, a dense Mi is regarded as compromising a mix of multi-view data, which

are hard to recover. However, there is a divergence between ∑i Mi and M0, and it is decided
by the data structure.

In this paper, we will further analyze the approximation error in this one-shot commu-
nication method in a distributed GEP.

Note that in the one-shot distributed system, it is assumed that node failure and
asynchronization are ignored. All the local servers have a similar scale of data to ensure
that synchronous communication will not result in a long delay in the whole system.

2.4. Extensional Applications of Distributed GEP

Many statistical tools in machine learning fields can be formulated as special instances
of GEP in (1) with the symmetric-definite matrix pair (A,B). We briefly give three instances be-
low. They all fit for the proposed Algorithm 1 when in the distributed framework:
• PCA (Principal Component Analysis): It is the most widely used statistical technique

for data analysis and dimensionality reduction. It involves the eigenvalue problem,
which is reduced from GEP with a symmetric A and B = I.

• FDA (Fisher’s Discriminant Analysis [31]): It is desired to maximize the between-class
variance SB and minimize the within-class variance SW . Therefore, the instances of ev-
ery class become close to one another, and the classes become far away from each other.
It is a direct instace of GEP with A = SB and B = SW .

• CCA (Canonical Correlation Analysis ): Given two random vectors X and Y, let
ΣXX and ΣYY be the covariance matrices of X and Y, respectively. ΣXY is the cross-
covariance matrix between X and Y. The canonical vectors wX and wY can be obtained

by solving GEP with A =

(
0 ΣXY

ΣXY 0

)
, B =

(
ΣXX 0

0 ΣYY

)
, w =

(
wX 0
0 wY

)
.
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• PLS (Partial Least Squares [32]): It is a common method for dimension reduction.

Derived from CCA with X and Y, it is also an instance of GEP with A =

(
0 ΣXY

ΣXY 0

)
,

B = I, w =

(
wX 0
0 wY

)
.

3. Approximation Error Analysis of Distributed GEP

In this section, we analyze the approximation error of DGEP in Algorithm 1, which
is defined as the distance D between the centered ground truth Wc and the estimator Ŵ.
Without loss of generality, the top k subspace distance, measured by the sine of the angle
θk, is analyzed. Thus,

‖Dk(Wc, Ŵ)‖ = sin(θk(Wc, Ŵ)),

where Wc, Ŵ ∈ Rd×k, norm ‖ · ‖ denotes `2 norm as default, and ‖Dk(·, ·)‖ denotes the top
k subspace distance. Our analysis is based on sin θ theorem in [33], which reveals how
much the invariant subspace will be affected if the covariance matrix is slightly perturbed.
We first define that the centered covariance before one-shot communication Σ1 = M0
and the approximation covariance in the center server Σ2 = ∑N

i=1 Mi are represented by
the detailed data matrix multiplication of Ai and Bi, respectively. The goal of Algorithm 1
is to learn a central orthonormal matrix Ŵ ∈ Rd×k to estimate Wc, which is the top k
eigenspace of Σ1 and also the ground truth. Our main result is in the following.

Theorem 1. Given matrices Σ1 ∈ Rd×d with eigenvalues σ1 ≥ · · · ≥ σd and Σ2 ∈ Rd×d

in the central server with eigenvalues σ̃1 ≥ · · · ≥ σ̃d. For a given dimension k, where k ≤ d, let
Wc = (w1, . . . , wk) ∈ Rd×k and Ŵ = (w̃1, . . . , w̃k) ∈ Rd×k have orthogonal columns satisfying
Σ1wj = σjwj and Σ2w̃j = σ̃jw̃j for j = 1, . . . , k. Assume ∆k = in f {‖σ̂− σ| : σ ∈ [σk, σ1], σ̂ ∈
[−∞, σ̂k+1] ∪ [σ̂0, ∞]}, where σ̂0 = −∞ and σ̂k+1 = ∞ and ∆k > 0. The approximation error is
upper-bounded by: ∥∥∥Dk

(
Wc, Ŵ

)∥∥∥ ≤ maxi ai
N3∆k maxj bj

+
N
∆k

max
k

ak
bk

, (6)

where ai, bi are the maximum spectral radii of Ai, Bi, respectively.

Proof of Theorem 1. From the sin θ theorem in [33], a direct conclusion is obtained as:∥∥∥Dk

(
Wc, Ŵ

)∥∥∥ =
∥∥∥sin θk

(
Wc, Ŵ

)∥∥∥ ≤ ‖Σ1 − Σ2‖
∆k

.

Considering Jensen’s Inequality for ‖Bi‖, we have:

(
∑N

i=1‖Bi‖
N

)− 1
2

≤ 1
N

N

∑
i=1
‖Bi‖−

1
2 ,

and only if ‖B1‖ = ‖B2‖ = · · · = ‖BN‖, the equality holds. That is,
(

∑N
i=1‖Bi‖

)− 1
2 ≤

N−
3
2 ∑N

i=1‖Bi‖−
1
2 . Then:
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‖Σ1 − Σ2‖ =
∥∥∥∥∥M0 −

N

∑
i=1

Mi

∥∥∥∥∥ =

∥∥∥∥∥∥
(

N

∑
i=1

Bi

)− 1
2 N

∑
i=1

Ai

(
N

∑
i=1

Bi

)− 1
2

−
N

∑
i=1

B−
1
2

i AiB
− 1

2
i

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

N

∑
i=1

Bi

)− 1
2 N

∑
i=1

Ai

(
N

∑
i=1

Bi

)− 1
2
∥∥∥∥∥∥+

∥∥∥∥∥ N

∑
i=1

B−
1
2

i AiB
− 1

2
i

∥∥∥∥∥
≤ N−3

N

∑
i=1
‖Bi‖−1

N

∑
i=1
‖Ai‖+

N

∑
i=1

(
‖Bi‖|−1‖Ai‖

)
≤ maxi ai

N3 maxj bj
+ N max

k

ak
bk

,

where ai, bi are the maximum spectral radii of Ai, Bi, respectively, for i = 1, . . . , N. Hence,
Theorem 1 is obtained.

The upper bound of the approximation error of Algorithm 1 is concerned with
the eigenvalues of the empirical data covariance, and the number of local servers.
This accounts for the divergence of data covariance in one-shot communication.
For the special case, such as distributed EP, Bi = I for any local server, bj = 1 for any
eigenvalue, and Σ1 = Σ2. When the number of local servers N → ∞ and the eigengap is
∆→ ∞, the right side of (6) approaches zero, satisfying the known conclusion.

4. Distributed Canonical Correlation Analysis and Its Multiple Formulation

In this section, we investigate distributed CCA, which is a special instance of dis-
tributed GEP. In the classical setting, the CCA finds the linear combinations of two sets
of random variables with maximal correlation. Furthermore, multiple CCA [34] is the cor-
nerstone of multi-view learning. However, if considering the original data from each view,
Algorithm 1 encounters the theoretical barrier of convergence in solving the distributed
CCA with the tool of the power method. So, we put forward a new algorithm based
on Algorithm 1 when using the power method in this section.

We first provide the mathematical formulation of CCA. Given d observations, denote
X = (x1, . . . , xd) ∈ Rn1×d, Y = (y1, . . . , yd) ∈ Rn2×d. The covariances ΣXY = E(XY∗) =
XY∗, ΣXX = E(XX∗) = XX∗ and ΣYY = E(YY∗) = YY∗. Without loss of generality, its
multiple version is formulated as below:

max
U,V

Trace(U∗XY∗V)

s.t. U∗XX∗U = Ik, U ∈ Rn1×k,
V∗YY∗V = Ik, V ∈ Rn2×k,

(7)

where Ik stands for identity matrix, and its number of columns is k, denoting the num-
ber of canonical components and normally k ≤ min{n1, n2}. When k = 1, it degrades
to the standard CCA. Recall from the formulation of CCA, we obtain:

max
W∈Rd×k

Trace(W∗AW) s.t. W∗BW = Ik, (8)

where A =

(
0 XY∗

YX∗ 0

)
, B =

(
XX∗ 0

0 YY∗

)
, W =

(
U 0
0 V

)
. This kind of self-adjoint

structure keeps the symmetry of A and B. However, according to Theorem 2 in [21],
there must be an eigengap of M = B−

1
2 AB−

1
2 ∈ Rd×d when using the power method.

Hence, using Algorithm 1 in distributed CCA may not only increase the approximation
error during communication but also result in a convergence barrier for no eigengap. We
will also illustrate this barrier in further numerical experiments.
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So, in this section, we reformulate CCA and put forward a one-shot distributed
multiple CCA algorithm with the power method, which solves the inherent structure defect
efficiently. The reformulated centered problem is shown as below:

max
W1,W2

Trace(W∗1 (XX∗)−
1
2 ∗XY∗(YY∗)−

1
2 W2)

s.t. W∗1 W1 = Ik, W∗2 W2 = Ik,
(9)

where X = [X1, X2, . . . , XN ] and Y = [Y1, Y2, . . . , YN ] are concatenations of original data

from N local servers. M0 = (XX∗)−
1
2 ∗XY∗(YY∗)−

1
2 is the asymmetric covariance of the cen-

tered problem. The distributed optimization problem is:

max
W1,W2

Trace

(
W∗1

(
N

∑
i=1

Mi

)
W2

)
s.t. W∗1 W1 = Ik, W∗2 W2 = Ik,

(10)

where the covariance Mi = (XiX∗i )
− 1

2 ∗XiY∗i (YiY∗i )
− 1

2 for CCA is also asymmetric,
and M̂ = ∑N

i=1 Mi is an approximation of M0 in the distributed setting. Then, we de-
rive the one-shot distributed algorithm for multiple CCA in the following.

Algorithm 3 shows the one-shot distributed multiple CCA algorithm which improves
the performance by breaking the self-adjoint symmetric GEP structure. The power itera-
tions in the central optimization are divided into two parts as computing the eigenspace
of M̂1 = ∑N

i=1 Mi M∗i and M̂2 = ∑N
i=1 M∗i Mi. The process can be viewed as seeking the left

and right singular vector of the approximated covariance M̂ at the same time. QR factor-
ization [30] is used to become the orthonormal approximated eigenspace. The analysis
of the approximated error of Algorithm 3 is similar as that in Section 3. The convergence
boils down to that of the power method in [30].

Algorithm 3 One-shot Distributed multiple CCA algorithm.

1: In the local servers, calculate local covariance matrix Mi in i-th local server and broad-
cast Mi M∗i and M∗i Mi, respectively, to the central server.

2: In the central server, calculate the leading k eigenvectors of M̂1 and M̂2 as Ŵ1 and Ŵ2,
respectively, by the power method in parallel.

3: Return Ŵ1 and Ŵ2.

5. Numerical Experiments

In this section, numerical experiments on synthetic and real data are carried out
to illustrate the effectiveness and accuracy of the proposed algorithms. In the GEP, Al-
gorithm 1, as the first distributed algorithm for the GEP, is compared with the centered
result. In the pursuit of the eigenvectors of the DGEP in the central server, SVD and
the power method (PM) are carried out. They are denoted as DGEP-SVD and DGEP-PM
in the following. In CCA, Algorithm 3 (denoted as DCCA-PM) and DGEP-PM are com-
pared with the centered results. We only pursue the generalized eigenvector corresponding
to the largest generalized eigenvalue for convenience in the maximum optimization of dis-
tributed GEP and distributed CCA, which is k = 1. All the experiments are performed
on MATLAB R2019a on a computer with 6 Core 2.20 GHz CPUs and 8GB RAM. The codes
are available in https://github.com/kelenlv/one-shot-DGEP (accessed on 1 May 2022).

5.1. DGEP on Synthetic Datasets

Considering the general settings of the GEP in (1), we generate a symmetric matrix
Ai ∈ Rd×d and a positive definite matrix Bi ∈ Rd×d randomly and independently, which
compromise data-mixed information in the i-th local server with i = 1, . . . , N. Then, we
first evaluate Algorithm 1 including DGEP-SVD and DGEP-PM in running time and error.

https://github.com/kelenlv/one-shot-DGEP
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The running time concludes communication time and optimization time for DGEP-PM and
the maximum iteration step of PM is set to be 10. The error is calculated as

Error = sin(subspace(Ŵ, Wc)) = ‖Ŵ −Wc(W∗c Ŵ)‖,

where Wc is the ground truth, and Ŵ is obtained in the central server. The performance
of DGEP in time and error is depicted in Figure 3 with d = 1000 and N varying from 2
to 100 in intervals of 2. As the number of local servers (N) increases, the running time
of DGEP goes up, and SVD as a solver in MATLAB is efficient if the complexity O(d3) is
acceptable. The errors of DGEP-PM and DGEP-SVD are similar and keep in a low level
as N varies.

Then, we investigate Algorithm 3 (DCCA-PM) and compare it to Algorithm 1 (DGEP-
PM). Considering the settings of mutiple CCA in (8), we generate the self-adjoint symmetric
Ai and Bi randomly and independently with i = 1, . . . , N. The other settings are in the same.
The performance in running time and error is depicted in Figure 4, with d = 1000 and N
varying from 2 to 100 in intervals of 2. The errors of DGEP-PM and DCCA-PM stay at a low
level as N varies, and DCCA-PM performs better. However, excluding the abnormal
experiment, the running time that DCCA-PM costs is eight times of that DGEP-PM costs
on average. That is, when using PM, DCCA-PM achieves higher accuracy but more running
time than DGEP-PM, which is a trade-off in real-world scenarios. It needs to be evaluated
by the performance on real-world data to validate whether it is worthwhile.
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to the number of local severs (N).
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Figure 4. Performance of DCCA-PM and DGEP-PM in running time (T/s) and error (E) with respect
to the number of local severs (N).

5.2. DGEP on Real Datasets

The technique of FDA [31], as an instance of a GEP, is used in the binary classification
of the GSE2187 dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2187
(accessed on 1 May 2005)), which is a large cRNA microarray dataset reflecting the drugs
and toxicants response of rats. Only two categories (toxicants and fibrates, named as C1
and C2, respectively, for short) are used in classification, and the missing values are filled
with mean values. The data are randomly divided into training data and testing data with
a ratio of 1:1. The detailed information is displayed in Table 1.

Table 1. GSE2187 data structures: number of data (num), data dimension (d).

Data Toxicants (C1) Fibrates (C2)

num 181 107
d 8656 8656

The number of local servers is set to be 5, and the maximum iteration steps of PM is
set to be 10. The binary classification accuracy from distributed data depends on the classi-
fication threshold of centered data, which is:

thres =
Wc × (numC1 ×mC1 − numC2 ×mC2)

numC1 + numC2

,

with the mean of C1 and C2 (mC1 and mC2). The classification accuracy is calculated with
data ∈ Rnum×d as:

accC1 =
∑

numC1
i=1 δ1(Ŵ × data′, thres)

numC1

, accC2 =
∑

numC2
i=1 δ2(Ŵ × data′, thres)

numC2

,

where δ1 and δ2 are the indicator functions. When the projected value is less than the mean
threshold value, δ1 equals 1 and 0 otherwise, and δ2 is exactly the opposite. The repeated
experiments are carried out 10 times and the classification accuracy in GSE2187 data is
reported in Table 2.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2187
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Table 2. Classification accuracy of GSE2187 data in FDA: training accuracy of Ci (accCi tr), testing
accuracy of Ci (accCi ts).

Method Accuracy Mean Accuracy

Centered by SVD

accC1 tr 1.0000 + 0.0000
1.0000 for train

accC2 tr 1.0000 + 0.0000

accC1 ts 0.9835 + 0.0250
0.9706 for test

accC2 ts 0.9576 + 0.0654

DGEP-SVD

accC1 tr 0.9600+0.0711
0.9271 for train

accC2 tr 0.8943 + 0.0895

accC1 ts 0.9407 + 0.0990
0.9000 for test

accC2 ts 0.8593 + 0.1052

DGEP-PM

accC1 tr 0.9578+0.0477
0.9326 for train

accC2 tr 0.9075 + 0.0625

accC1 ts 0.9505 + 0.0526
0.9123 for test

accC2 ts 0.8741 + 0.0745

The centered accuracy is regarded as the benchmark. Clearly, no algorithm can
beat the performance of the best centered estimator. However, the classification accuracy
of the proposed algorithm does not decrease much, even though there is the covariance
divergence in the one-shot communication. Generally, DGEP including DGEP-SVD and
DGEP-PM in the one-shot communication performs well in the distributed FDA application.

5.3. Distributed CCA on Real Datasets

In this case, we apply Algorithm 3 to a multi-classification problem where the feature
is denoted as a view X and the class as another view Y. Two real datasets from the gene
expression database [35] are considered as data-sensitive and are dispersed evenly for con-
venience in local servers. Each dataset is locally divided into training data and testing data
in terms of the same data dimension d. The details are explained below, and the statistics
can be found in Table 3:

• Lymphoma: 42 samples of diffuse large B-cell lymphoma, 9 observations of follicular
lymphoma, and 11 cases of chronic;

• SRBCT: the filtered dataset of 2308 gene expression profiles for 4 types of small round
blue cell tumors of childhood.

Table 3. Genedata structures: data dimension (d), number of data (num), number of training data
(trnum), number of testing data (tsnum), number of classes (K).

Type Data K d num trnum tsnum

Gene Data Lymphoma 3 4026 62 48 14
SRBCT 4 2308 63 48 15

The classification accuracy is defined as

acc = ∑num
i=1 δ(oli, pli)

num
,

where δ(oli, pli) is the indicator function. When the obtained label oli is equal to the pro-
vided label pli, it equals 1 and 0 otherwise. Considering the limited number of Gene data,
the maximum N is set to be 8. The experiments on two gene datasets are repeated 20 times
each, and the detailed mean accuracy is reported in Table 4. It reveals that the accuracy
decreases as the number of local servers N goes up. The divergence of covariance in the dis-
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tributed way influences the classification accuracy of Gene data, especially in SRBCT.
However, it is acceptable especially in multi-classification.

Table 4. Classification accuracy of Gene data: number of local servers (N), training and testing
accuracy of Algorithm 3 (acctr, accts).

Type
N 1 (Centered) 2 4 8

Lymphoma acctr 1.0000 ± 0.0000 0.9937 ± 0.0141 0.9875 ± 0.0224 0.9875±0.0224
accts 0.8429 ± 0.1251 0.8143 ± 0.0369 0.8286 ± 0.0499 0.8214 ± 0.0607

SRBCT acctr 1.0000 ± 0.0000 0.9826 ± 0.0425 0.8715 ± 0.0784 0.6076 ± 0.1600
accts 0.6733 ± 0.1195 0.6444 ± 0.1167 0.6000 ± 0.1333 0.4667 ± 0.2271

When N = 1, without the communication error, the results reveal that DGEP-PM,
the distributed CCA in GEP form without an eigengap, leads to a worse accuracy which
is no higher than 72% for training and 68% for testing in Lymphomia and no higher
than 41% for training and 36% for testing in SRBCT. The performance of Algorithm 3
in Table 4 is obviously higher. To illustrate the difference in detail, we further investigate
the convergence and the error of the two algorithms and show the result in Figure 5.
For Lymphoma data as an instance, we define convergence as the successive difference
of the objective function value, and Err as the error between the objective function value
of the proposed method and ground truth. The maximum iteration is set to be 10. Due
to no eigengap in using DGEP-PM in self-adjoint CCA, the convergence performance is
poor, even totally on the contrary in Figure 5. However, DCCA-PM converges fast, which
accounts for its better performance. In addition, it is validated that there has been progress
in effectiveness compared with DGEP-PM.
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Figure 5. The performance of DGEP-PM and DCCA-PM in distibuted CCA with respect to the number
of local servers N. (a) N = 1 (centered); (b) N = 2; (c) N = 4; (d) N = 8.
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6. Conclusions

The paper proposes a general distributed algorithm for a generalized eigenvalue
problem (GEP) in one-shot communication. For multi-view analysis in DGEPs such as
distributed CCA, the algorithm meets hard convergence when there are no eigengaps
in the approximated covariance matrix. The one-shot distributed multiple CCA algorithm
produced solves this problem. The theoretical analysis of the approximation error reveals
the divergence of data covariance in the distributed system and gives the upper bound
concerned with the eigenvalues of the data covariance and the number of local servers. The
quantities of numerical experiments demonstrate the effectiveness of proposed algorithms
in different applications.

As a one-shot method, our proposed algorithms amplify the computation efficiency
for communication efficiency. Furthermore, we are devoted to developing an advanced
distributed algorithm to obtain a more precise solution. It is believed that deep learning
has achieved great development in many applications, including in distributed learning
fields. How to combine our works and deep learning networks is the goal of our future
work.
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