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Abstract: In this present paper, the dynamic stiffness method (DSM) was formulated to investigate
the out-of-plane natural vibration of a thin orthotropic plate using the classical plate theory (CPT).
Hamilton’s principle was implemented to derive the governing differential equation of motion for
free vibration of the orthotropic plate for Levy-type boundary conditions. The Wittrick–Williams
(W–W) algorithm was used as a solution technique to compute the natural frequencies of a thin
orthotropic plate for different boundary conditions, aspect ratios, thickness ratios, and modulus ratios.
The obtained results are compared with the results by the finite element method using commercial
software (ANSYS and those available) in the published literature. The presented results by the
dynamic stiffness method can be used as a benchmark solution to compare the natural frequencies of
orthotropic plates.

Keywords: natural vibration; orthotropic plate; dynamic stiffness method; Wittrick–Williams algorithm

1. Introduction

A rectangular orthotropic plate has many applications in designing different compo-
nents in the engineering field, such as aerospace, mechanical, and civil. The orthotropic
response of a given material is due to the existence of its constitutive relations. Various
composite plates have been modeled analytically as orthotropic plates in recent years.
So, one should have knowledge of the free vibration of such structures for efficient dy-
namic structural analyses. Starting from the earlier works on natural vibration of the
plate by Rayleigh [1] and Ritz [2], the past few decades have witnessed different numeri-
cal and analytical methods, such as the Kantorovich method, the superposition method,
the Rayleigh–Ritz method, and the iterative reduction method, for the investigation of
natural vibrations of rectangular orthotropic plates [3–20]. The usually adopted finite ele-
ment method (FEM) has also proved its popularity in the dynamic analysis of orthotropic
rectangular plates [21–23]. However, the main drawback of traditional FEM and other
approximate methods is the discretization technique of the given structure, which depends
on the number of elements taken. The dynamic stiffness method (DSM) provides accurate
results independent of the number of elements implemented in the investigation. The DSM
has proven its efficiency in the dynamic analysis of bars, beams, rings, and shells [24–31],
and the W–W algorithm [24–28] is implemented as a solution technique to the final dy-
namic stiffness matrix to find out the natural vibration frequencies of beams. Wittrick and
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Williams [32] are probably the earliest researchers who developed DSM for isotropic simply
supported plates, applying CPT. Boscolo and Banerjee extended the DSM and applied
the first-order deformation theory (FSDT) for isotropic [33] and composite plates [34,35].
Fazzolari et al. [36] further formulated the DSM for rectangular anisotropic plates using
the higher shear deformation theory (HSDT) with the W–W algorithm. Further, Boscolo and
Banerjee [37] developed DSM by applying the sophisticated layer-wise first-order theory to
investigate laminated composite plates. Continuing this work, Banerjee et al. [38] developed an
exact dynamic stiffness (DS) matrix for an isotropic rectangular plate. Thinh et al. [39] used
DSM for free vibration analyses of thick composite plates resting on non-homogeneous
foundations. Recently, Danilovic et al. developed DSM for an isotropic rectangular plate
with arbitrary boundary conditions undergoing in-plane free vibration [40], which was fur-
ther exploited for out-of-plane free vibration of the rectangular Mindlin plate element [41]
and later on for isotropic plate assemblies [42]. Ghorbel et al. formulated DSM for both
out-of-plane [43] and in-plane [44] free vibrations of the rectangular orthotropic plate,
taking advantage of the symmetry and Gorman-type decomposition of the free boundary
conditions. Kumar et al. [45] developed DSM for analyzing the free vibration response of
the functionally-graded material plate using the classical plate theory with the physical
neutral surface concept. Chauhan et al. [46] used the classical plate theory to formulate a
dynamic stiffness matrix to compute the natural frequencies of the rectangular plate with
the considered Levy-type boundary conditions. Moreover, Liu and Banerjee developed an
exact spectral–dynamic stiffness method (S–DSM), which combines the spectral method
with classical DSM for free vibration analyses of orthotropic composite plates and their
assemblies [47,48] and, subsequently, for isotropic rectangular plates [49] with arbitrary
boundary conditions.

This work reports the out-of-plane free vibration response of a thin rectangular or-
thotropic plate for Levy-type boundary conditions based on CPT using the exact DSM
method with the Wittrick–Williams algorithm. The explicit terms of the DS matrix and
natural frequencies of the orthotropic plate by the Wittrick–Williams algorithm for different
boundary conditions, aspect ratios, thickness ratios, and modulus ratios are reported and
compared with the available published literature and finite element method. The remaining
portion of the present work can be described as follows: After the introduction, Section 2
explains the main contributions of the present study. In Section 3, the mathematical formu-
lation of the orthotropic plate with material property is reported. Here, the fundamental
principle of mathematical modeling of DSM and the motion governing equation of the
orthotropic plate, formulated using Hamilton’s principle, are highlighted. Along with this,
a dynamic stiffness matrix was generated, and the W–W algorithm was used to investigate
the natural frequencies of the orthotropic plate. Section 4 described the natural frequency
results highlighting the effects of geometric parameters on the natural frequency of the
orthotropic plate. Section 5 presents the conclusions of the present study.

2. Contributions and Relevant Scope of Present Work

In the present study, the natural vibration response in the transverse direction of
the orthotropic plate was investigated. The classical plate theory explains the plate dis-
placement component or kinematic variables. Hence, the effect of shear deformation of
the plate can be neglected, and the present work is mainly focused on thin orthotropic
plates. The Levy-type solution was applied where two opposite sides of the plate were
simply supported, and the other two sides had arbitrary conditions (free, clamped, and
simply supported). In the present study’s relevant scopes and limitations, the paper’s main
contributions can be explained as follows:

1. The DSM was formulated to investigate the natural vibration response of thin or-
thotropic plates.

2. The W–W algorithm was applied to compute the natural frequency of the orthotropic plate.
3. The DSM results were compared with the published literature and the finite element method.
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4. A new set of DSM results is reported for different aspect ratios, thickness ratios, and
modulus ratios, which may be used as benchmark solutions for comparison.

3. Mathematical Formulation
3.1. Description of Geometrical Property

Figure 1 shows the coordinate system of a thin orthotropic plate where the plate length
is L, with b, and thickness is h. The Levy-type solution is applied where two opposite edges
are simply supported along the y-axis (i.e., along the edges y = 0, and y = L), while the
other two edges may be free (F), simply supported (S), or clamped (C), as represented in
Figure 2. The material orthotropic axes of the plate are parallel in the directions of x and y.
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Applying the CPT assumption, the transverse displacements of an arbitrary point of
the plate are expressed by Equation (1).

u =


u(x, y, z)
v(x, y, z)
w(x, y, z)
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u =


−z ∂w0

∂x

−z ∂w0

∂y

w0(x, y)

 (1)

where the displacement components of the plate are represented by u, v, w in x, y, z
directions, respectively, and ∂w0

∂x = ∅y, ∂w0

∂y = ∅x represents the rotational displacements

of the x and y axes at the plate middle surface, respectively. w0 represents the thickness
(transverse) displacement in the z-direction.

In the case of orthotropic plates, the orientation of the constitutive material is such that
orthotropic axes 1 and 2 are equal to axes x and y, respectively, and the material constants,
Qij are given by Equation (2).

{
Qij
}
=



Q11 = E1
(1−ϑ12ϑ21)

Q22 = E2
(1−ϑ12ϑ21)

Q12 = ϑ12E1
(1−ϑ12ϑ21)

Q66 = G12


(2)

where E1, E2 are Young’s moduli, along with the orthotropic directions 1 and 2, respectively;
ϑ12, ϑ21 are major and minor Poisson’s ratios, and G12 is the shear modulus [43].

3.2. Equations of Motion

The well-known Hamilton’s principle is used to derive the governing differential
equation for the natural vibration of the orthotropic plate based upon CPT as given by
Equation (3).

Dx
∂4w0

∂x4 + Dxy
∂4w0

∂x2∂y2 + Dy
∂4w0

∂y4 = ρh
∂2w0

∂t2 (3)

where the mass density and thickness of the orthotropic plate are represented by ρ and h,
respectively.

Dx, Dy, and Dxy are flexural rigidities, which are given by Equation (4).

Dx = − h3

12Q11

Dxy = − h3

6 Q12 − 4 h3

12Q66

Dy = − h3

12Q22

(4)

3.3. Boundary Conditions

The natural boundary conditions (BCs) are obtained by applying Hamilton’s principle,
given by Equation (5).

Vx = Dx
∂3w0

∂x3 +
(

Dxy
2 −

h3

6 Q66

)
∂3w0

∂x∂y2

Mxx = Dx
∂2w0

∂x2 − h3

12 Q12
∂2w0

∂y2

(5)

where Vx, Mxx indicate the shear force and bending moments of the plate.

4. Formulation of Dynamic Stiffness (DS) Matrix with Levy Solution

The generalized differential Equation (3) is solved by applying force and displacement
boundary conditions to develop the DS matrix. A Levy solution is implemented to solve
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Equation (3), and to satisfy the BCs given by Equation (5), it is sought in the given form as
presented in Equation (6) [33].

w0(x, y, t) =
∞

∑
m=1

wm(x)eiωt sin(αmy) with αm =
mπ

L
(m = 1, 2, . . . . . . . . . ∞) (6)

where ω represents the unknown frequency.
A generalized fourth-order ordinary differential equation is determined by substitut-

ing Equation (6) into Equation (3); it can be expressed as

Dx
d4wm

dx4 − α2
mDxy

d2wm

dx2 +
(

α4
mDy + ρhω2

)
wm = 0 (7)

The developed Equation (7) produces the standard four roots; based on its nature,
there are only two feasible solutions obtained and given by cases 1 and 2.

Case 1. α2
m ≥

√
α4

m

(
D2

xy − 4DxDy

)
− 4Dxρhω2

In the above case, all roots are real (r1m ,−r1m , r2m ,−r2m ) and can be expressed as

r1m =

√
α2

mDxy+
√

α4
m(D2

xy−4Dx Dy)−4Dxρhω2

2Dx

r2m =

√
α2

mDxy−
√

α4
m(D2

xy−4Dx Dy)−4Dxρhω2

2Dx

r1m =

√
α2

mDxy+
√

α4
m(D2

xy−4Dx Dy)−4Dxρhω2

2Dx

r2m =

√
α2

mDxy−
√

α4
m(D2

xy−4Dx Dy)−4Dxρhω2

2Dx

The solution is given by Equation (8).

wm(x) = Amcos h(r1mx) + Bmsin h(r1mx) + Cmcos h(r2mx) + Dmsin h(r2mx) (8)

where Am, Bm, Cm, and Dm are constants.

Case 2. α2
m ≤

√
α4

m

(
D2

xy − 4DxDy

)
− 4Dxρhω2

In the above case are two real roots and two imaginary roots (r1m ,−r1m , ir2m ,−ir2m ),
and can be expressed as

r1m =

√
α2

mDxy+
√

α4
m(D2

xy−4Dx Dy)−4Dxρhω2

2Dx

r2m =

√
−α2

mDxy+
√

α4
m(D2

xy−4Dx Dy)−4Dxρhω2

2Dx

The solution is given by Equation (9).

wm(x) = Am cos h(r1m x) + Bm sin h(r1m x) + Cm cos(r2m x) + Am cos(r2m x) (9)

For case 1, the formulation of the DS matrix is explained below. A similar pattern is
implemented for case 2, but is not explained here for brevity.

By applying Equations (6) and (8), the displacement (w0), bending rotation (∅y), shear
force (Vx), and moment (Mxx) are determined and can be given by Equations (10)–(12).

φym(x, y) = φym(x) sin(αmy)

=
−∂wm(x)

∂x
sin(αmy)
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⇒ φym(x, y) = −[Amr1m sin h(r1mx) + Bmr1m cos h(r1mx) + Cmr2m sin h(r2mx)

+Dmr2m cos h(r2mx)] sin(αmy) = −∂wm(x)
∂x sin(αmy)

(10)

Vxm(x, y) = Vxm(x) sin(αmy)

=
[

Dx
∂3w0

∂x3 +
(

Dxy
2 −

h3

6 Q66

)
∂3w0

∂x∂y2

]
sin(αmy)

⇒ Vxm(x, y) = [Amsin h(r1mx)
(

Dxr3
1m − Hr1mα2

m
)
+ Bmcos h(r1mx)(Dxr3

1m − Hr1mα2
m

+Cmsin h(r2mx)
(

Dxr3
2m − Hr2mα2

m
)

+Dmcos h(r2mx)
(

Dxr3
2m − Hr2mα2

m
)
] sin(αmy)

(11)

where H =
(

Dxy
2 −

h3

6 Q66

)
.

Mxxm(x, y) = Mxxm(x) sin(αmy)

=
(

Dx
∂2w0

∂x2 − h3

12 Q12
∂2w0

∂y2

)
sin(αmy)

⇒ Mxxm(x, y) = [Amcos h(r1mx)
(

Dxr2
1m

+ Iα2
m

)
+ Bmsin h(r1mx)

(
Dxr2

1m + Iα2
m
)
+

Cmcos h(r2mx)
(

Dxr2
2m + Iα2

m
)
+ Dmsin h(r2mx)

(
Dxr2

2m + Iα2
m
)
] sin(αmy)

(12)

where I =
∫ h/2
−h/2 ρdz.

The BCs for the Levy-type plate are represented in Figure 3.
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The BCs for displacements are:

x = 0, wm = w1; ∅ym = ∅y1

x = b, wm = w2; ∅ym = ∅y2
(13)

The BCs for the forces are:

x = 0, Vxm = −V1; Mxxm = −M1

x = b, Vxm = V2; Mxxm = M2
(14)
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The displacement BCs in Equation (13) are substituting into Equations (8) and (10);
the following equations can be obtained as:

w1 = Am + 0Bm + Cm + 0Dm
∅y1 = 0Am − r1mBm + 0Cm − r2mDm
w1 = Ch1 Am + Sh1Bm + Ch2Cm + Sh2Dm
∅y2 = (−r1mSh1)Am − (r1mCh1)Bm − (r2mSh2)Cm − (r2mCh2)Dm

where
Ch1 = cos h(r1mb), Ch2 = cos h(r2mb)
Sh1 = sin h(r1mb), Sh2 = sin h(r2mb)

This expression can be rewritten in the matrix form and expressed by Equation (15).
w1
∅1
w2
∅2

 =


1 0 1 0
0 −r1m 0 r2m

Ch1 Sh1 Ch2 Sh2
−r1mSh1 −r1mCh1 −r2mSh2 −r2mCh2




Am
Bm
Cm
Dm

 (15)

i.e.,
[δ] = [A]{C} (16)

Similarly, the force BCs are applied; substituting Equation (14) into Equations (11) and
(12), the following matrix relationship can be developed and expressed by Equation (17).

V1
M1
V2
M2

 =


0 R1 0 R2
L1 0 L2 0

−R1Sh1 −R1Ch1 −R2Sh2 −R1Ch2
−L1Ch1 −L1Sh1 −L2Ch2 −L2Sh2




Am
Bm
Cm
Dm

. (17)

i.e.,
[F] = [R]{C} (18)

where
Ri = Dxr3

im − Hrimα2
m, Li = −Dxr3

im − Iα2
m

with i = 1,2.
By excluding the constant vector value of C, the following relationship can be formed

as
[F] = [R]{δ} (19)

where
[K] = [R][A]−1 (20)

Thus, a square 4 × 4 symmetric DS matrix from Equation (20) is developed, including
independent terms (Svv, Svm, Smm, Fvv, Fvm, Fmm). Therefore, the generated DS matrix of
the single plate element can be expressed as

[K] =


Svv Svm Fvv Fvm
Svm Smm −Fvm Fmm
Fvv −Fvm Svv −Svm
Fvm Fmm −Svm Smm

 (21)

The mathematical expressions of Equation (21) are explained in Appendix A.

4.1. Dynamic Stiffness (DS) Matrix Assembly Procedure with Boundary Conditions

The dynamic stiffness matrix given by Equation (21) was developed for a plate element.
By obtaining the natural frequencies of a given orthotropic plate assembly, we considered
four elements of the given plate geometry. Each element of the plate was connected through
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nodal lines. Since there were five nodal lines and the degree of freedom was two per
element, a 10× 10 global master stiffness matrix was formulated. The assembly procedure is
similar to the finite element method, schematically shown in Figure 4. Boundary conditions
can be applied the same way as we applied in the finite element method. The penalty
method was applied as boundary conditions to suppress a particular degree of freedom.
In this method, a considerable value of stiffness is added to the appropriate term on the
leading diagonal of the dynamic stiffness matrix. The procedure for applying the boundary
conditions is summarized as follows:

1. Displacement (Wi) is penalized for simply supported (S) boundary conditions.
2. Displacement (Wi) and rotation (φi) are penalized for clamped (C) boundary conditions.
3. No penalty is implemented for the free (F) boundary condition.

where i represents the suppressed node.
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4.2. Application of the Wittrick and Williams (W–W) Algorithm

One way of determining the natural frequencies is by using the zeros of the global dynamic
stiffness matrix of the structure under study. However, this method has its limitations due to the
transcendental behavior of the DS elements, which makes the plot of the frequency determinant
tedious. Moreover, sometimes this may lead to missing the coincident frequencies. So, to avoid
these difficulties, the Wittrick–Williams algorithm [33,50] was used, which ensured that no
natural frequencies were missed. The procedure to follow the W–W algorithm can be
represented in a flow chart, shown in Figure 5.
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5. Results and Discussions

This section presents the non-dimensional fundamental frequencies of an orthotropic
rectangular plate with Levy-type BCs, i.e., two simply supported opposite edges and the
other two edges having arbitrary boundary conditions. To simplify the problem, a two-
letter notation was used to describe the boundary conditions of the remaining edges, as
shown in Figure 2. For example, SC signifies that one edge is simply supported (S) and the
other is clamped (C). The results obtained by DSM were compared with published results
and the FEM using ANSYS. A detailed study and discussion were conducted to analyze the
effects of the boundary conditions and the variations of the modulus ratio, aspect ratio, and
thickness ratio on the fundamental natural frequency of an orthotropic plate. The following
material properties were used for analysis [51]:

E1/E2 is varied from 3 to 50, G12/E2 = G13/E2 =0.5, G23/E2 = 0.2 ϑ12 = 0.25. (22)
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The non-dimensional fundamental natural frequency is calculated as [52]:

v = ω
b2

h

√
ρ

E2
(23)

5.1. Comparative Study

A program in MATLAB was constructed to compute the fundamental natural fre-
quencies of the plate. The natural frequencies obtained by DSM were compared against
the results reported by Reddy and Phan [52] using CPT and with those reported by Thai
and Kim [15] using the variable refined plate theory (RPT), as shown in Table 1; errors
incurred by DSM when compared with Ref. [15] are reported in the brackets. The natural
frequency changes for different boundary conditions (due to a change in stiffness) were
noticed in Table 1. The maximum value of natural frequencies is reported for the CC
boundary condition; the minimum value was obtained for the FF boundary condition. In
the CC boundary condition, more constraints were introduced at the edges of the plate,
which increased the stiffness of the plate, resulting in a higher natural frequency. On the
other hand, in the FF boundary condition, no constraint was applied at the edges of the
plate, which decreased the stiffness of the plate, and lowered the natural frequency, as
shown in Table 1.

Table 1. Comparison of fundamental frequency parameters v = ω b2

h

√
ρ
E2

of the Levy-type or-
thotropic plate (b/h = 100).

b/L E1/E2 Method
Boundary Conditions

CC SC SS FC FS FF

0.5 10 Ref [52] 20.6543 14.3450 9.3421 3.5614 1.3190 0.7124
Ref [15] 20.5603 14.3137 9.3331 3.5600 1.3190 0.7123

DSM 20.5857 14.3116 9.3209 3.5154 1.3188 0.7123
FEM 20.6766 14.3565 9.3455 3.5558 1.3186 0.7141

Error (%) (−0.1234) (0.0144) (0.1309) (1.2677) (0.0152) (0.0011)
25 Ref [52] 32.4390 22.4259 14.4578 5.3051 1.3193 0.7123

Ref [15] 32.0795 22.3069 14.4245 5.3003 1.3192 0.7122
DSM 32.4229 22.4148 14.4507 5.3042 1.3191 0.7122
FEM 32.2347 22.3539 14.4430 5.2925 1.3189 0.7141

Error (%) (−1.0590) (−0.4813) (−0.1815) (−0.0735) (0.0076) (0.0000)
40 Ref [52] 40.9633 28.2855 18.1876 6.6030 1.3194 0.7123

Ref [15] 40.2478 28.0480 18.1215 6.5937 1.3193 0.7122
DSM 40.9620 28.2846 18.1870 6.6010 1.3190 0.7122
FEM 40.4100 28.0814 18.1426 6.5826 1.3189 0.7141

Error (%) (−1.7436) (−0.8366) (−0.3603) (−0.1106) (0.0227) (0.0000)

1 10 Ref [52] 21.2889 15.2042 10.4963 5.0586 3.6114 2.8503
Ref [15] 21.2078 15.1747 10.4863 5.0564 3.6105 2.8496

DSM 21.2405 15.1709 10.4750 5.0144 3.6112 2.8501
FEM 21.3090 15.2098 10.4949 5.0538 3.6125 2.8569

Error (%) (−0.1539) (0.0248) (0.1080) (0.8376) (−0.0194) (−0.0175)
25 Ref [52] 32.8464 22.9847 15.2278 6.4146 3.6118 2.8493

Ref [15] 32.5515 22.8835 15.1972 6.4100 3.6110 2.8486
DSM 32.8303 22.9736 15.2207 6.4014 3.6115 2.8490
FEM 32.6351 22.9073 15.2089 6.4025 3.6128 2.8558

Error (%) (−0.8491) (−0.3921) (−0.1544) (0.1343) (−0.0138) (−0.0140)
40 Ref [52] 41.2866 28.7305 18.8052 7.5253 3.6121 2.8492

Ref [15] 40.7062 28.5337 18.7477 7.5178 3.6112 2.8485
DSM 41.2853 28.7296 18.8046 7.5045 3.6120 2.8491
FEM 40.7277 28.5213 18.7566 7.5051 3.6130 2.8557

Error (%) (−1.4027) (−0.6818) (−0.3028) (0.1772) (−0.0221) (−0.0211)
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Table 1. Cont.

b/L E1/E2 Method
Boundary Conditions

CC SC SS FC FS FF

2 10 Ref [52] 25.5184 20.5941 17.1364 12.9377 12.2379 11.4094
Ref [15] 25.4427 20.5543 17.1129 12.9238 12.2259 11.3981

DSM 25.4651 20.5536 17.1046 12.9145 12.2298 11.3998
FEM 25.4958 20.5658 17.1086 12.9324 12.2395 11.4254

Error (%) (−0.0879) (0.0032) (0.0483) (0.0720) (−0.0319) (−0.0149)
25 Ref [52] 35.7303 26.8537 20.3682 13.5562 12.2305 11.3993

Ref [15] 35.5237 26.7659 20.3288 13.5404 12.2186 11.3880
DSM 35.7135 26.8417 20.3596 13.5504 12.2301 11.3895
FEM 35.4925 26.7502 20.3265 13.5433 12.2319 11.4155

Error (%) (−0.5316) (−0.2822) (−0.1514) (−0.0738) (−0.0940) (−0.0132)
40 Ref [52] 43.6154 31.9099 23.1622 14.1271 12.2301 11.3977

Ref [15] 43.2415 31.7630 23.1043 14.1093 12.2182 11.3864
DSM 43.6141 31.9090 23.1616 14.1270 12.2298 11.3944
FEM 43.0347 31.6809 23.0942 14.1072 12.2312 11.4140

Error (%) (−0.8543) (−0.4576) (−0.2473) (−0.1253) (−0.0949) (−0.0702)

It is observed from Table 1 that the maximum error is −1.7436% for the CC boundary
condition at b/L = 0.5 and E1/E2 = 40, whereas the minimum error encountered is 0.00% at
b/L = 0.5 and E1/E2 = 25 for the FF boundary condition. It can be seen from Table 1 that
most of the errors lie within 2%. It is observed that the DSM results of a thin orthotropic
plate in Table 1 are in excellent agreement with the published literature and the FEM results.

5.2. Parameter Studies

To study the effects of different boundary conditions, variations of thickness ratio,
modulus ratio, and aspect ratio on the non-dimensional fundamental frequencies of thin
orthotropic plates, parametric studies were conducted. The DSM results are also compared
with the FEM obtained by ANSYS. For the modeling of the plate, shell element 181 was
used in ANSYS. To test the accuracy of FEM, the non-dimensional fundamental frequencies
were obtained by DSM based on CPT for a simply supported Levy-type orthotropic plate
(b/L = 1, b/h = 20) at different modulus ratios, compared to the values obtained by FEM
with different mesh sizes, as shown in Table 2. A very good convergence between the FEM
and DSM results can be observed. The final choice is a mesh with 20 × 20 plate elements,
which is a good compromise between the need for accuracy and limiting the computing
time. In Tables 3–8, the DSM results are compared against the published results reported
by Mukhtar [53] using the differential transform method (DTM) and Taylor collocation
method (TCM), and with those reported by authors [15] for different Young’s modulus
ratios (E1/E2), aspect ratios (b/L), and thickness ratios (b/h). It could be observed from
Tables 3–8 that the natural frequencies, in general, decrease with an increase in Young’s
modulus, aspect ratio, and thickness ratio for the orthotropic plate. It is observed in
Tables 3–7 that with boundary conditions changing from SC to SF, the natural frequencies
increase, with the increase in the modulus ratio (E1/E2) from 3 to 50 because of an increase
in the stiffness of the plate. Compared with Ref. [15], the relative errors of DSM are reported
in brackets in Tables 3–8.
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Table 2. Obtained results for the test accuracy of the finite element mesh.

E1/E2

3 10 20 30 40 50

DSM 7.1504 10.2475 13.4417 15.7097 17.4294 19.0676
20 × 20 FEM 7.0938 10.1434 13.1326 15.3657 17.1616 18.6632
40 × 40 FEM 7.0610 10.1132 13.1070 15.3336 17.1285 18.6298
80 × 80 FEM 7.0507 10.1040 13.0932 15.3250 17.1192 18.6203

100 × 100 FEM 7.0494 10.1030 13.0918 15.3239 17.1179 18.6188

Table 3. Comparison of the fundamental frequency parameters
(

v = ω b2

h

√
ρ
E2

)
of the orthotropic

plate with the SC boundary conditions.

b/L b/h Method E1/E2

3 10 20 30 40 50

0.5 20 RPT [15] 8.0410 13.6063 18.2286 21.3634 23.7191 25.5851
DTM [53] 8.0500 - 18.2250 21.3750 23.7500 25.7900
TCM [53] 8.0418 - 18.2310 21.3647 23.7211 25.5865

DSM 8.0368 13.5844 18.1881 21.3584 23.7235 25.2657
FEM 8.0196 13.4668 17.8312 20.6852 21.7298 21.7850

Error (%) 0.0523 0.1609 0.2227 0.0234 −0.0184 1.2642
50 RPT 15] 8.1690 14.2179 19.7562 23.9265 27.3668 30.3311

DTM [53] 8.1750 - 19.9270 23.9440 27.4445 30.4350
TCM [53] 8.1692 - 19.7581 23.9296 27.3706 30.3356

DSM 8.1648 14.2078 19.7124 23.9210 27.3718 30.3117
FEM 8.1883 14.2348 19.7344 23.8543 27.2119 30.0908

Error (%) 0.0514 0.0711 0.2222 0.0232 −0.0184 0.0639

1 20 RPT [15] 9.4219 14.2277 19.0510 22.2738 24.7632 26.7775
DTM [53] 9.3740 - 19.1240 22.3250 24.8120 26.9144
TCM [53] 9.4227 - 18.3073 22.2747 24.7638 26.7789

DSM 9.4305 14.2204 19.3911 22.2704 24.7508 26.6002
FEM 9.3187 15.0824 18.3699 21.0717 23.2367 25.3476

Error (%) −0.0912 0.0513 −1.7539 0.0153 0.0501 0.6665
50 RPT [15] 9.5898 14.4921 20.4197 24.5288 27.9597 30.9416

DTM [53] 9.4265 - 20.5705 24.5450 27.9880 30.8850
TCM [53] 9.5900 - 20.4210 24.5305 27.9616 30.9441

DSM 9.5986 14.5044 20.4134 24.5251 27.9457 30.7368
FEM 9.5888 15.0722 20.3359 24.3373 27.6373 30.4720

Error (%) −0.0919 −0.0848 0.0310 0.0149 0.0500 0.6664

2 20 RPT [15] 16.3187 19.5797 23.2516 26.1972 28.6627 30.7812
DTM [53] 16.3940 - 23.3000 26.2455 28.7151 30.8502
TCM [53] 16.3198 - 23.2521 26.1978 28.6630 30.7814

DSM 16.3173 19.5944 23.2510 26.1632 28.6581 30.7657
FEM 16.2784 19.5250 23.1165 26.7783 28.1530 30.4003

50 Error (%) 0.0086 −0.0750 0.0026 0.1300 0.0161 0.0504
RPT [15] 16.8218 20.4196 24.6437 28.1975 31.3099 34.1026
DTM [53] 16.8825 - 24.6202 28.2062 31.3150 34.1000
TCM [53] 16.8221 - 24.6442 28.1982 31.3105 34.1033

DSM 16.8204 20.4214 24.6431 28.1609 31.3050 34.0855
FEM 16.7497 20.339 24.462 27.8501 30.7535 33.3047

Error (%) 0.0084 −0.0088 0.0024 0.1298 0.0158 0.0502



Appl. Sci. 2022, 12, 5733 13 of 21

Table 4. Comparison of the fundamental frequency parameters
(

v = ω b2

h

√
ρ
E2

)
of the orthotropic

plate with the SS boundary conditions.

b/L b/h Method E1/E2

3 10 20 30 40 50

0.5 20 RPT [15] 5.4685 9.1141 12.4009 14.7974 16.7105 18.3073
DTM [53] 5.4774 - 12.4005 14.7975 16.7100 18.3070
TCM [53] 5.4685 - 12.4009 14.7974 16.7105 18.3073

DSM 5.4996 9.1045 12.4112 14.9467 16.6942 18.3017
FEM 5.4419 9.0998 12.3710 14.7391 16.6188 18.1777

Error (%) −0.5655 0.1054 −0.0830 −0.9989 0.0976 0.0306
50 RPT [15] 5.5126 9.3044 12.8804 15.6246 17.9239 19.9333

DTM [53] 5.5000 - 12.9060 15.6250 17.9240 19.9300
TCM [53] 5.5126 - 12.8804 15.6247 17.9239 19.9333

DSM 5.4609 9.3130 12.9564 15.7823 17.9064 19.9273
FEM 5.5125 9.3014 12.8910 15.5475 17.9278 19.9310

Error (%) 0.9476 −0.0923 −0.5867 −0.9992 0.0975 0.0301

1 20 RPT [15] 7.2194 10.2349 13.2676 15.5845 17.4839 19.1002
DTM [53] 7.2200 - 13.2500 15.5840 17.4835 19.1000
TCM [53] 7.2194 - 13.2676 15.5846 17.4839 19.1002

DSM 7.1504 10.2475 13.4417 15.7097 17.4294 19.0676
FEM 7.0938 10.1434 13.1326 15.3657 17.1616 18.6632

Error (%) 0.9650 −0.1230 −1.2952 −0.7970 0.3127 0.1710
50 RPT [15] 7.3012 10.4530 13.7360 16.3474 18.5726 20.5377

DTM [53] 7.3000 - 13.7600 16.3772 18.6072 20.5765
TCM [53] 7.3012 - 13.7360 16.3474 18.5726 20.5377

DSM 7.2312 10.4555 13.7963 16.4788 18.5149 20.5027
FEM 7.2778 10.4426 13.7230 16.3228 18.5285 20.4713

Error (%) 0.9686 −0.0239 −0.4370 −0.7972 0.3119 0.1705

2 20 RPT [15] 14.9772 16.5030 18.4742 20.2036 21.7468 23.1427
DTM [53] 14.9795 - 18.4740 20.2036 21.7469 23.1428
TCM [53] 14.9773 - 18.4742 20.2036 21.7468 23.1427

DSM 14.7602 16.5247 18.5482 20.3326 21.6428 23.0351
FEM 14.6185 16.2143 18.1645 19.7863 21.1685 22.3638

Error (%) 1.4702 −0.1313 −0.3990 −0.6344 0.4805 0.4671
50 RPT [15] 15.3796 17.0294 19.1992 21.1436 22.9151 24.5504

DTM [53] 15.3502 - 19.2156 21.1663 22.9120 24.5480
TCM [53] 15.3796 - 19.1992 21.1436 22.9151 24.5504

DSM 15.2813 17.0145 19.2761 21.2786 22.8056 24.4363
FEM 15.2894 16.9572 19.1294 21.0565 22.7983 24.3920

Error (%) 0.6430 0.0876 −0.3989 −0.6347 0.4803 0.4670

Table 5. Comparison of the fundamental frequency parameters
(

v = ω b2

h

√
ρ
E2

)
of the orthotropic

plate with the SF boundary conditions.

b/L b/h Method E1/E2

3 10 20 30 40 50

0.5 20 RPT [15] 1.3160 1.3163 1.3165 1.3166 1.3166 1.3167
DTM [53] 1.3164 - 1.3165 1.3166 1.3168 1.3169
TCM [53] 1.3161 - 1.3165 1.3166 1.3167 1.3167

DSM 1.3162 1.3162 1.3162 1.3164 1.3164 1.3165
FEM 1.2903 1.2903 1.2906 1.2906 1.2906 1.2906

Error (%) −0.0152 0.0076 0.0228 0.0152 0.0152 0.0152
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Table 5. Cont.

b/L b/h Method E1/E2

3 10 20 30 40 50

50 RPT [15] 1.3183 1.3186 1.3188 1.3189 1.3189 1.3189
DTM [53] 1.3189 - 1.3189 1.3190 1.3190 1.3190
TCM [53] 1.3183 - 1.3188 1.3189 1.3189 1.3190

DSM 1.3118 1.3154 1.3187 1.3187 1.3870 1.3880
FEM 1.3133 1.3135 1.3137 1.3138 1.3137 1.3138

Error (%) 0.4946 0.2433 0.0076 0.0152 0.0152 0.0076

1 20 RPT [15] 3.5900 3.5851 3.5854 3.5857 3.5858 3.5859
DTM [53] 3.5949 - 3.5875 3.5874 3.5876 3.5877
TCM [53] 3.5900 - 3.5855 3.5857 3.5859 3.5860

DSM 3.5949 3.5901 3.5853 3.5856 3.5857 3.5885
FEM 3.5358 3.5303 3.5300 3.5301 3.5301 3.5302

Error (%) −0.1363 −0.1393 0.0028 0.0028 0.0028 −0.0725
50 RPT [15] 3.6121 3.6072 3.6074 3.6077 3.6079 3.6080

DTM [53] 3.6309 - 3.6080 3.6082 3.6084 3.6085
TCM [53] 3.6122 - 3.6075 3.6078 3.6080 3.6081

DSM 3.6108 3.6001 3.6001 3.6066 3.6078 3.6079
FEM 3.6039 3.5986 3.5984 3.5991 3.5991 3.5991

Error (%) 0.0371 0.1972 0.2028 0.0305 0.0028 0.0028

2 20 RPT [15] 11.9528 11.9012 11.8952 11.8945 11.8944 11.8946
DTM [53] 12.0400 - 11.9100 11.9000 11.9000 11.9050
TCM [53] 11.9551 - 11.8960 11.8949 11.8947 11.8947

DSM 11.9520 11.8951 11.8950 11.8948 11.8946 11.8946
FEM 11.8526 11.8090 11.7943 11.7919 11.7910 11.7906

Error (%) 0.0067 0.0513 0.0017 −0.0025 −0.0017 0.0000
50 RPT [15] 12.2370 12.1817 12.1752 12.1743 12.1742 12.1742

DTM [53] 12.3926 - 12.1802 12.1792 12.1790 12.1791
TCM [53] 12.2375 - 12.1755 12.1745 12.1744 12.1745

DSM 12.2370 12.1785 12.1751 12.1744 12.1742 12.1742
FEM 12.2274 12.1720 12.1655 12.1655 12.1632 12.1631

Error (%) 0.0000 0.0263 0.0008 −0.0008 0.0000 0.0000

Table 6. Comparison of the fundamental frequency parameters
(

v = ω b2

h

√
ρ
E2

)
of an orthotropic

plate with the CC boundary conditions.

b/L b/h Method E1/E2

3 10 20 30 40 50

0.5 20 RPT [15] 11.1940 18.6410 24.1770 27.5890 29.9780 31.7720
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 11.0440 18.5440 24.0010 27.4220 29.8140 31.6450
FEM 11.2241 18.5395 23.7936 26.9128 29.0241 30.5589

Error (%) 1.3582 0.5231 0.7333 0.6090 0.5501 0.4013
50 RPT [15] 11.5350 20.2830 28.0500 33.7400 38.3200 42.1780

DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 11.4450 20.0450 28.0010 33.4520 38.0150 42.0040
FEM 11.5988 20.3688 28.1096 33.7420 38.2453 42.0120

Error (%) 0.7864 1.1873 0.1750 0.8609 0.8023 0.4142
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Table 6. Cont.

b/L b/h Method E1/E2

3 10 20 30 40 50

1 20 RPT [15] 12.2680 19.4910 25.2600 28.9750 31.6500 33.6990
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 12.0540 19.3540 25.2600 28.8990 31.6498 33.6880
FEM 12.2199 19.0866 24.1686 27.2132 29.2816 30.7884

Error (%) 1.7720 0.7079 0.0000 0.2630 0.0006 0.0327
50 RPT [15] 12.6300 20.9640 28.6650 34.4150 39.1030 43.0940

DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 12.6300 20.9620 28.6420 34.3440 39.0050 43.0920
FEM 12.6752 20.9800 28.5476 34.0931 38.5449 42.2785

Error (%) 0.0000 0.0095 0.0803 0.2067 0.2512 0.0046

2 20 RPT [15] 18.1620 23.7190 29.2240 33.2480 36.3950 38.9550
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 18.0450 23.7180 29.2140 33.1450 36.3470 38.5450
FEM 17.9076 22.9240 27.1301 29.7723 31.6051 32.9569

Error (%) 0.6484 0.0042 0.0342 0.3108 0.1321 1.0637
50 RPT [15] 18.8420 25.1990 32.0380 37.5070 42.1470 46.2150

DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 18.7540 24.9880 31.8970 37.1240 41.8740 46.0240
FEM 18.8150 25.1027 31.6413 36.6844 40.8220 44.3360

Error (%) 0.4692 0.8444 0.4420 1.0317 0.6520 0.4150

Table 7. Comparison of the fundamental frequency parameters
(

v = ω b2

h

√
ρ
E2

)
of an orthotropic

plate with the FC boundary conditions.

b/L b/h Method E1/E2

3 10 20 30 40 50

0.5 20 RPT [15] 2.3220 3.5230 4.7060 5.6190 6.3810 7.0410
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 2.3210 3.5220 4.6990 5.6180 6.3740 7.0010
FEM 2.3013 3.4995 4.6668 4.5382 6.2941 6.9261

Error (%) 0.0431 0.0284 0.1490 0.0178 0.1098 0.5713
50 RPT [15] 2.3320 3.5550 4.7800 5.7450 6.5660 7.2910

DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 2.3310 3.5350 4.7010 5.7440 6.5540 7.2870
FEM 2.3266 3.5479 4.7691 4.6778 6.5441 7.2632

Error (%) 0.0429 0.5658 1.6805 0.0174 0.1831 0.0549

1 20 RPT [15] 4.2160 4.9950 5.8970 6.6620 7.3360 7.9420
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 4.2160 4.9920 5.8240 6.5770 7.2540 7.8450
FEM 4.1595 4.9287 5.8066 6.5343 7.1612 7.7141

Error (%) 0.0000 0.0601 1.2534 1.2924 1.1304 1.2365
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Table 7. Cont.

b/L b/h Method E1/E2

3 10 20 30 40 50

50 RPT [15] 4.2500 5.0480 5.9820 6.7820 7.4940 8.1420
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 4.2450 5.0120 5.8440 6.4510 7.4240 8.0140
FEM 4.2402 5.0346 5.9620 6.7541 7.4569 8.0942

Error (%) 0.1178 0.7183 2.3614 5.1310 0.9429 1.5972

2 20 RPT [15] 12.2640 12.5540 12.9420 13.3020 13.6470 13.9780
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 12.1240 12.4510 12.8450 13.2040 13.6140 13.8540
FEM 11.8526 12.4252 12.7885 13.1213 13.4293 13.7178

Error (%) 1.1547 0.8272 0.7552 0.7422 0.2424 0.8950
50 RPT [15] 12.5670 12.8740 13.2880 13.6750 14.0460 14.4050

DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 12.4570 12.7450 13.1440 13.2470 14.0440 14.4020
FEM 12.2274 12.5838 13.2596 13.6953 14.0022 14.3510

Error (%) 0.8830 1.0122 1.0956 3.2309 0.0142 0.0208

Table 8. Comparison of the fundamental frequency parameters
(

v = ω b2

h

√
ρ
E2

)
of an orthotropic

plate with the FF boundary conditions.

b/L b/h Method E1/E2

3 10 20 30 40 50

0.5 20 RPT [15] 2.3250 2.3260 2.3260 2.3260 2.3260 2.3260
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 2.3240 2.3250 2.3258 2.3258 2.3258 2.3258
FEM 2.3252 2.3245 2.3260 2.3266 2.3260 2.3260

Error (%) 0.0430 0.0430 0.0086 0.0086 0.0086 0.0086
50 RPT [15] 2.3310 2.3310 2.3320 2.3320 2.3320 2.3320

DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 2.3312 2.335 2.3322 2.3325 2.3328 2.3320
FEM 2.3315 2.3315 2.3325 2.3325 2.3325 2.3325

Error (%) −0.0086 −0.1716 −0.0086 −0.0214 −0.0343 0.0000

1 20 RPT [15] 2.8380 2.8300 2.8290 2.8290 2.8290 2.8290
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 2.8140 2.8244 2.8344 2.8344 2.8344 2.8344
FEM 2.8440 2.8371 2.8364 2.8466 2.8466 2.8466

Error (%) 0.8529 0.1983 −0.1905 −0.1905 −0.1905 −0.1905
50 RPT [15] 2.8560 2.8470 2.8460 2.8460 2.8460 2.8460

DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 2.8488 2.8444 2.8442 2.8442 2.8442 2.8442
FEM 2.8626 2.8543 2.8534 2.8549 2.8549 2.8549

Error (%) 0.2527 0.0914 0.0633 0.0633 0.0633 0.0633
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Table 8. Cont.

b/L b/h Method E1/E2

3 10 20 30 40 50

2 20 RPT [15] 11.1510 11.0960 11.0880 11.0860 11.0850 11.0850
DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 11.1500 11.0900 11.0820 11.0810 11.0810 11.0810
FEM 11.3046 11.1211 11.2471 11.2455 11.2455 11.2455

Error (%) 0.0090 0.0541 0.0541 0.0451 0.0361 0.0361
50 RPT [15] 11.4160 11.3570 11.3490 11.3460 11.3460 11.3450

DTM [53] - - - - - -
TCM [53] - - - - - -

DSM 11.3967 11.3450 11.3460 11.3460 11.3450 11.3450
FEM 11.4429 11.3850 11.3778 11.3759 11.3759 11.3759

Error (%) 0.1695 0.1058 0.0264 0.0000 0.0088 0.0000

It could be observed from Tables 3–8 that the maximum errors encountered in the
DSM results when compared with Ref. [15] results are 1.7720% at b/L = 1.0, b/h = 20, and
E1/E2 = 3 for the CC plate in Table 6. The next highest percentage of errors is −1.7539 (for
the SC plate at b/L = 1, b/h = 20 and E1/E2 = 20) in Table 8. Thus, for all cases reported in
Tables 3–8, the error is less than 2%.

The effect of Young’s modulus ratio (E1/E2) and the thickness ratio (a/h) on natural
frequencies for all boundary conditions are presented in Figures 6 and 7, respectively. The
following observations are obtained from Figures 6 and 7, respectively.
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(a) The natural frequency increases with increases in the modulus ratio
(

E1
E2

)
for a

given value of the side-thickness ratio (b/L = 0.5), as shown in Figure 6 for all boundary
conditions, except FF and FS boundary conditions. The natural frequency values are nearly
constant for FF and FS boundary conditions.

(b) The fundamental natural frequency values increase with increases in the side to
thickness ratio (b/h) for a given Young’s modulus ratio

(
E1
E2

)
, as shown in Figure 7 for all

boundary conditions except FF and FS boundaries.

6. Conclusions

In the present paper, the dynamic stiffness method, as a novel method, was imple-
mented to analyze the out-of-plane free vibration of the rectangular orthotropic plate, where
two opposite edges are simply supported. The classical plate theory was used to formulate
the dynamic stiffness matrix for the rectangular orthotropic plate. The Wittrick–Williams
algorithm was applied to solve the transcendental nature of the global dynamic stiffness
matrix to extract the natural frequencies of the overall plate. The complete procedure,
starting from developing the dynamic stiffness matrix and calculating natural frequencies,
was implemented in a computer program using MATLAB. This enabled computation of any
number of exact natural frequencies of the orthotropic plate for the Levy-type boundary
conditions. The computed natural frequencies were compared against published results
obtained by the finite element method using commercial software ANSYS. A new dataset
on the natural frequencies for different aspect ratios, modulus ratios, and thickness ratios
was computed and compared with the published literature.

The new results on natural frequency obtained by the DSM method can be imple-
mented as a benchmark solution for future comparison purposes.
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Appendix A

Explicit expressions of the elements of the dynamic stiffness matrix are given as
follows:

Svv =
(

R2Sh2 r1r2
(
Ch1 − Ch2

))
/∆−

(
Ch2 R2r1

(
Sh1 r1 − Sh2 r2

))
/∆

−
(

R1Sh1 r1r2
(
Ch1 − Ch2

))
/∆−

(
Ch1 R1

(
Sh2 r2

2 − Sh1 r1r2
))

/∆
Svm =

(
Ch2 L2r1r2

(
Ch1 − Ch2

))
/∆−

(
L2Sh2 r1

(
Sh1 r1 − Sh2 r2

))
/∆

−
(
Ch1 L1r1r2

(
Ch1 − Ch2

))
/∆−

(
L1Sh1

(
Sh2 r2

2 − Sh1 r1r2
))

/∆
Fvv =

(
R2r1

(
Ch1 − Ch2

))
/∆−

(
R1r2

(
Ch1 − Ch2

))
/∆

Fvv =
(

L2
(
Sh2 r1 − Sh1 r2

))
/∆−

(
L1
(
Sh2 r1 − Sh1 r2

))
/∆

Svm =
(

L1
(
Ch1 Sh2 r1 − Ch2 Sh1 r2

))
/∆−

(
L2
(
Ch1 Sh2 r1 − Ch2 Sh1 r2

))
/∆

Fmm =
(

L2
(
Sh2 r1 − Sh1 r2

))
/∆−

(
L1
(
Sh2 r1 − Sh1 r2

))
/∆

where,

R1 = Dxr3
1m
− Hr1m α2

m, R2 = Dxr3
2m
− Hr2m α2

m,
L1 = −Dxr2

1m
− Iα2

m, L2 = −Dxr2
2m
− Iα2

m

∆ =
(

Ch1
2r1r2 − 2 Ch1 Ch2 r1r2 + Ch2

2r1r2 − Sh2
2r1r2 + Sh1 Sh2 r1

2 + Sh1 Sh2 r2
2 − Sh2

2r1r2

)
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