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Abstract: This paper addresses the experimental and numerical dynamic analysis of curved bars used
as percussion musical instruments. These structures are known as triangles, being made of various
metal materials. The study was based on the experimental analysis of the dynamic response over
time and the frequency of three types of triangles, different in material and size. Subsequently, finite
element analysis of the same structures modeled with the SimCenter 12 program was performed.
The results were compared, highlighting the contribution of material type and geometry in obtaining
vibration modes, frequency spectrum, and structural damping coefficient. Between the experimental
and the numerical analysis, the obtained errors were below 2.2% in terms of their natural frequencies.
The study also highlights the complementarity of the two methods in understanding the vibration
modes of triangles.

Keywords: triangle; experimental dynamic analysis; finite element analysis; modal shapes

1. Introduction

The history of musical instruments is intertwined with anthropological evolution,
from the most rudimentary sound-generating forms and structures to the most evolved
current musical systems.

The materials used in the structure of musical instruments are varied both in terms
of chemistry, the old–new timeframe, and the elastic, mechanical, and strength character-
istics of the components in the structure of musical instruments. Thus, there are natural
materials—metals, wood, leather, hair, bones and ivory, plants, and natural fibers (linen,
silk, hemp, wool), as well as synthetic materials—nylon, carbon fiber, artificial silk, poly-
mers, and so on. The use of traditional materials in combination with modern ones aims
to increase the reliability and quality of musical instruments by maintaining over time
both their acoustic and aesthetic quality and their mechanical strength to different types
of stresses.

According to the way in which air vibration is generated for the production of sounds,
there are five categories of musical instruments: brass and woodwind instruments, idio-
phone instruments, chordophone instruments, instruments with vibrating diaphragm, and
electro–acoustic instruments (Figure 1).

The triangle is an idiophone musical instrument consisting of a metal bar bent in
the form of an equilateral or isosceles open triangle, with rounded tips, the sound being
produced only by vibrating its own body, without the use of any auxiliary part.
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Figure 1. Types of musical instruments. 

The triangle has a very crystalline sound, which mimics bells. Unlike the timpani, the 
small drum, the marimba, or the xylophone, the triangle is not a solo instrument, but ap-
pears in symphonies, overtures, or concerts in the form of short signals or tremolo [1,2]. 
The acoustic quality of the sounds emitted by the triangle depends on the material from 
which it is made [3–6]. Triangles are made of a bent metal alloy rod (steel, aluminum, 
copper), produced by folding the metal around a template. Their section is generally cir-
cular and constant along the entire length of the bar, but there are also variants with var-
iable thickness. Its shape can be an equilateral or isosceles triangle. The triangle has sev-
eral shapes and sizes: most are 5 inches, but can also be 6.7 or 8 inches. The sound is di-
rectly influenced by its size, the larger ones having louder sounds, but more serious tones 
due to differences in vibration. The smaller ones have higher tones, but lower amplitudes 
of vibrations. In order for the sound to be able to produce and pass on the harmonics, the 
triangle is not closed [7–9]. 

The orchestral triangle is actually a combination of straight and curved bars, so it is 
an instrument with a relatively complex structure [4,6,10,11]. To emit musical sounds, the 
triangle is struck with a metal rod on one side and supported by an elastic thread in the 
upper corner of the suspended instrument. The rods used to strike the triangle are of dif-
ferent thicknesses and the tip may differ in size and thickness. The choice of these sticks 
is made according to the size and thickness of the rod, which in turn is chosen according 
to the requirements of the score. Depending on the writing and the character of the work, 
of course, the way the sound is produced also changes. In short signals, the triangle is held 
suspended on the support and hit with a wand on one of the three sides.  

If you want to obtain short sounds, the vibration of the triangle is stopped by touch-
ing (plugging) it with your hand immediately after the sound is produced; however, if the 
intervention of the triangle is in a more expressive, delicate moment, and the duration of 
the sounds he has to interpret is longer, the percussionist will hold the triangle with his 
left hand, will operate the instrument with the wand on one of the three sides, and with 
his left hand he will move the triangle to produce the vibrato effect [2–5]. 

In the music literature, the triangle also appears in the form of thematic signals, in 
dialogue with solo instruments, as it is in the third part of Concerto No. 1 for piano and 
orchestra, by Franz Liszt. In this concert, the triangle plays a very important role through 
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The triangle has a very crystalline sound, which mimics bells. Unlike the timpani,
the small drum, the marimba, or the xylophone, the triangle is not a solo instrument, but
appears in symphonies, overtures, or concerts in the form of short signals or tremolo [1,2].
The acoustic quality of the sounds emitted by the triangle depends on the material from
which it is made [3–6]. Triangles are made of a bent metal alloy rod (steel, aluminum,
copper), produced by folding the metal around a template. Their section is generally
circular and constant along the entire length of the bar, but there are also variants with
variable thickness. Its shape can be an equilateral or isosceles triangle. The triangle has
several shapes and sizes: most are 5 inches, but can also be 6.7 or 8 inches. The sound is
directly influenced by its size, the larger ones having louder sounds, but more serious tones
due to differences in vibration. The smaller ones have higher tones, but lower amplitudes
of vibrations. In order for the sound to be able to produce and pass on the harmonics, the
triangle is not closed [7–9].

The orchestral triangle is actually a combination of straight and curved bars, so it
is an instrument with a relatively complex structure [4,6,10,11]. To emit musical sounds,
the triangle is struck with a metal rod on one side and supported by an elastic thread in
the upper corner of the suspended instrument. The rods used to strike the triangle are of
different thicknesses and the tip may differ in size and thickness. The choice of these sticks
is made according to the size and thickness of the rod, which in turn is chosen according to
the requirements of the score. Depending on the writing and the character of the work, of
course, the way the sound is produced also changes. In short signals, the triangle is held
suspended on the support and hit with a wand on one of the three sides.

If you want to obtain short sounds, the vibration of the triangle is stopped by touching
(plugging) it with your hand immediately after the sound is produced; however, if the
intervention of the triangle is in a more expressive, delicate moment, and the duration of
the sounds he has to interpret is longer, the percussionist will hold the triangle with his left
hand, will operate the instrument with the wand on one of the three sides, and with his left
hand he will move the triangle to produce the vibrato effect [2–5].

In the music literature, the triangle also appears in the form of thematic signals, in
dialogue with solo instruments, as it is in the third part of Concerto No. 1 for piano and
orchestra, by Franz Liszt. In this concert, the triangle plays a very important role through
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its intervention in the form of short, percussive signals, which dialogue directly with the
solo instrument, throughout the third part. In fact, Franz Liszt was the first to give the
triangle instrument the chance to be a soloist with the piano. Following the performance of
this concert, it was called “trianglo concerto”.

Another important effect that the triangle produces is that of tremollo, which is
introduced in moments of coral with the wind instruments or in strong dynamic moments,
speaking from a musical point of view. The tremollo effect is achieved by the rapid
movement of the wand inside the triangle, repeatedly hitting the two closed angles of the
instrument [7–9,12,13].

The triangle struck on different sides generates longitudinal and bending modes
of vibration, which are excited perpendicularly or parallel to the plane of the triangle.
The duration of the sound emitted is controlled by the instrumentalist by canceling the
vibrations of the triangle by hand or a sound-absorbing material [14–17]. Both practice and
theory show that the elastic characteristics of the triangle material are closely related to the
fundamental frequency and the frequency spectrum emitted by the idiophone instrument.
For vibrations perpendicular to the plane of the triangle, the displacement is small.

As mentioned [5,7,17], for transverse modes, the vibration modes of a triangle are
almost identical to those of the straight bar from which the triangle is bent. This statement
supports the hypothesis that the shape of the triangle does not have a large effect on
its modes of vibration. However, ref. [14] noted that bending a bar influences the stress
distribution, which depends on the moments of inertia that apply to the ends of a bar. For
bending vibrations in the plane, there is an important discontinuity in impedance at each
bending angle. The transverse vibration inside a side is coupled with the longitudinal
vibration on the adjacent side. Therefore, each side of the triangle will have its own
vibration modes and will be coupled to another side, to form sets of three own modes, for a
side of the same length.

Triangles are usually made of hardened carbon steel or 304 stainless steel, which is
non-magnetic and highly resistant to oxidation under atmospheric conditions. High-quality
bronze alloys and copper–beryllium alloys are also used, and the sound produced by the
triangle is lighter or warmer. The musical triangles used in orchestras are mostly in the
shape of a sharp isosceles triangle and vibrate at lower frequencies.

Researchers [7,8,12] analyzed the spectrum of a musical note produced by a struck
orchestral triangle and [12,14] analyzed the spectrograms of two triangles with a side of
8 inches (or about 20 cm), considered by musicians to be of high quality and low quality.
In contrast, the low-quality triangle has only one dominant frequency [7]. It was also
found that the spectrum of the high-quality triangle is characterized by its dominant
frequencies, and the damping has a lower value, so the sound persists longer. Previous
studies confirm that the geometric aspects of the triangle have a decisive effect on the
modes of vibration [11,13–16].

According to [15–20], from a mechanical point of view, the triangle is a combination of
straight bars and continuous curved bars. The low-frequency vibration modes are mainly
bending and are strictly related to the size and mechanical properties of the material from
which the instrument is made. As the side length increases, the fundamental frequency
decreases. In previous studies [17], the influence of the size of the sides and angles of the
triangle on the dynamic response was analyzed. Thus, the results showed that the size of
the angles changes their own frequencies in inverse proportion: with the increase of the
peak angle from 30◦ to 60◦ and 90◦, the eigenvalue decreased in the ratio of 1:1.39:1.611. As
the length increases from 200 mm to 450 mm, the value of its own frequency decreases by
almost 5.6 times.

Based on the state of the art, it was found that there are only several sporadic studies
on the modes of vibration of triangles, usually for commercial ones; these are studies that fo-
cused more on finite element modal analysis.
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This paper aimed at a dynamic analysis of triangles made of different metallic materi-
als, based on experimental and numerical modal analysis, as a result, deepening the study
of the dynamic analysis of triangles from different materials with different dimensions,
which is a necessary step in the development of knowledge of this musical instrument.

2. Materials and Methods
2.1. Materials

The study analyzed three types of triangles: a stainless steel triangle, denoted triangle
T1, an aluminum alloy triangle, denoted T2, with dimensions close to triangle T1, and an
aluminum triangle, T3, with larger dimensions. All three triangles are commercial musical
instruments. The differences between the three triangles were the material of the bar and
the sizes of the sides. The physical characteristics of the triangles are shown in Table 1.
Each side was denoted by A, B, or C, as seen in Figure 2.

Table 1. The physical features of samples.

Type of
Triangle

Length of Sides (mm) Diameter
(mm)

Mass
(g)

Density
(kg/m3) MaterialsA B C

T1 149 161 149 7.84 166.971 2708 Stainless steel
T2 162 170 162 9.60 88.895 7818 Aluminum
T3 214 222.5 214 9.60 118.644 7818 Aluminum
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2.2. Methods
2.2.1. Experimental Tests

The test method consisted of hitting the triangles on each side with the impact hammer,
thus simulating the actual excitation of the percussion instrument. Triangle signals were
recorded by a microphone fixed near the triangle. The sample was supported as well as the
grip during the musical performance. The triangle was supported with an elastic element
at the node formed by the sides A and B. The experimental setup is presented in Figure 2.
Each side was hit three times in succession, and the signals were acquired. These were
processed through a program developed in Matlab to determine the time and frequency
response of the tested samples.

2.2.2. Numerical Simulation of Forced Vibration

Simcenter 12 software was used for both the geometric model and the modal anal-
ysis. Given that the geometric model of the triangle is made in three dimensions, three-
dimensional finite elements with four nodes were chosen for discrete analysis, using a
tetrahedral shape: CTETRA (4), with a side length of 1 mm, was the value chosen using the
time analysis calculation. Thus, the structure was discretized in 1,988,972 finite elements
and 38,066 nodes. The solution used in Simcenter 12 to determine its own frequencies
and modes was SOL 103 Real Eigenvalues, the solver used was NX Nastran. The first
25 eigenfrequencies (natural frequencies) and the shapes of the corresponding eigenmodes
were determined. In general, a modal analysis studies the behavior of a structure in free
vibration mode. In the present case, the purpose was to perform an analysis in accordance
with the experimental method, where the triangle was attached to a support by means of a
connecting element, which did not allow the structure to translate on the x, y, and z axes.
In finite element analysis, this was implemented in the boundary condition by blocking
translational movements on the three axes of a node in the grip area of the structure, as can
be seen in Figure 3.
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Figure 3. Boundary condition—restricting the translational movement on the 3 axes in the grip area.

The engineering constants and the density for the materials of the three triangles were
determined experimentally by testing some samples extracted from the triangles using a
tensile test, in accordance with [20]. Table 2 shows the values of elastic properties used in
finite element analysis.
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Table 2. The engineering constants of triangle materials.

Type of Triangle
Elasticity
Modulus

(MPa)
Density (kg/m3)

Poisson
Coefficient Materials

T1 184,479 7818 0.30 Stainless steel
T2 68,382 2708 0.33 Aluminum
T3 68,382 2708 0.33 Aluminum

2.2.3. Modal Transient Response Analysis

Transient dynamic response analysis is the most general method of calculating the
forced dynamic response. The purpose of such an analysis is to determine the behavior
of a structure subjected to an excitation that varies over time [20–25]. Transient excitation
is explicitly defined in the time domain. All loadings applied to the structure are known
at all times, and the results of a transient response analysis are usually displacements,
velocities, and accelerations of the points in the model and stresses in the elements. The
dynamic analysis in the transient mode was also performed with the Simcenter 12 software;
for this type of analysis the SOL 112 Modal Transient Response solution was used [21].
The principle of the method consists of transforming the physical coordinates denoted by
{u(t)} into modal coordinates denoted by {ξ(t)}, assuming that

{u(t)} = [φ]{ξ(t)}, (1)

where [φ] is the mode shapes.
Taking into account the equation of motion {P(t)} (2) and ignoring temporarily

damping, Equation (3) is obtained [21–25]:

[M]
{ ..

u(t)
}
+ [B]

{ .
u(t)

}
+ [K]{u(t)} = {P(t)}, (2)

[M]
{ ..

u(t)
}
+ [K]{u(t)} = {P(t)}, (3)

where [M], [B], and [K] are the matrices of mass, viscous damping, and stiffness, respectively.
Replacing in (3) relation (1), results coupled equation of motion (4):

[M][φ]
{ ..

ξ(t)
}
+ [K][φ]{ξ(t)} = {P(t)}, (4)

To uncouple the equation of motion, we multiply Equation (4) by [φ]T to obtain (5):

[φ]T [M][φ]
{ ..

ξ
}
+ [φ]T [K][φ]{ξ} = [φ]T{P(t)}, (5)

where [φ]T [M][φ] is modal generalized mass matrix; [φ]T [K][φ]—modal generalized stiff-
ness matrix; [φ]T{P(t)}—modal force vector.

Since the matrices of mass and modal stiffness are diagonal matrices and have no
off-diagonal terms, the equations of motion are uncoupled and can be written as a set of
systems with a single degree of freedom (6) [21–25]:

mi
..
ξ i(t) + kiξi(t) = pi(t), (6)

where mi is the modal mass for the ith mode; ki—modal stiffness for the ith mode; pi—
modal force for the ith mode.

Once the individual modal responses, ξi(t), are computed, physical responses are
recovered as the summation of the modal responses using (7):

{u(t)} = [φ]{ξ(t)}, (7)
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In this study, the experimentally determined structural damping was introduced in
the transient analysis, taking into account the dominant frequency at which the damping
is active [21–25]. Thus, the structural damping is converted to viscous damping and the
modal viscous damping matrix

[
Bqq
]

is obtained based on relation (8):

[
Bqq
]
=
[
φT

dq

]([
B1

dd

]
+
[

B2
dd

]
+

G
W3

[
K1

dd

]
+

1
W4

[
K4

dd

])[
φdq

]
, (8)

where
[
φdq

]
is mode shape matrix;

[
B1

dd
]
—assembled viscous damping matrix;

[
B2

dd
]
—

viscous damping matrix from direct matrix input at points;
[
K1

dd
]
—assembled stiffness

matrix;
[
K4

dd
]
—assembled elemental damping matrix from specifying the element structural

damping field on material, property, and element entries; G—overall structural damping
coefficient; W3—user-defined conversion frequency for overall structural damping; W4—
user-defined conversion frequency for elemental structural damping [21].

As input data, in addition to the elastic properties of the materials, the damping factor
of the structure was required for this analysis. It was determined experimentally, based on
the time response of the structure. An approximate method of determining the value of the
depreciation factor is by calculating the logarithmic decrement. This involves the analysis
of two consecutive amplitudes in the graph of the response of the structure over time to the
dynamic stress, as can be seen in Figure 4.
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Thus, the damping factor was calculated for five pairs of consecutive amplitudes using
relations (9) and (10) in accordance with [20].

∆ = ln
(

A1

A2

)
, (9)

ξ =
∆

2π
, (10)

where ∆ is the logarithmic decrement, A1 and A2—two consecutive amplitudes, and ξ—the
damping factor of the structure.

Similar to the experimental method, in numerical analysis, the triangle was excited
by applying a force over time. The intensity of this force was correlated with that in the
experiment, the value of which was identified when the triangle was struck by the impact
hammer. In finite element analysis, the force was applied to the middle of the A side for a
time of 0.01 s, having a value of 550 N. The boundary conditions were identical to those
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imposed for the modal analysis. Two analyses were performed, one for the stainless steel
triangle and one for the aluminum triangle, following which the time variation of the node
displacement was determined with the maximum displacement value.

3. Results
3.1. Comparison between Experimental and Numerical Modal Analysis

Following the experimental tests, the acquired signals were processed. Thus, the
time and frequency response were obtained for each triangle tested (Figure 5a–c). Thus,
54 results were generated and processed from which the natural frequency values were
extracted for each type of triangle separately, respectively, for each individual test, the data
being centralized in Table 3.

It was found that the first natural frequency of triangles with similar dimensions
(T1 and T2), but different materials, have relatively close values: 168.2 Hz (triangle 2—
aluminum) and 159.5 Hz (triangle 1—stainless steel). The T2 aluminum triangle is about
twice the mass of the stainless steel triangle, although the length of the sides is about 8%
longer than that of the stainless steel T1 triangle. Interestingly, the increase in the sides of
the aluminum triangle T3, which is 32% larger than the length of the sides of the triangles
T1 and T2, led to a decrease in the value of the first natural frequency by about 42% (from
168 Hz—triangle T2 to 96.5 Hz—triangle T3).
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Table 3. The first natural frequencies obtained experimentally.

Type of
Triangle Excited Side

Average Values of Frequency (Hz)
f1 f2 f3 f4 fAmax

T1
A 159.43 997.30 1531.33 - 1657.10
B - 996.97 - - 1657.10
C 159.53 996.97 1531.66 - 1657.10

T2
A 168.13 878.13 1053.00 1605.80 1876.06
B - 878.10 1052.90 1606.00 1876.29
C 168.20 878.17 1054.71 1597.66 1876.57

T3
A 96.29 612.70 - 1052.09 1052.09
B - 612.83 - 1052.24 1052.24
C 96.41 612.86 899.70 1045.47 1045.47

It was observed that when the B side is excited (hit), between the open sides A and C,
the first proper frequency is missing, regardless of the analyzed structure. This is due to the
contour conditions at the ends of the side, respectively, the bending of the bar at an angle of
60 degrees. Instead, the following natural frequencies have approximately identical values
for all three hit sides. The frequency value corresponding to mode 2 is about 13% higher
for the stainless steel triangle than for the aluminum structure, which is similar in size.
Dimensional variation (increasing the sides of the T3 triangle) decreases the frequency of
mode 2 by about 30%.

Analyzing the dominant frequency (the one with the highest amplitude in the fre-
quency spectrum denoted fAmax), it is found that aluminum triangle type T2 has the highest
dominant frequency (1876 Hz), compared to the stainless steel triangle (1657 Hz). Increas-
ing the sides of the triangle (T3) in aluminum reduces the dominant frequency by about
43% compared to the triangle with the smaller sides (T2). Research [4] considers that the
sound of a triangle is pleasant if it contains a fundamental sound of several frequencies
that are significantly louder than the remaining sound. This remaining sound is without a
key, and the sound level is significantly lower than the dominant sound. The spectrum of
the high-quality triangle contains four tones that are significantly louder than the others,
namely, 1539.1 Hz; 4239 Hz; 5658 Hz; 7795 Hz.

Figures 6–8 show the spectrograms of the acquired signals for the three triangles
struck on the three sides. Thus, the magnitude of the power spectral density related to time
and frequencies is shown by color bar. Excitation of different sides of triangles produces
different intensities of their natural frequencies.

In the case of triangle 1, the excitation of side B, located between the other two
bent sides, presents the richest spectrum compared to the other two sides (Figure 6c).
In opposition to the behavior of triangle 1 is the case of triangles 2 and 3, where side B
contains the lowest intensities of its own frequencies, some even missing from the frequency
spectrum (Figures 7c and 8c). The excitation force plotted against the time is also attached
for each spectrogram (Figure 6b,d,f, Figure 7b,d,f and Figure 8b,d,f).

In the modal analysis performed by the finite element method, the modal shapes of
the triangles and the values of the eigenmodes resulted. The values obtained with FEA are
in accordance with those determined experimentally, the error being below 2.5%, as can be
seen from the graphical comparisons in Figure 9.
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Since the experimental results do not provide information about the vibration modes
of the triangles, the finite element analysis completes these data, especially since the results
obtained by the two methods are in good agreement.
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excitation of side B; (d) the plot of excitation force against the time, by hitting side B; (e) in case of
excitation of side C; (f) the plot of excitation force against the time, by hitting side C.

Figures 10–12 show the main vibration modes of the triangles. Thus, it is observed
that in the case of stainless steel triangle T1, the first mode is characterized by vibrations in
the plane of the triangle, for 156 Hz (Figure 10a); the next mode is one of torsion, out of
the plane of the triangle, for frequency of 162 Hz (Figure 10b). Then, the triangle vibrates
along the axis of the bars, obtaining a longitudinal mode at 269 Hz (Figure 10c). For
mode 4, torsional vibrations are obtained out of the plane of the triangle, for 805.285 Hz
(Figure 10d), then alternating with longitudinal vibrations along the bar at frequency of
978.74 Hz (Figure 10e), and then bending vibration mode around the z-axis is obtained for
1465.83 Hz (Figure 10f). The next modes are mode 7 (1499 Hz), a bending vibration mode
(around the Y-axis) (Figure 10g) and mode 8 (1627 Hz)—bending vibration mode around
the Z-axis (out of the plane of the triangle) (Figure 10h).
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Figure 8. The spectrograms and the graphs of impact force, for aluminum triangle T3: (a) in case of
excitation of side A; (b) the plot of excitation force against the time, by hitting side A; (c) in case of
excitation of side B; (d) the plot of excitation force against the time, by hitting side B; (e) in case of
excitation of side C; (f) the plot of excitation force against the time, by hitting side C.

For the aluminum triangle T2, having dimensions close to the stainless steel triangle
(T1), the modal shapes are identical. The values of the natural frequencies differ, being
higher than in the case of stainless steel (Figure 11). In the case of the T3 triangle, the same
modal shapes occur as for the other two triangles, but at lower frequencies, considering the
longer length of the sides (Figure 12).
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Figure 11. Vibration modes of the triangle T2: (a) mode 1 (168 Hz); (b) mode 2 (172.75 Hz);
(c) mode 3 (300 Hz); (d) mode 4 (878 Hz); (e) mode 5 (1056.66 Hz); (f) mode 6 (1560.88 Hz);
(g) mode 7 (1601.97 Hz); (h) mode 8 (1812 Hz).
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According to [1], nonlinear mode coupling is obtained both due to the interaction of
the shear forces and the tension of the kinked bar, and, on the other hand, due to unbalanced
moments across the kink. Similar data were reported by [4], but the modal analyses were
performed in order to compare a good triangle to a bad one. In Figure 13, the experimental
frequency spectrum and correlation with modal shapes are presented for all three triangles.
Figure 13 depicts the correspondence of computational modal shapes to the experimental
frequencies within response signal spectrum. The analyses in Figure 13 only take into
account the FFT magnitude spectrum. It can be seen that the bending and twisting modes
are more and more complex with increasing frequency. At high frequencies, above 2000 Hz,
the modes start to differ from one triangle to another.
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3.2. Modal Transient Response

For modal transient response, structural damping extracted from experimental tests
was used in finite elements analysis (FEA). In Table 4, the values of amplitudes and damping
factor are presented. Thus, the average value of the damping factor for aluminum is 0.021,
and for stainless steel, 0.01.

Table 4. The values of damping factor obtained experimental.

Type of Triangle The Amplitude Damping Factor Average
Value/STDVA1 A2 ξ

T1 (stainless
steel)

0.5045 0.4743 0.009824

0.0103
0.0005

0.5810 0.5462 0.009830
0.3197 0.2989 0.010707
0.1482 0.1384 0.010889
0.1384 0.1296 0.010456

T2 (aluminum)

0.9847 0.8704 0.019637

0.0211
0.0012

0.8704 0.7606 0.021461
0.7606 0.6601 0.022555
0.6601 0.5731 0.022494
0.5731 0.5076 0.019316

Thus, Figure 14a shows the transient analysis of the stainless steel triangle T1 for the
node with a maximum displacement of 12.74 mm, located at the end of the free side marked
A, the force being applied on the same side. For aluminum triangle T2, the maximum
displacement value is 20.24 mm, also recorded in the node at the end of the required side
(Figure 14b). This value (T2 triangle—20.24 mm) corresponds to initial transient evolution
(the very first steps of evaluation), when external excitation acts. This fact can be also
observed within magnitude displacement diagrams (right side of Figure 14)—this high
amplitude was shown for just 0.011 s at the beginning of transient evolution. On the other
hand, it had to be taken into account that this value is the magnitude of displacement, which
contains the displacements along the three axes. In addition, this value can be justified
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both by the first steps of the specifically computational transitory regime of the numerical
algorithm, and by the increment value used in the integration procedure. The vibration
amplitude for the T2 triangle, made of aluminum, is about 1.6 times higher than that of
stainless steel. This is due to the influence of the damping factor and the physical/elastic
properties of the material.
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4. Conclusions

The study highlights the differences between the time response and the frequency
obtained for different types of kinked rods: two musical triangles with the same dimensions
but made from different materials, as well as two musical triangles made from the same
materials, but with different dimensions. The paper presents only the results that are able
to assure an objective point of view regarding the triangle’s response on impact excitation
and its characteristics.

The results show that the frequency spectrum and damping depend on the type of
material. Thus, the higher density and modulus of elasticity of stainless steel (three times



Appl. Sci. 2022, 12, 6275 19 of 20

higher than that of aluminum) leads to a dominant frequency 12% lower than in the case of
the aluminum triangle, and a maximum amplitude 1.6 times lower than of the aluminum
triangle. The damping factor is two times higher for aluminum than for stainless steel.
For the same material, increasing the length of the sides of the triangle by 24% leads to
a decrease in natural frequencies by 42%. There is an error of less than 2% between the
experimental and numerical results, which confirms that the two methods can be used in
addition to understanding the dynamic behavior of triangles.

In future studies, the authors aim to investigate the effects of different musical triangle
performance techniques, with the help of a percussionist, on their dynamic behavior.
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