
Citation: Li, M.; Gong, S. Dynamics

of Polar Resonances and Their Effects

on Kozai–Lidov Mechanism. Appl.

Sci. 2022, 12, 6530. https://doi.org/

10.3390/app12136530

Academic Editor: Rosario Pecora

Received: 20 March 2022

Accepted: 7 May 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Dynamics of Polar Resonances and Their Effects on
Kozai–Lidov Mechanism
Miao Li 1 and Shengping Gong 2,*

1 School of Aerospace Engineering, Tsinghua Universuty, Beijing 100084, China; limiaotsinghua14@163.com
2 School of Astronautics, Beihang University, Beijing 100191, China
* Correspondence: gongsp@buaa.edu.cn

Abstract: The research on highly inclined mean motion resonances (MMRs), even retrograde res-
onances, has drawn more attention in recent years. However, the dynamics of polar resonance
with inclination i ≈ 90◦ have received much less attention. This paper systematically studies the
dynamics of polar resonance and their effects on the Kozai–Lidov mechanism in the circular re-
stricted three-body problem (CRTBP). The maps of dynamics are obtained through the numerical
method and semi-analytical method, by mutual authenticating. We investigate the secular dynamics
inside polar resonance. The phase-space portraits on the e−ω plane are plotted under exact polar
resonance and considering libration amplitude of critical angle σ. Simultaneously, we investigate
the evolution of 5000 particles in polar resonance by numerical integrations. We confirm that the
e−ω portraits can entirely explain the results of numerical experiments, which demonstrate that the
phase-space portraits on the e−ω plane obtained through the semi-analytical method can represent
the real Kozai–Lidov dynamics inside polar resonance. The resonant secular dynamical maps can
provide meaningful guidance for predicting the long-term evolution of polar resonant particles. As
a supplement, in the polar 2/1 case, we analyze the pure secular dynamics outside resonance, and
confirm that the effect of polar resonance on secular dynamics is pronounced and cannot be ignored.
Our work is a meaningful supplement to the general inclined cases and can help us understand the
evolution of asteroids in polar resonance with the planet.

Keywords: celestial mechanics; Earth; minor planets; asteroids; planets and satellites; dynamical
evolution and stability

1. Introduction

Mean motion resonances (MMRs) occur between two or more objects when their orbital
periods are commensurable. MMRs with planets play a fundamental role in dynamics in
the Solar System [1–8]. Nesvorný et al. [9] provided a good review of resonance research
up to the beginning of the 21st century. Resonances are an essential mechanism in the
dynamics of asteroids, Centaurs, trans–Neptunian objects (TNOs), satellite systems, and the
planetary system [4,10–15]. The resonant dynamics at an arbitrary inclination, including
retrograde motions, have attracted a lot of attention with the discovery of the more highly
inclined objects. Namouni and Morais [16,17] numerically studied the resonance capture at
an arbitrary inclination in the three-body problem. Morais and Namouni [18] identified
a set of asteroids whose inclination i > 140◦ is in retrograde mean motion resonance
with giant planets. The research on the co-orbital dynamics in three dimensions after
demonstrating the first retrograde co-orbital asteroid 2015 BZ509 has become a hot topic
in recent years [19–24]. Li et al. [25] systematically presented the retrograde resonant
configurations of the asteroids in the Solar System. Recently, Lei [26] analytically gave the
expression of the half-width of the MMRs in spatial motion, and an analogue expression
was then derived from the Hamiltonian dynamics by Gallardo [27]. Resonant width and
libration in three dimensions are studied by Gallardo [15] and Namouni and Morais [28],
and they chose different approaches for measuring the strength of resonances.
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The Kozai–Lidov mechanism of minor bodies is a basic astrophysical phenomenon
that has been studied for years [29,30]. In the model considered by Kozai [30], the vertical
angular momentum

√
1− e2cosi is an additional integral of motion. The corresponding

representative performance is the periodic variation in the inclination and eccentricity of
an orbiting body [31]. Nowadays, the Kozai–Lidov mechanism is considered to play a
critical role in the evolution of both the Solar System and extrasolar systems [31–36]. The
semi-analytical averaging model is a practical approach to understand the Kozai–Lidov
mechanism of minor bodies [13,37–39]. Based on the study of the secular hierarchical
triple system by Kozai [30], the eccentric Kozai–Lidov mechanism (EKM) where the per-
turber is in an eccentric orbit has been studied [40,41]. The most distinctive phenomenon
is that the orbit can flip its orientation, form prograde (i < 90◦) to retrograde (i > 90◦),
or vice versa [23,42–45]. However, if we consider both the Kozai–Lidov mechanism and
mean motion resonances simultaneously, the dynamics become much more different and
challenging to fathom [21]. As Morbidelli [13] described, secular dynamics inside mean
motion resonances would be one of the most implicated problems in celestial mechanics.
Kozai [46] adapted the secular model from Kozai [30] to study the secular perturbation
of resonant asteroids under the assumption that the critical arguments are fixed at stable
libration centers [47,48]. Afterward, that model was adapted to analyze the secular dy-
namics of resonance [49–51]. Secular resonances in mean motion commensurabilities are
investigated in 2/1, 3/2, etc. [52,53]. Morbidelli et al. [54] explored the resonant and secular
dynamics of KBOs with the canonical transformation. Nesvorný et al. [9] considered the
Kozai–Lidov dynamics inside the prograde co-orbital resonance. Wan and Huang [55]
studied the topological structure of the plane of the eccentricity and the argument of the
perihelion analytically. Sidorenko et al. [56] investigated the secular process in 1/1 reso-
nance using numerical averaging over the “fast” and “semi-fast” motion. Giuppone and
Leiva [57] constructed the Lidov–Kozai configuration for planets in co-orbital 3D motion.
Saillenfest et al. [58] developed a new resonant secular model to describe the dynamics
of TNOs in MMR with Neptune. Saillenfest et al. [59] applied this model to study the
long-term dynamics of TNOs in exterior high-order MMRs and whose orbits are entirely
beyond Neptune. They believed that the resonant order has little impact on the structure of
resonant secular phase portraits. Further, Saillenfest and Lari [60] studied the long-term
dynamics of the known TNOs in MMR with Neptune, and they confirmed that MMRs
completely alter the secular dynamics of a subset of objects. Batygin and Morbidelli [61]
studied the secular dynamics facilitated by resonant interactions using semi-analytical
theory. Via double numerical averaging Sidorenko [62] explored the long-term dynamics
of “jumping” Trojans [63] in the restricted planar elliptical model. Further, we investigated
how the retrograde resonant dynamics affects Kozai–Lidov cycle [64]. Qi and de Ruiter [65]
studied the Kozai dynamics inside inclined MMRs through the 3D (e, ω, φ) phase space.
Recently, Efimov and Sidorenko [66] introduced an analytical model to study the long-term
dynamics in MMRs in the 3D motion. However, how the Kozai–Lidov mechanism interacts
with the minor body near-polar orbit (i ≈ 90) has received less attention. Our curiosity
about Kozai–Lidov dynamics inside polar resonance has been sparked.

Highly inclined objects are not rare in the Solar System and exosolar systems. To date,
187 minor bodies with 60◦ < i < 120◦ have been discovered in the Solar System. Batygin
and Brown [67] proposed that the hypothetical Planet Nine may produce the high inclined
TNOs. Limiting the inclination range down to 80◦ < i < 90◦, there are still 29 minor bodies
with polar orbits (from JPL Small-Body Database (https://ssd.jpl.nasa.gov), retrieved
on 29 September 2020). Namouni and Morais [68] developed a new disturbing function
for objects with arbitrary inclination. Morais and Namouni [69] reported the first near-
polar TNO, nicknamed Niku, which is trapped in 7/9 polar resonance with Neptune.
Li et al. [25] identified several retrograde asteroids trapped in or that will be captured in
polar resonances (90◦ < i < 110◦). Namouni and Morais [70] provided a series expansion
algorithm of the disturbing function in the vicinity of polar orbit, which demonstrated that
the force amplitude of a k′/k resonance does not depend on its resonant order.

https://ssd.jpl.nasa.gov
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Here, we focus on the resonant secular dynamics of a polar orbit with i = 90◦,
and apply them to explain numerical experiments’ results. This article is structured as
follows: In Section 2, we adapt the semi-analytical method described in Morbidelli [13]
and Huang et al. [21] to the case of polar mean motion resonances. We also deduce proper
Hamiltonian canonical transformations to tackle the secular dynamics inside polar reso-
nances. Section 3 gives a full description of the numerical model and experiments carried
out in this study. In Sections 4 and 5, we study the interior and exterior polar resonant
dynamics and their effects on the Kozai–Lidov mechanism, respectively. The last section
contains our conclusions.

2. Semi-Analytical Model

The analytical tools of celestial mechanics have been introduced in detail [12,13]. The
resonant dynamics in the restricted three-body model have been studied analytically [71–73].
However, this classical analytical method, based on series expansions, is only valid when the
two orbits under consideration do not cross [74–76]. Moons and Morbidelli [77] confirmed
that a new libration zone arises when the eccentricity of the minor body is above the planet-
crossing threshold [78]. Considering the deficiency of the classical expansion, Morbidelli [13]
introduced the semi-analytical theory to study the structure of MMRs in CRTBP. Such
an approach combines the process of analytically reducing the system to a single angle
variable model and numerically averaging its Hamiltonian on a parameter space, and
this is often called a semi-analytical method. It has been used to investigate the 2/1
resonant dynamics in a previous study[79,80]. The semi-analytical method has been widely
applied in analyzing mean motion resonances and secular dynamical effects [18,61]. In
our previous papers by Huang et al. [21], Li et al. [23], and Li et al. [81], we introduced the
canonical action-angle variables used for investigating the retrograde dynamics. We have
also presented the Hamiltonian transformation to study the Kozai–Lidov dynamics inside
the retrograde resonance [64].

2.1. Action-Angle Variables for Polar MMRs

We start from the typical canonical Poincaré action-angle for the 3D circular restricted
three-body problem [12,13,61]:

Λ =
√

Gm0a, λ = M + ω + Ω,

P = Λ(1−
√

1− e2), p = −(ω + Ω),

Q = Λ
√

1− e2(1− cosi), q = −Ω,

Λ′, λ′,

(1)

where m0 is the mass of the central body, and M, ω, Ω are the mean anomaly, argument
of perihelion, and longitude of ascending node, respectively. The superscript symbol ′

denotes the parameter of the perturber. The k′/k (k′, k are both positive integers) resonance
occurs when k′n′ − kn ≈ 0, where n′ and n are the mean motion frequencies of the planet
and minor body. To better study the k′/k resonant dynamics, we introduce another set of
canonical action-angle variables,

Γ1 =
1
k

Λ, σ1 = kλ− k′λ′ − (k′ − k)p = σ,

Γ2 = −P− k′ − k
k

Λ, σ2 = q− p = ω,

Γ3 = −P−Q− k′ − k
k

Λ, σ3 = −q = Ω,

Γ4 = Λ′ +
k′

k
Λ, σ4 = λ′.

(2)
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The σ is the pure-eccentricity resonant argument which does not include inclination
[15,28,68]. It can be checked that the contact transformation relationship holds. Then, we
can write the Hamiltonian for the CRTBP in these new variables as

HMMR = H0(Γ1, Γ4) + εH1(Γ1, Γ2, Γ3, Γ4, σ1, σ2, σ3, σ4), (3)

whereH0 is the Keplerian part, andH1 is the disturbing term. The parameter ε meansH1
is a very small quantity relative toH0. It is a non-integrable system with four degrees of
freedom (d.o.f). We can eliminate the d.o.f about (Γ4, σ4) by averaging theHMMR over the
fast angle λ′. Above all, following the technique developed by Gallardo [82], the ascending
node Ω could be set to 0 [83]. The geometric symmetry of the CRTBP can understand this
assumption well. Thus, the corresponding action-angle variable (Γ3, σ3) can be eliminated
fromHMMR. Then, the averaged Hamiltonian only depends on the critical angle σ and the
argument of pericenter ω and can be expressed as follows:

HMMR = H0 + εH1(Γ1, Γ2, σ1, σ2) = H0 + εH1(Γ1, Γ2, σ, ω). (4)

Due to the separation of the timescale of σ and ω, we could transform the Hamiltonian
into an integrable system by freezing the value of ω (in our numerical integrations, the pe-
riod of oscillation of ω is of an order of 1500 yr (2/1 polar resonance) or 1000 yr (2/3 polar
resonance), while the period of libration of σ is about 50 yr) [9,15,39,84,85]. Then, we can
obtain the phase portraits in the a− σ plane at a different value of ω, and the resonant
dynamics can be analyzed.

2.2. Secular Dynamics inside MMRs

The semi-analytical method is a practical approach to study secular dynamics. For a
particular MMR (except the exterior 1/n resonance), the critical angle σ is always around
0◦ or 180◦. Following our previous work on the Kozai mechanism inside retrograde co-
orbital resonance, we can numerically average the disturbing term around the librate center
of resonant angle σ0. To make the computation easier, we can simply set the semi-major
axis a = a0 [13]. The secular dynamics in the e−ω space can be obtained.

Similarly, we can discuss the effect of the resonant amplitude. If we focus on the exact
resonance, then the resonant angle σ = σ0 is always held, and we can calculate the value of
the disturbing term by single numerical averaging:

H1 = − µ

2πk

∫ 2πk

0

( 1
|r−r′ | −

r·r′
|r′ |3
)∣∣∣∣

a=a0,σ=σ0

dλ′, (5)

where µ is the gravitational parameter of the planet. Considering the effect of libration
amplitude of resonant angle, we can force the σ to vary along a sinusoidal curve with
a given amplitude σamp. This sinusoidal approximation of the libration of the resonant
argument is also applied to study the resonant Kozai–Lidov dynamics [13,49,51,64,86].
Then, we can calculate the Hamiltonian by double numerical averaging as follows:

H1 = − µ

4π2k

∮
σ

∫ 2πk

0

( 1
|r−r′ | −

r·r′
|r′ |3
)∣∣∣∣

a=a0

dλ′dσ. (6)

This way, we can evaluate the Hamiltonian and plot its level curves on the e−ω space,
which is critical in secular dynamics research. It should be noted that we do not restrict the
inclination i = 90◦, so the semi-analytical model introduced here can also be used to study
the general inclined problems.

3. Descriptions Concerning the Numerical Model

Numerous simulations are carried out to study the polar resonant dynamics of CRTBP
and verify the semi-analytical model results. For a particular k′/k resonance, we randomly
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generate 5000 test particles at an exact resonant location with initial orbital elements a = a0,
i = 90◦, 0 ≤ e ≤ 1, Ω = 0◦, 0 ≤ ω, M ≤ 360. The elements of the Jupiter-mass perturber
are taken as µ = 10−3, a′ = 1 au, i′ = 0◦, e′ = 0, Ω′, ω′, M′ = 0. Numerical integrations
are carried out by the MERCURY6 [87] package with an accuracy parameter of 10−12.
The general Bulirsch–Stoer integrator is employed while considering the gravity of the
Sun and the perturber throughout the integration. The whole integration time span is
10,000 perturber’s periods with a time step of 15 days. Particles are hitting the planet or
those whose heliocentric distance below the radius of the Sun or above 100 au will be
removed from the integrations. We analyze the dynamical evolution of these 5000 particles
at different polar resonances.

Based on the semi-analytic model and numerical simulations, we investigate the
dynamics of polar resonance and the Kozai–Lidov mechanism inside MMRs. We study the
interior resonance and exterior resonance, by taking the cases of representative 2/1 and
2/3 resonances, respectively.

4. Dynamics of Interior Polar Resonance, the 2/1 Case
4.1. Results of Numerical Experiments

We first investigate the dynamics of the interior polar resonance, taking the case of
the most critical 2/1 resonance. Figure 1 shows the results of the numerical experiments.
The initial elements of the 5000 generated particles are plotted on a e − ω plane. The
different colors represent the lifetime of the particles in the numerical experiments, and the
value is the ratio of the particle’s lifetime to the whole integration time span. It should be
noted that the initial orbital elements of the 5000 particles are generated randomly with
a = a0, i = 90◦. Almost all of the highly eccentric particles die from the integration, while
most small eccentric bodies survive. Figure 2 illustrates the dynamical evolution of two
representatives particles, plane a and b depict the surviving and dead cases, respectively.
We can conclude some rules from the numerical experiments, which can provide essential
guidance for the semi-analytical work. Firstly, the oscillations of critical (resonant) angle
σ illustrate the regular resonant motions. Most of the 5000 particles are trapped in 2/1
resonance with the planet because of the initial elements’ selection. Secondly, we can
neglect the weak librations of the semi-major axis and inclination over the integrations.
Therefore, we can set the semi-major axis a = a0 and inclination i = 90◦ in analyzing the
secular dynamics inside polar resonance to make the computations easier [64]. Thirdly,
the difference in the lifetime of particles mainly comes from the variation in eccentricities.
Generally, the eccentricities of survivors are relatively small and oscillate within a specific
range, while the others die because their eccentricities increase to close to 1. As we have
explained in Section 2, the selection of ascending node Ω can be ignored considering the
geometric symmetry of the CRTBP. Numerical experiments can also verify this assumption.
We change the initial values of Ω while keeping the other parameters unchanged and repeat
the numerical experiments to obtain consistent patterns.

4.2. Phase-Space Structure of Polar 2/1 Resonance

The resonant dynamics are the basis for our research on the secular mechanism inside
MMRs. However, the polar resonant configurations have remained unclear until now. Let
us first investigate the essential dynamical maps of polar MMRs, including the libration
centers and resonant width. In Section 2.1, we introduce a set of canonical action-angles
and explain that a− σ phase-space portraits can understand the resonant dynamics well.
Given the particular set of (e, ω), the averaged Hamiltonian can be calculated in the a− σ
plane by Equation (4). Figure 3 shows three examples of phase-space portraits of polar 2/1
resonance with a different set of (e, ω), including the low- (panel a), medium- (panel b),
and high-eccentric case (panel c).
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Figure 1. The lifetime of 5000 particles in 2/1 polar resonance on e−ω plane. The color bar represents
the ratio of the lifetime of the particle and whole integration time span.

Figure 2. Dynamical evolution of the representatives of the surviving (plane (a)) and dead (plane (b))
particles. From top to bottom panel: semi-major axis a, eccentricity e, inclination i, argument of
pericenter ω, 2/1 critical angle σ, respectively.

Figure 3. Phase-space portraits of 2/1 polar resonance in a− σ plane under three different sets of
parameters (e, ω) (plane (a): e = 0.3, ω = 90◦; plane (b): e = 0.5, ω = 45◦; plane (c): e = 0.95, ω = 0◦).
The variances of the color and contours represent the level of the averaged Hamiltonian in Equation (4).
∆a is the resonant width of dominated libration center.
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As shown in Figure 3, the positions corresponding to the minimum Hamiltonian is
the resonant equilibriums. The resonant width ∆a is defined by the librational amplitude
around the resonant equilibrium. Then, we can obtain the resonant equilibriums and width
of the resonance ∆a. Here, we define the dominated resonant equilibrium as the center
with the larger resonant width. For the cases which have more than one equilibrium, such
as panels a and c in Figure 3, the resonant width ∆a refers to the larger one. Therefore, all of
the dominated libration centers of four cases depicted in Figure 3 are σ = 0◦. For each set
of the grid on the e−ω plane, we plot the phase-space portrait and disturbing function as
in Figure 3. Then, we can obtain the dominated libration centers and resonant width ∆a for
each set of (e, ω). Figure 4 systematically presents the polar 2/1 resonant dynamical map,
including resonant libration center and resonant width. The alpha of markers represents
the resonant width, and the color indicates its dominated libration center. The dominated
libration centers of polar 2/1 resonance are always around σ = 0◦ for all the sets of (e, ω),
which provides an essential guide for our further study of the Kozai mechanism in polar
2/1 resonance. This is the first time that the dynamics of polar 2/1 resonance have been
systematically studied.

Figure 4. The scatter map of the resonant width of polar 2/1 resonance on the e− ω plane. The
filled dots and pentagons represent their corresponding phase-space portraits that have one or two
equilibriums, respectively. The color reflects the position of the libration center. The red means
that the dominated libration center is around σ = 0◦. In other cases, such as interior 2/3 resonance
we will introduce later, there is a blue part, which means its dominated resonant equilibrium is
around σ = 180◦. The alpha of the marker represents the resonant width under the corresponding
parameters. The higher the transparency, the narrower the resonant width.

4.3. Kozai–Lidov Dynamics inside Polar 2/1 Resonance

In our numerical experiments, as shown in Figure 1, resonant particles have a different
destiny, The secular dynamics inside MMR need to be considered to explain the results of
our numerical experiments. As we have introduced in Section 2.2, the secular dynamics
on the e−ω space can be obtained simply by the set a = a0. It has been confirmed that all
the dominated resonant equilibriums are around σ = 0◦ for the polar 2/1 resonance. If we
consider the exact resonance case, the resonant angle is always equal to σ = 0◦. The aver-
aged Hamiltonian can be calculated by Equation (5). If we consider the effect of libration
amplitude σamp of the resonant angle, the averaged Hamiltonian is given by Equation (6).
The phase-space portraits in three different resonant amplitudes (σamp = 0◦, 60◦, 150◦) are
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depicted in Figure 5. Comparing these three portraits, we know that the effects of libration
amplitude can be ignored when the libration amplitude is small. Dynamical evolutions of
several representative particles in numerical integrations are also plotted in panel a. The
solid black dots represent the initial positions of test particles, and the arrows depict the
evolution of unstable particles in numerical integrations. The numerical results correspond
very well with the level curves of the Hamiltonian. Therefore, we use the e− ω portrait
at exact resonance to analyze the Kozai mechanism directly. The most typical dynamics
reflected by the e − ω portrait under exact 2/1 polar resonance are as follows: Firstly,
for the high-eccentric region (around e > 0.5), the ω is limited to oscillations while the
eccentricity will rise to around 1. Therefore, the particles in this high-eccentric region
should be unstable. Instead, the variations in eccentricity are maintained within a small
range, and the ω is in circulation in the lower eccentricity region. Therefore, the particles in
the low-eccentric region should have long-term stability.

Figure 5. Phase-space portraits of Kozai–Lidov dynamics inside the polar 2/1 resonance. The levels
of Hamiltonian in Equation (5) or (6) are plotted on an e−ω plane. The panels (a–c) represent three
different cases (σamp = 0◦, 60◦, 150◦). The thick colored solid lines in panel a represent the several
representative results of numerical integrations. The solid black dots mark the positions of initial
parameters and the arrows indicate the evolution direction of the dying particles.

As some assumptions are made to obtain the one d.o.f approximation of this problem,
the validity of the e−ω portraits above should be checked by the numerical experiments.
Comparing Figures 1, 2, and 5, the secular dynamics given by e − ω can explain the
dynamical evolution of the test particles in the numerical experiments (the existence of
some dead particles in the low-eccentric region can be understood by considering the
effects of resonant amplitude σamp), and thus the e − ω portraits can represent the real
Kozai–Lidov dynamics inside polar 2/1 resonance.

We have investigated the secular dynamics inside polar 2/1 resonance using numerical
integrations and the semi-analytical method by mutual authenticating. As a supplement,
we study the purely polar secular dynamics further to discuss the effects of polar 2/1
resonance. In our numerical experiments, the maximum libration width of polar 2/1
resonance is no more than 0.05 au. We repeat the numerical integrations in Section 4.1
with initial semi-major axis a = a0 + 0.05 while leaving the other parameters unchanged.
The lifetime of 5000 particles is depicted in the left panel of Figure 6. We have checked that
all of the particles are not in 2/1 resonance with perturber. Similarly, the Hamiltonian can
be calculated by numerical averaging all the fast angles λ and λ′ as follows:

Hpure = − µ

4π2k

∫ 2π

0

∫ 2π

0

( 1
|r−r′ | −

r·r′
|r′ |3
)∣∣∣∣

a=a0+0.05
dλ′dλ. (7)

The pure secular dynamics in the e−ω portrait are shown in the right panel in Figure 6.
The dynamics illustrated by the two panels of Figure 6 are in good agreement. Except for
the regions within the collision curve, the eccentricity goes up to 1 and dies out in long-term
evolution, entirely different from secular dynamics inside polar 2/1 resonance. Comparing
the results of Figures 1, 5, and 6, it is clear that the influence of polar 2/1 resonance on
secular dynamics is not negligible.
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Figure 6. Pure secular dynamics of polar orbits outside the 2/1 resonance. (Left panel): The lifetime
ratio of the 5000 particles in numerical integrations. (Right panel): Phase-space portrait of pure
secular dynamics. The levels of Hamiltonian in Equation (7) are plotted on e−ω plane. The thick
black dashed lines denote collision curves with the perturber.

So far, taking the classical 2/1 resonance as an example, we have systematically
studied the polar interior resonance in the model of CRTBP. As a supplement, we analyze
the pure secular dynamics of polar orbits outside the 2/1 resonance and compare them with
the resonant secular dynamics. The importance of polar 2/1 resonance to the long-term
dynamics is demonstrated.

5. Dynamics of Exterior Polar Resonance, the 2/3 Case

Now, we focus on the dynamics of exterior polar resonance except 1/n resonance
(n are positive integers), taking 2/3 as an example. Since the methods are similar to interior
resonance, we mainly present relevant conclusions here.

The polar 2/3 resonant configuration is depicted in Figure 7. The most obvious
difference from the 2/1 resonance (Figure 4) is the emergence of the dominated resonant
equilibriums at σ = 180◦ (corresponding to the blue part in Figure 7) for 2/3 resonance. For
the high-eccentric region where e > 0.7, the dominated resonant equilibriums have libration
centers at σ = 0◦, while in other cases the dominated libration centers are at σ = 180◦.
Therefore, when we analyze the Kozai–Lidov dynamics inside polar 2/3 resonance, both
of the e− ω portraits at σ = 0◦ and σ = 180◦ are required. Figure 8 depicts the lifetime
of 5000 particles in numerical experiments (panel a), and Kozai–Lidov dynamics inside
exact polar 2/3 resonance with σ = 0◦ (panel b) and with σ = 180◦ (panel c). As shown
in panels b and c of Figure 8, the evolutions of several particles in numerical integrations
are depicted and correspond very well with the e−ω portraits. Like the numerical results
of 2/1 resonance, almost all 5000 particles are trapped in polar 2/3 resonance with the
perturber. The unstable particles die due to their eccentricities rising to 1. Combining
Figures 7 and 8, the secular dynamics inside polar 2/3 resonance should be understood as
follows: For the region with eccentricity e < 0.7 where their dominated resonance is around
σ = 180◦, their Kozai–Lidov dynamics are described by the corresponding region (e < 0.7)
in panel c of Figure 8. The ω is circulation, and eccentricity is limited to a small range
of oscillations, so particles in this region are stable in numerical experiments (see panel
a of Figure 8). Conversely, for the high-eccentric region (e > 0.7) where their dominated
resonant equilibriums are at σ = 0◦, their secular dynamics should be understood by
the corresponding region (e > 0.7) in panel b of Figure 8. For the extreme high-eccentric
region, the ω oscillates while eccentricity rises to 1 and leads to instability. The Kozai–Lidov
dynamics inside 2/3 resonance described by e − ω portraits can explain the numerical
phenomena. This further verifies that the phase-space portraits from the semi-analytical
method represent the real secular dynamics inside resonance. As shown in Figure 8a,
there appear to be several low-eccentricity particles (e ≤ 0.4) with very short lifetimes.
The dynamical evolution of these atypical particles is depicted in Figure 9. There are two
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noteworthy features: The eccentricity increases rapidly to 1 and dies out; the critical angle’s
libration center goes from 0◦ to 180◦. Naturally, this phenomenon cannot be explained by
the phase-space portraits with a certain libration center 0◦ or 180◦ (Figure 8b,c). We will try
to make this complicated evolution clear in our future work.

Figure 7. Same as Figure 4, but for polar 2/3 resonance.

Figure 8. (a) Same as Figure 1, but for polar 2/3 resonance. Panel (b,c) are phase-space portraits
of Kozai–Lidov dynamics on e− ω plane under exact 2/3 resonance with libration center σ = 0◦

and σ = 180◦, respectively. The thick colored solid lines represent the numerical results. The solid
black dots mark the initial positions of particles, and the arrows indicate the evolution direction of
unstable particles.

Figure 9. The dynamical evolution of these atypical particles (unstable particles with low eccentricity)
in Figure 8a.
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We have also investigated the dynamics of other exterior polar resonances, such as
2/5, 7/9. They have similar resonant secular dynamics with 2/3 resonance. As for the
exterior polar 1/n resonances, considering the effect of asymmetric libration (σ librates
neither 0◦ nor 180◦) [88–90], there will be some new challenges that need further discussion.
We will try to investigate the dynamics of polar 1/n resonance in our next work.

6. Conclusions

In this paper, we study the dynamical maps of polar resonance and its effect on the
Kozai–Lidov mechanism in the context of CRTBP using numerical and semi-analytical
methods by mutual authenticating. Previous studies on resonance paid little attention to
the perpendicular orbits with inclination i = 90◦. We introduce the action-angle variables
for polar resonances and deduce proper canonical transformations. We can calculate the
Hamiltonian by averaging over the fast angles and plot the level curves of the Hamiltonian
on a e − ω space, which can be used to understand the Kozai–Lidov dynamics inside
polar resonance.

Then, we analyze the polar resonant dynamics of interior and exterior resonances,
taking the 2/1 and 2/3 resonances as examples. The resonant libration centers and width
are studied for each case. The most apparent difference in dynamics of 2/1 and 2/3
resonance is their libration centers. As shown in Figures 4 and 7, the dominated libration
centers are always at σ = 0◦ for 2/1 resonance, while the centers around σ = 180◦

appear in 2/3 resonance. The determination of the resonance center provides the basis for
the following semi-analytical work. The Kozai–Lidov dynamics inside polar resonance
are depicted on the e − ω space as shown in Figures 5 and 8. Evolutions of several
representative particles are also depicted and correspond very well with level curves with
Hamiltonian. We confirm that the moderate libration amplitude of critical angle σamp has
no pronounced effect on e− ω portraits. The lifetime of 5000 particles in resonance are
investigated by numerical integrations in Figures 1 and 8. All of the dead particles are due to
their eccentricities rising to 1. The e−ω spaces can explain the numerical performances for
interior and exterior polar resonances, which demonstrates that the e−ω spaces represent
the real Kozai–Lidov dynamics inside polar resonances. These phase-space portraits of
the Kozai–Lidov mechanism can be used to investigate the long-term evolution of polar
resonant particles. As a supplement, we study the pure secular dynamics outside polar
2/1 resonance, and demonstrate that we cannot ignore the effect of polar resonance on
secular dynamics. In this way, we can also study other resonant secular dynamics. Our
work can be used to understand the dynamics of minor bodies that are in polar resonance
with the planet. It may also help to look for objects with polar orbits in the resonant region
of the planet. We will investigate the dynamics of exterior polar 1/n resonance where the
asymmetric librations may exist in our next work.
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