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Abstract: In the process of crop cultivation, the application of a fertilizer solution with appropriate
pH value is more conducive to the absorption of nutrients by crops. If the pH of the irrigation water
and fertilizer solution is too high, it will not only be detrimental to the absorption of nutrients by
the crop, but will also damage the structure of the soil. Therefore, the precise regulation of pH
in water and fertilizer solutions is very important for agricultural production and saving water
and fertilizer. Firstly, the article investigates the hybrid control of fertilizer and water conditioning
systems, then builds a fuzzy preprocessing controller and a neural network proportional–integral–
differential controller, and optimizes the neural network parameters by means of an improved particle
swarm algorithm. The effectiveness of the controller was verified by comparison with the common
proportional–integral–differential control and fuzzy algorithm control for fertilizer control and fuzzy
preprocessing neural network control. Simulation experiments for this study were designed through
the MATLAB/Simulink simulation platform, and the simulation results show that the algorithm
has good tracking and regulation capabilities in the system. Finally, the four control algorithms
are experimentally validated under different pH regulations using designed field experiments. The
results show that, compared with other control algorithms, the control algorithm in this paper has a
smaller overshoot and good stability with a shorter rise time, which can achieve the purpose of better
regulating the fertilizer application system.

Keywords: water and fertilizer mixing; fuzzy processing; pH control; neural network PID control;
particle optimization swarm algorithm

1. Introduction

Water and fertilizer integration technology is widely used in agricultural production,
in which the concentration ratio and proper application of water and fertilizer are crucial
to the growth of crops [1]. Currently, fertilizer and irrigation water use has gradually
increased worldwide without a proportional increase in crop yields [2]. A qualitative
analysis of fertilizer application methods shows that the main cause of this situation is the
improper distribution of fertilizers, which affects the efficiency of fertilizer uptake and the
normal growth of the crop at all stages. Excessive fertilizer application can also damage
soil structure, affecting the growing environment and survival of crops [3–6]. Therefore, in
order to enhance the rationality of crop growth and the utilization rate of water and fertilizer
resources, and to ensure the normal development and application of agricultural resources,
more accurate and reasonable water and fertilizer blending integration technology should
be adopted to realize the transformation of agricultural technology from being crude
to intensive.

The root systems of different crops require different levels of acidity and alkalinity,
and most mono-textured fertilizers are alkaline; thus, the pH of the fertilizer needs to be
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explicitly adjusted at the fertilizer blending stage [7,8]. However, the process of blending
liquid fertilizer for pH is often affected by factors such as time lag and nonuniformity of
fertilizer delivery, and the variation in liquid fertilizer pH is also nonlinear in nature. There-
fore, fast and accurate adjustment of liquid fertilizer pH to set requirements is an important
research area in precision agriculture [9,10]. The research on pH values mainly includes
algorithm optimization research and fertilizer system pH model building research. The
current modeling research on pH process regulation mainly includes linear and nonlinear
models and artificial intelligence models [11]. In the study of optimization of nonlinear
control, methods such as adaptive regulation, feedback linearized transformation control
and sliding mode control are generally used. Considering that the traditional PID control
strategy has difficulty dealing with the complex nonlinearity and time lag in the control of
water and fertilizer environments, more intelligent algorithms for optimal control need to
be investigated [12].

At this stage, most water and fertilizer controllers use conventional PID control
algorithms internally. However, in the actual fertilizer application process, the fertilizer
concentration and flow rate have a complex impact on the water–fertilizer mixing system,
which leads to problems such as time-varying and lagging system control objects always
existing. The use of PID control algorithms is usually not effective for regulation [13,14]. In
view of this, the authors in [15] used the application of a fuzzy adaptive control to regulate
the water–fertilizer system. The simulation results show that the fuzzy PID adaptive control
method is able to track and regulate the dynamic changes of the nutrient preparation process
more accurately than the traditional PID method. In [16], a single-neuron PID learning
algorithm based on quadratic optimization was proposed for the strongly nonlinear pH
process. The effectiveness of the algorithm was verified by the simulation control results of
the strongly nonlinear pH process. In [17], a self-tuning fuzzy PID control algorithm was
introduced into the control system to regulate the frequency of the fertilizer pump, and
hence, the water and fertilizer through the fuzzy PID control algorithm. An expert system
PID control was developed by the authors in [18]. The parameters of the controller can
be adjusted according to the deviation of the pH value and the deviation rate. Simulation
experiments showed that the expert PID control has good control performance. The authors
in [19] studied and established a grey prediction model for water and fertilizer irrigation
and used MATLAB software to simulate fuzzy PID control in irrigation and fertilizer
application, which effectively improved the accuracy of water and fertilizer concentration
according to experimental verification. The authors in [20] used quantitative feedback
theory, a particle swarm optimization algorithm and a genetic algorithm to optimize PID
control. The nonlinear problem of pH control was optimized. Additionally, the control
performance was verified by simulation experiments. A wavelet-BP neural network-based
method for accurate fertilizer application to maize was proposed in [21]. The accuracy of
the optimal fertilizer amount was improved by establishing a wavelet-BP neural network
to calculate the nonlinear problem of fertilizer application. The authors in [22] used an
incremental PID algorithm to control the water and fertilizer ratios and constructed a
simulation model with online parameter settings using RBF neural networks. According
to the experimental verification, the RBF-PID model was more accurate and stable than
the incremental PID model. The authors in [23] proposed a nonlinear model predictive
control method based on an elastic BP neural network and hybrid grey wolf optimizer.
Simulation results showed that the proposed controller performed well and could reduce
the disturbance caused by nonlinearity.

In summary, the main work carried out in this paper to improve the accuracy and
rapidity of fertilizer pH regulation, based on water and fertilizer integration, is as follows:
(a) An improved neural network controller is proposed which improves control by fuzzify-
ing the inputs and optimizing the network parameters. (b) Particle swarm algorithms are
applied for the optimization of two-layer weight parameters of neural networks. (c) PID
control, fuzzy control, fuzzy neural network PID control and the control proposed in this
paper are simulated and verified on the MATLAB/Simulink platform, and it is concluded
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that the algorithm proposed in this study is better than other control algorithms. (d) In
order to verify the practicality and reliability of the proposed algorithm, the experimental
verification of the data acquisition, the transfer function, and the upper computer reading
and decision controls are designed in this paper, and the results prove that the control
algorithm proposed in this paper has better results and performance compared with other
control methods.

The paper is structured as follows. The first portion of this paper analyses the pH
regulation process and develops a mathematical model of water and fertilization through
the equilibrium equation. In the second part, a fuzzy preprocessing controller and a neural
network controller are constructed, and the neural net controller is optimized using a
particle swarm algorithm. The second part firstly constructs the controller that fuzzily
preprocesses the input signal, then constructs the neural network controller, and finally
uses the particle swarm algorithm to optimize the neural network controller. The third part
compares the control effects of the four control algorithms through software simulation and
experimental verification, and finally obtains the verification results based on the water
and fertilizer system in this study.

2. pH Control Equipment and Control Model
2.1. Equipment System Components

The structure of the water and fertilizer integration control equipment is shown in
Figure 1. When mixing fertilizer, the main control module with a computer as the core
controls the opening and closing time of the solenoid valves at the outlets of the fertilizer
tank, irrigation water source and acid tank, thus regulating the proportion of irrigation
water and fertilizer in the mixing tank. A stirring pump is used to mix the water and
fertilizer in the tank. The fertilizer tank is judged by a pH sensor to determine whether the
pH value of the liquid inside meets the pH value for crop growth, and if not, the solenoid
valve of the acid tank is opened to replenish the tank with acid. Fertilizer application is
carried out mainly through the computer-based main control module, which controls the
fertilizer pump and solenoid valve.
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Figure 1. Water and fertilizer integration and control equipment structure diagram: 1—check valve;
2—flow meter; 3—computer control; 4—water source; 5—solenoid valve; 6—acid tanks; 7—hose
pump; 8—mixing tank; 9—level meter; 10—pH sensor; 11—monitoring and adjustment of the
upper side; 12—pressure gauge; 13—irrigation and fertilization pump; 14—holding valve; 15—drip
irrigation belt; 16—filter; 17—stirring pump; 18—fertilizer tank.
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2.2. Analysis of the Water and Fertilizer pH Adjustment Process

In order to obtain the water and fertilizer mixture, fertilizer and water are fed into the
mixing tank on a cyclical basis. The configuration of aqueous fertilizer mixing solutions
requires the periodic opening and closing of valves to feed fertilizer and water into the
mixing tank. In the actual fertilizer mixing process, in addition to the process of agitation
and mixing, delayed factors such as changes in the flow rate of the liquid in the pipeline
and the use of the monitoring module can introduce time lags into the pH adjustment.

Both water and fertilizer are usually weakly alkaline; thus, an acidic regulating liquid
is required to adjust the pH. When the three liquids of water, fertilizer and a regulating
liquid, are mixed, it can be seen as a neutralization process between a strong acid and a
weak base. The pH of the fertilizer in the mixture is made to be similar to the pH set by
the system. The inherent nonlinearity of the acid–base neutralization process also has an
impact on the pH adjustment process. As the pH adjustment in the actual fertilizer mixing
process is influenced by a variety of variable disturbances, a simplified control model is
developed to analyze it qualitatively from a mechanistic point of view. It is assumed that
the fertilizer drum is fed with raw fertilizer, acid and pure water as inputs to the pH model
so that the fertilizer is rapidly integrated with the water and that the concentration of the
mixed solution is used as an output, and that the mixed fertilizer in the drum is always full
and of the same concentration at the top and bottom, as shown in Figure 2.
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According to the material balance principle and the law of atomic conservation, the
equilibrium state of the system should comply with the conservation of fertilizer and
volume conservation, as to construct the soil conductivity and acidity concentration control
process equation. 

V dH1
dt = La Ha − L1H1

V dx2
dt = LnHn + LwHw − L1H2

L1 = Ln + Lw + La

10−pH − 10pH−14 − H1 +
1

1+10pKb+pH−14 H2 = 0

 (1)

where V is the volume of mixed liquid, La is the acid input flow, Ca is the acid concentration,
Ln is the fertilizer input flow, Hn is the fertilizer concentration, Lw is the water input flow,
Hw is the water input concentration, Lout is the output flow of the system, H1 is the
concentration of acid in the mixture, H2 is the concentration of alkali in the mixture, Kb is
the weak-base ionization equilibrium constant, pKb = − log(Kb), pH is the output variable
of the process, Kb is the ionization constant of the weak base and Kw is the ionization
constant of water (10−14).
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2.3. System Model Building

Considering the control characteristics of the liquid fertilizer pH value control system
comprehensively, the first-order system transfer function and delay link are used to describe
the mathematical model of the fertilizer solution’s pH value. The parameters to be identified
in the model include the system gain K, delay time τ and time constant T. The transfer
function is shown in Equation (2):

G(s) = K
Ts+1 e−τs (2)

Given the step response of pH = 6.5 as the input signal of the open-loop system, the
sampling time interval is set to 1 s, the initial pH value of the mixed liquid is 7.6 and the
step response curve of the system is fitted using the first-order approximation method
of the computer-fitted system according to the data change of the pH value, then it is
identified that the system gain K is 0.56, the delay time τ is 4 and the time constant T is 39.
The pH regulation process has a time lag.

3. Construction of the Control Strategy
3.1. PID Control Algorithms

The block diagram of a conventional PID control system is shown in Figure 3. PID
control is the differential between the actual output signal of the control object and the
given signal for making differences and tracking. The control rate u of the system is derived
from the proportional P, the integral I and the differential D as a means of regulating
the performance indicators of the fertilizer. However, due to the effects of time lag and
nonlinearity in the fertilizer mixing process, the effect of using a PID control strategy to
regulate pH is often unsatisfactory and it is difficult to track the changes in the pH of the
fertilizer solution [24].
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3.2. Fuzzy-BPNN-PID Controller Design

Compared with the PID control algorithm, the fuzzy control algorithm has the ad-
vantages of good robustness, fault tolerance, etc. The operator can set appropriate fuzzy
rules to regulate the output based on the existing knowledge and experience of fertilizer
regulation, and the input signal of the system is targeted to facilitate the control link to
achieve the structured regulation requirements; however, the fuzzy algorithm relies on
simpler fuzzy rules due to the lack of the self-learning capability, which leads to lower
control accuracy and poor dynamic quality of the system, and adaptive regulation cannot
be achieved [25].

Compared with the above two algorithms, the BP neural network control algorithm
has the feature of adaptive learning, meaning that it can learn and adjust adaptively for
the input, complete the adjustment of its own network parameters, and finally, realize
the optimal adjustment of the output signal [26]. The block diagram of the BPNN-PID
controller is shown in Figure 4.
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In order to obtain better control performance, combined with the advantages of the
above fuzzy algorithm and BP neural network control algorithm, we chose to use fuzzy
control to fuzzify and normalize the system state variables e and ec in advance, before
using the BP neural network, to avoid the situation that the output is saturated due to the
excessive direct input when the neural network activation sigmoid function is sampled, and
reduce the situations where the network output is no longer sensitive to the input [27]. Then,
the neural network was used to learn and control the output signal of the fuzzy module, as
to achieve the purpose of accurately adjusting the pH value of water and fertilizer.

3.2.1. Design of Fuzzy Preprocessing Controller

In this paper, The error of pH E and the deviation of change of pH error EC were
selected as input variables for the input of the fuzzy preprocessing control module, and the
fuzzed system output v(k) was taken as the output variable. The role of this module is to
fuzzify and normalize the system state variables e and ec. The error of pH e, the deviation
of change of pH error ec and the output quantity v(k) of the fuzzification processing module
all adopt the triangular membership function, and the area centroid method was chosen as
the clearing method of the fuzzy controller. The controller sets the fuzzy linguistic values
for both the pH deviation e and the rate of change of deviation ec of water and fertilizer as
{NB, NM, NS, ZO, PS, PM, PB}, where NB, NM, NS, ZO, PS, PM and PB represent negative
large, negative medium, negative small, 0, positive small, positive medium and positive
large, respectively. The fuzzy domain takes on the value of the eigenpoints corresponding
to {−6, −4, −2, 0, 2, 4, 6}. The fuzzy language values of the output signal v(k) of the fuzzy
controller are set as {NB, NS, ZO, PS, PB}, and the fuzzy theoretical domain takes the value
points {−4, −2, 0, 2, 4}. The fuzzy control rules for the controller output are shown in
Table 1. The fuzzified output v(k) is determined according to the fuzzy theoretical domain
and the affiliation function, and then the obtained values are sent to the input layer of
the neural network. The subordination functions of the input and output of the fuzzy
processing and the fuzzy surface diagrams between them are shown in Figures 5–7.

Table 1. Fuzzy rule tables based on fuzzy control.

E

EC
NB NM NS O NS NM NB

NB NB NB NM NM NM NB NB
NM NB NB NM NM NM NB NB
NS NM NM NS NS NS NM NB
O NM NM NS NS NS NM NM
PS NM NM NS NS NS NM NM
PM NB NB NM NM NM NB NB
PB NB NB NM NM NM NB NB
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In Figure 5, each triangle is part of the affiliation function. For example, the blue
triangles represent input variables e and ec with a theoretical domain between −4 and 0
and output linguistic variables of NS. The work is based on the theoretical domain of the
input quantities and the area centre of gravity method to determine their output linguistic
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variables. In Figure 6, each triangle is used to determine the output linguistic variable for
the fuzzy variable v(k). For example, the red triangle indicates that the theoretical domain
of v(k) is between −2 and 2 and the output linguistic variable is Z. Figure 7 represents a
surface plot of the fuzzy algorithm design, from which it can be seen that when e and ec
are small, the output is in the yellow peak portion; when e and ec are large, the output is in
the blue low portion; and when the values of e and ec are in the middle of the theoretical
domain, the output is in the green stable portion.

3.2.2. Design of BP Neural Network PID Controller

A BP neural network is a multi-layer, feed-forward neural network, which contains
three layers of a network structure, namely, the input layer, hidden layer and output layer.
The number of nodes in the input and output layers is determined by the dimensionality of
the input vector and output vector, respectively, and the hidden layer plays an important
role in the function and structure of the network [28].

The neural network controller in this paper used a three-layer BP neural network, the
inputs to which are fuzzy-processed system state variables. The network contains three
input layer nodes, nine implicit layer nodes and three output layer nodes. The structure of
the fuzzy preprocessed neural network is shown in Figure 8. The role of each layer of the
neural network and the input–output relationship between the layers are as follows.
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The first layer is the input layer, where the input is the system state variable after fuzzy
processing; the second layer is the hidden layer, and the input is:

net(2)i (k) =
3
∑

j=1
ω
(2)
ij O(1)

j (k)

O(2)
j (k) = f

[
net(2)i (k)

]
(i = 1, 2 · · · · · · 9)

(3)

where ω
(2)
ij is the implied layer weighting factor. f [·] is the hidden layer activation function,

selected as f (x) = tan h(x).
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The final layer is the output layer, with the following inputs and outputs:

net(3)li (k) =
9
∑

i=1
ω
(3)
li O(2)

i (k)

O(3)
l (k) = g

[
net(3)l (k)

]
(l = 1, 2, 3)

O(3)
1 (k) = kp

O(3)
2 (k) = ki

O(3)
3 (k) = kd

(4)

where ω
(3)
li is the output layer weighting factor. f [·] is the output layer activation function,

selected as g(x) = ex/(ex + e−x).
After determining the neural network outputs kp, ki and kd, they are brought into the

incremental PID formula for calculation. The incremental PID control is able to remember
and maintain the state of the system at the previous moment, thus making the impact of
possible errors minimal; therefore, incremental PID is used to obtain the optimal control
signal, and the incremental PID formula is:

∆u(k) = KP[e(k)− e(k− 1)] + KIe(k)
+KD[e(k)− 2e(k− 1) + e(k− 2)]

u(k) = u(k− 1) + ∆u
(5)

where ∆u(k) is the control signal increment and k is time; kP is the proportionality factor; ki
is the integration factor; and kd is the differentiation factor.

4. Improved PSO-Optimized Fuzzy-BPNN Control Algorithm

The learning process of a BP neural network consists of continuously adjusting the
weighting parameters of each layer of the network and then using the weighting coefficients
to calculate the optimal control parameters. Therefore, the BP neural network needs to learn
and continuously update the weighting coefficient matrix of each layer of the network.

4.1. BP Neural Network Weight Coefficient Update

According to the BP learning algorithm, first define the objective cost function J:

J = 1
2 e2(k) = 1

2 [r(k)− y(k)]2 (6)

After determining the target cost function J, perform a negative gradient direction
search with the objective of minimizing the target function J, with an additional inertia
term that accelerates the convergence of the search to a global minimum as follows:

∆ω
(3)
li (k + 1) = −η

∂u(k)

∂ω
(3)
li

+ α∆ω
(3)
li (k) (7)

where η is the learning rate; α is the inertia coefficient.
The correction formula for the weighting coefficient of the output layer of the BP

neural network is further obtained as:
∆ω

(3)
li (k + 1) = ηδ

(3)
l O(2)

i (k) + α∆ω
(3)
li (k)

δ
(3)
l = e(k + 1)sgn

(
∂y(k+1)

∂u

)
× ∂u(k)

∂O(3)
l (k)

(l = 1, 2, 3)

× g′
[
net(3)l (k)

]
(8)
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Based on the above derivation, the correction formula for the implied layer weighting
factor can be obtained as follows:

∆ω
(2)
ij (k + 1) = ηδ

(2)
i O(1)

j (k) + α∆ω
(2)
ij (k)

δ
(2)
i = f ′

[
net(2)i (k)

] 3
∑

l=1
δ
(3)
l ω

(3)
li (k)(i = 1, 2, · · · 9)

(9)

which sets up: g′(x) = g(x)[1− g(x)]; f ′(x) =
[
1− f 2(x)

]
/2.

Therefore, the workflow of the Fuzzy-BPNN-PID controller can be summarized as
follows: Set the initial values of the network parameters of each layer of the BPNN, as
well as the learning rate and inertia coefficient of the network; use the fuzzy controller
to fuzz the acquired e and ec; input the fuzzified output v(k) to the BPNN; then, calculate
the input and output of each layer of neurons through the BPNN; and finally, calculate
the three adjustable parameters kp, ki and kd of the PID controller, which are calculated by
Equation (5). The output control signal is u(k). The system continuously updates u(k) and
the network weight parameters according to the updates of e and ec. The control schematic
is shown in Figure 9.
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4.2. Improved Particle Swarm Algorithm

The optimization search process of the Fuzzy-BPNN-PID controller is as follows:
firstly, the fuzzy rules are used to preprocess the two input signals e and ec; then, the
fuzzy processed and normalized signals are fed into the neural network for training and
learning; and finally, the optimal output control signal and the corresponding network
weight parameters are obtained. However, the initial weight parameters for each layer of
the BP neural network are usually chosen as random numbers of [−1, 1], and choosing
random numbers as the initial values causes the algorithm to converge slowly, greatly
affecting the training efficiency of the network and causing the algorithm to converge to
local extremes [29]. Therefore, in order to obtain better network training accuracy, this
paper used the particle swarm algorithm to calculate and find the optimal parameters as the
initial network weights of the BP neural network, as to improve the iterative convergence
speed of the network and the efficiency of finding the optimal control signal.

4.2.1. Standard Particle Swarm Algorithm

The particle swarm algorithm (PSO) is an algorithm for population intelligence opti-
mization. It works by constructing a population of M particles in a D-dimensional space,
where each particle represents a potential optimal solution to the desired value. The system
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sets each particle (i = 1, 2, . . . , M) to have a position parameter xi and a velocity parameter
vi, as well as a fitness value obtained according to the objective function. The particle
evaluates the individual optimal position Pk

id and the population optimal position Gk
id of the

particle based on the fitness value, and each time the particle is updated, it obtains a new
fitness value as well as Pk

id and Gk
id, thus gradually finding the historical optimal position

Pk
id of the particle and the historical optimal position Pk

gd of the particle population [30].
The updated iterative equation is calculated as:

Vk+1
id = ωVk

id + c1r1

(
Pk

id − Xk
id

)
+ c2r2

(
Pk

gd − Xk
id

)
(10)

Xk+1
id = Xk

id + Vk+1
id (11)

where ω is the inertia weight; d = 1, 2, . . . , D; i = 1, 2, . . . , M; Vid is the velocity of the particle;
c1 and c2 are acceleration factors; and r1 and r2 are random numbers in the interval [0, 1].

When using the PSO algorithm for parameter optimization, the performance evalua-
tion index of the fitness function needs to be specified. The purpose of the algorithm in this
paper is to reduce the value of deviation; therefore, this paper selected the time multiplied
by the absolute value error integral criterion index as the fitness function J of the particle
swarm algorithm, and the calculation formula is:

J =
∫ n

0 t·|e(t)|dt (12)

where n is the total number of iterative steps of the particle swarm.

4.2.2. Improved Particle Swarm Algorithm

The inertia weight ω has a balanced role in the global search for the optimal and
development direction of the particle swarm algorithm and has an important impact on the
performance of the algorithm. The adjustment of the inertia weight has a strong correlation
with the number of iterations of the algorithm, and the inertia weight tends to decrement
nonlinearly with the increase in the number of iterations; if the particles enter the optimal
solution range during the iteration but the inertia coefficient does not reach the expected
value due to the decrement, the particles deviate from the optimal. If the particle enters the
optimal solution range during the iteration but the inertia coefficient does not reach the
expected value due to decreasing, the particle deviates from the limit of the solution [31]. In
order to make up for the shortcomings of the inertia weight parameter adjustment strategy,
this paper improves the inertia weights of the particles with the expression:

ω = ωmin − (ωmax−ωmin)×( fi− fz)
3( fa− fz)

(13)

where ωmax is the maximum value of the set inertia weight; ωmin is the minimum value
of the set inertia weight d; fi is the current fitness value of the ith particle; fa is the
average fitness value of the population particles; and fz is the optimal fitness value of the
current particle.

Equation (13) shows that the value of ω is dynamically adjusted according to the
difference between the particle runtime fitness value and the optimal fitness, thus improving
the performance of the algorithm.

4.3. Fuzzy-BPNN Optimal Control Algorithm Based on Improved Particle Swarm

The main principle of the improved particle swarm-based Fuzzy-BPNN-PID control
algorithm is that the initial weights of the BP neural network can be optimized accurately
and quickly by introducing an improved particle swarm algorithm with an inertia weight
adjustment strategy to improve the search efficiency of the network. At the same time, the
state variables at the input of the neural network are fuzzily preprocessed to reduce the
output of the network, which is insensitive to the input and easy to saturate. The steps are
as follows:
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(1) Initialization of particle swarm, where parameters such as population size, particle
dimension, number of iteration steps, initial inertia weight and learning factor are set
according to neural network factors.

(2) Using the global search capability of the particle swarm algorithm, the approximate
optimal solution of the network weight parameters is preferentially obtained, and the
particles are updated according to the particle fitness. If the particle swarm meets the
requirements of the optimal fitness value, the corresponding network parameters are
transmitted to the BP network.

(3) The BP neural network uses the network weights of the improved particle swarm op-
timization to process the fuzzy preprocessed signal, updates the network parameters
through back propagation, and finally, outputs the optimal kp, ki and kd, which are
calculated according to the incremental PID formula that also calculates the control
signal u(k). Its control principle diagram is shown in Figure 10.
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When the IPSO algorithm is used to obtain the network weight parameter matrix,
the particle swarm population size is M = 20, the number of iteration steps is N = 100,
the learning factor is c1 = c2 = 2, the initial inertia weight is ω0 = 0.9, the particle velocity
interval is set to [−5, 5], the structure of the neural network in this paper is 3-9-3 and
the number of adjustable network parameters is 2 × 3 × 9 = 54; therefore, the particle
dimension D = 54 is set, and each dimension represents a variable-adjusted parameter.

5. Simulation Experiment of pH Control of Fertilizer Solution

In order to verify the performance of the composite control scheme, the Simulink
simulation interface of the fuzzy controller was first designed through MATLAB, and then
the BP-PID control algorithm based on PSO optimization was written using the S-function
module of the Simulink module. PID control, fuzzy control, BPNN-PID control with
fuzzy preprocessing and BPNN-PID control system models based on improved PSO and
fuzzy preprocessing were established in MATLAB/Simulink, as shown in Figure 11. The
workflow of the model running is shown in Figure 12. The pH value of pure water was 8,
the acid used to adjust pH was dilute hydrochloric acid with a concentration of 0.2 mol/L,
the flow rate of water entering the mixing tank was 1.1 L/s and the system delay time
was 4 s.
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The pH value of the fertilizer solution was tracked with a simulation time of 1000 s;
the tracking curves of different control algorithms are shown in Figure 13. According to
Figure 13, it was found that the PID controller has a fast response but a large overshoot,
the fuzzy control has a small overshoot but a slow rise time, the fuzzy neural network
controller has a faster response time but there is still a certain amount of overshoot, and
the IPSO-Fuzzy-BPNN-PID controller has a faster response time with a small overshoot
and can respond to changes in the set pH value in a short time. Compared with the other
three control algorithms, it is more conducive to improving the accuracy of the fertilization
process. In theory, this composite controller could optimize the pH regulation of fertilizers
and water. In order to further analyze the optimization performance of the controller in
this paper, the process of adjusting the pH value of the water and fertilizer mixture from
7.5 to 6.5 was simulated according to the actual situation. The simulation time was 500 s.
The control curves of several control algorithms are shown in Figure 14. According to
Figure 14, the fuzzy control and PID control have the largest response time and overshoot,
respectively, and the fuzzy neural network response is faster, but there is a certain amount
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of overshoot over a period of time. The performance parameters of the four algorithms
are shown in Table 2. From Table 2, it was found that in terms of overshoot amount, it is
reduced by 7.0, 2.0 and 1.7 percentage points compared to the first three algorithms. The
steady times are reduced by 60 s, 235 s and 88 s. The IPSO-Fuzzy-BPNN-PID controller
performed well in terms of overshoot and response time, and was able to reach the set pH
value in a short time. In the next phase, the algorithm is tested.
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Table 2. Comparison table of performance parameters of four control algorithms.

The Controller
Type Rise Time (s) Peak Time (s) Steady-State

Time (s)
Maximum

Overshot (%)

PID 5 9 80 7.9%
Fuzzy 80 122 255 2.9%

FBPNN-PID 9 14 108 2.6%
IPSO-FBPNN-

PID 11 13 20 0.9%

6. Tests and Analysis

In order to confirm the stability of the algorithm, intelligent fertilization trials were
carried out. The schematic diagram of the test device structure is shown in Figures 15 and 16.
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The test system structure mainly consisted of a main control module, a signal transmission
module, a sensor monitoring module and a drive module. The main control module was
mainly composed of a computer, PLC controller and touch screen configuration interface.
The signals were transmitted via an RS485 bus. The drive control module was divided
into the fertilizer-proportioning drive module and irrigation control drive module. The
tests took the set pH value as input value and used PLC as the control core to receive the
actual feedback signal from the pH sensor and perform calculations. When blending the
fertilizer, the system master control module controlled the fertilizer output frequency of the
fertilizer-proportioning drive module by changing the analogue voltage signal, controlled
the input volume of the regulating liquid as it was added to the mixing tank according to
the calculated volume and completed the mixing, and the system maintained a stable state
when the pH reached the set value.
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The control algorithm used float accuracy with a sampling period of 2 s. Two groups
of pH adjustment processes were set up; the initial pH values of the two water and fertilizer
regulation tests were 7.1 and 6.9, respectively, the target pH values of the water and fertilizer
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regulations were adjusted to 6.3 and 5.3, respectively, and an electromagnetic flow meter
was selected to determine the instantaneous flow rate. The variable control test was read by
sensors and data acquisition cards to test and compare different control strategies, setting
the system flow rate to 4 m3/h. The purpose of conducting this test was to regulate the
accuracy of fertilizer pH control by the four controllers. The results of the test comparison
are shown in Figures 17 and 18. The indicator performance of the four controllers is shown
in Tables 3 and 4. As can be seen from Figures 17 and 18, as the fertilizer flow rate increased,
the performance of all four controllers gradually improved. Although the PID controller
rose faster, it had the highest overshoot and a longer oscillation time, with a larger difference
to the set pH value in a short time. The fuzzy controller had a smaller overshoot, but the
response time was slow and could not keep track of the set pH value in time. The fuzzy
neural network controller was considerably higher in rise time, overshoot and adjustment
time compared to the first two controllers, but it had a significantly higher overshoot than
the controller proposed in this paper, with the performance parameters tabulated as shown
in Table 3. When the pH value was reduced from 7.1 to 6.3, the control proposed in this
paper was the smallest in both overshoot and steady-state time. In terms of overshoot, the
reductions compared to the first three algorithms were 8.1, 4.6 and 1.5 percentage points.
In terms of steady time, the reductions were 39 s, 120 s and 34 s.
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Table 3. Table of performance parameters for pH from 7.1 to 6.3.

The Controller Type Rise Time (s) Peak Time (s) Steady-State Time (s) Maximum Overshot (%)

PID 5.5 7.7 52 8.2%
Fuzzy 75 99 133 4.7%

FBPNN-PID 8.4 15 47 1.6%
IPSO-FBPNN-PID 10 12 13 0.1%

Table 4. Table of performance parameters for pH from 6.9 to 5.3.

The Controller Type Rise Time (s) Peak Time (s) Steady-State Time (s) Maximum Overshot (%)

PID 6 8.4 42 13.8%
Fuzzy 58 88 134 5.6%

FBPNN-PID 9 14 50 3.5%
IPSO-FBPNN-PID 11 13 22 0.2%

The pH value was reduced from 6.9 to 5.3, with the performance parameters shown
in Table 4. Compared to the first three algorithms, the controller in this paper reduced
the amount of overshoot by 13.8, 5.4 and 3.3 percentage points. The IPSO-FBPNN-PID
controller can, therefore, respond to the set pH value in a short time with minimal overshoot
and can meet the control requirements.

7. Conclusions

In this study, a neural network PID controller with improved particle swarm optimiza-
tion network parameters and fuzzy preprocessed input signals was proposed to achieve a
better response to the problems of nonlinearity and hysteresis of the fertilizer system and,
thus, improve the accuracy of pH regulation of the fertilizer solution.

Through the simulation and practical application of pH control in the aqueous fertilizer
solution, the excellent dynamic performance of the controller in this paper was verified step
by step by comparing the data of response time, regulation time, rise time and overshoot of
the four controllers with the current common control methods (PID control, fuzzy control)
and fuzzy preprocessed neural network PID control.

The experimental results showed that the BP neural network PID algorithm based
on improved particle swarm and fuzzy preprocessing optimization had better dynamic
performance. Compared to the other three algorithms, the IPSO-FBPNN-PID control
algorithm was significantly better in terms of overshoot and steady-state time. Additionally,
the steady-state performance was also better. This controller is able to reduce the effects of
time lag and nonlinearity in the actual fertilizer application process, which can produce
better satisfying results in the work of fertilizer pH-worthy regulation within the fertilizer
application system. In the future, the optimization of other intelligent algorithms and the
combination of advantages with each other will also be further considered to greatly adapt
to more complex regulation processes.

Author Contributions: This study was conceptualized by R.Z. and L.Z. The software was designed
by R.Z. and validated by Z.M., C.D. and C.F. R.Z. provided resources and R.Z. curated the data.
The original draft of the manuscript was prepared by R.Z. and C.F. H.W. reviewed and edited the
manuscript. C.D., Y.S. and H.B. assisted with project administration. H.W. and Z.M. managed
funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 52065055, and Provincial and Ministerial Projects No. 2021JS004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2022, 12, 7383 18 of 19

Data Availability Statement: All relevant data presented in the article are stored according to
institutional requirements and, as such, are not available on-line. However, all data used in this
manuscript can be made available upon request to the authors.

Acknowledgments: We are grateful to Changxin Fu, Zihao Meng and Huan Wang for their data
recording and checking work during the process. We are also grateful to Chanchan Du, Yongchao
Shan and Haoran Bu for their help in project management. We also thank Shihezi University for
providing the experimental conditions for us to successfully complete this experiment. Finally, we
thank the instructor for his constructive comments on the earlier version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ortas, I. Influence of potassium and magnesium fertilizer application on the yield and nutrient accumulation of maize genotypes

under field conditions. J. Plant Nutr. 2018, 41, 330–339. [CrossRef]
2. Anthony, P.M.; Malzer, G.L.; Sparrow, S.D.; Zhang, M. Corn and Soybean Grain Phosphorus Content Relationship with Soil

Phosphorus, Phosphorus Fertilizer, and Crop Yield. Commun. Soil Sci. Plant Anal. 2013, 44, 1056–1071. [CrossRef]
3. Wang, H.F.; Takematsu, N.; Ambe, S. Effects of soil acidity on the uptake of trace elements in soybean and tomato plants.

Appl. Radiat. Isot. 2000, 52, 803–811. [CrossRef]
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