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Abstract: Given the problems of low accuracy and complex process steps currently faced by the field
of fault diagnosis, a fault diagnosis method based on multi-sensor data weighted fusion (MSDWF)
combined with depth-wise separable convolutions (DWSC) is proposed. The method takes into
account the temporal and spatial information contained in multi-sensor data and can realize end-
to-end bearing fault diagnosis. MSDWF is committed to comprehensively characterizing the state
information of bearings, and the weighted operation of the multi-sensor data is to establish the
interactive information to tap into the inline relationship in the data; DWSC equipped with residual
connection is used to realize the decoupling of the channel and spatial correlation of the data. In order
to verify the proposed method, the data obtained by a different number of sensors with weighted
and unweighted states are used as the input of DWSC, respectively, for comparison, and finally,
the effectiveness of MSDWF is verified. Through the comparison between different fault diagnosis
methods, the method based on MSDWF and DWSC shows better stability and higher accuracy.
Finally, when facing different experimental datasets, the method has similar performance, which
shows the stability of the method on different datasets.

Keywords: bearing fault diagnosis; depth-wise separable convolutions; multi-sensor data fusion;
data weighting

1. Introduction

With the improvement of the degree of mechanization, mechanical equipment failure
has become a problem that cannot be ignored and will bring significant safety accidents
and economic losses. A large proportion of all mechanical equipment failures are caused
by bearing failures [1]. In industry, bearings, as one of the essential parts of machines,
are often used in a variety of mechanical equipment. They are often faced with complex
working conditions, which results in various types of bearing failures. To avoid mechanical
equipment damage caused by bearing faults, more and more scholars pay attention to
bearing fault diagnosis [2–4].

For many years, many effective methods have been put forward in the research of
fault diagnosis [5–7]. Poongodi et al. [8] collected the sound signals of gears under different
loads and speeds and extracted kurtosis, root means square (RMS), standard deviation
(SD), and other distinctive features of the signals from the different signal domains to
identify the faulty of the gear. Wang et al. [9] proposed to obtain prominent features
to construct the initial feature set, then t-distributed Stochastic Neighbor Embedding
(t-SNE) and other methods were applied to reduce the correlation of the initial features
and characterize the local information of the dataset, and finally input the obtained low-
dimensional sensitive feature subset into the k-nearest neighbor classifier (KNNC) for fault
classification. Obviously, the methods mentioned above have cumbersome steps of feature
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extraction, which greatly lower the efficiency of fault diagnosis and cannot be widely
applied and keep up with the fast technological development.

With the vigorous development of computer techniques, deep learning (DL) rises
in response to the proper time and conditions, and so fault diagnosis combined with DL
has become popular [10–12]. Zhao et al. [13] proposed to combine convolutional neural
networks (CNN) with batch normalization (BN) and the exponential moving average
technology to solve the problems of complex working conditions and imbalanced datasets.
The method has good accuracy and robustness. Zhao et al. [14] proposed to embed soft
thresholding into the structures as nonlinear transformation layers to remove noise effects
and integrate specific neural networks (NN) to adaptively adjust the threshold, which
effectively improved the ability of feature learning to previous DL methods and obtain
high accuracy for fault recognition of vibration signals in high noise environments. Liang
et al. [15] integrated dilated convolution network with a residual connection to process
time domain vibration signals. The above methods combined with DL promote efficiency
and decrease the complicated procedures of fault diagnosis. However, it only utilizes the
signal of a single state or a single sensor for fault diagnosis, which makes it difficult to fully
express the rich features contained in the raw signal.

In some studies, scholars have proposed methods combining the data fusion method
and DL for fault recognition [16–18]. Mao et al. [19] propose to combine the signal in-
formation from three domains into the matrix with three rows and input the matrix to a
pre-trained VGG-16 model, which can distinguish the different bearing defects precisely
and achieve the online monitoring of early bearing failure effectively. Li et al. [20] pro-
posed to extract permutation entropy (PE) from multi-sensor data and input multiscale
permutation entropy (MPE) into multi-channel CNN (MCCNN). Jing et al. [21] proposed
an adaptive data fusion method based on multi-sensor data and different fusion levels.
Min et al. [22] proposed to input the data obtained from multiple sensors into CNN to
accomplish the end-to-end fault diagnosis.

The above research on multi-sensor and multi-state data fusion has achieved many
successes and raised the fault diagnosis accuracy to some extent. However, there are the
following problems: (1) It is not considered that the interference information produced
by the strong noise and variable working conditions will distort the signal, and the weak
features will be drowned. (2) MCCNN utilized to process multi-sensor or multi-state data
does not achieve complete decoupling of the channel and spatial correlation [23]. Based
on the above reasons, the paper proposes the method of bearing fault diagnosis based
on DWSC and MSDWF. The general idea of the method is as follows: the time series
data obtained by different sensors are weighted by the self-attention method (SAM). The
similarity matrix of time series data is extracted from the data themselves by SAM to
achieve the weighting of the original data, which strengthens the weak features in the
signal and weakens the influence of the interference information caused by the strong noise
and variable working conditions. DWSC equipped with residual connection is to perform
depth-wise convolutions (DWC) and point-wise convolutions (PWC) on the weighted
multi-sensor data. Among them, the DWC uses a convolution kernel to process the data of
one sensor to realize the decoupling of channel correlation, and then PWC is used to process
all data. Through the affine transformation of the features, PWC not only decreases the
number of parameters involved in the whole operation but also realizes the decoupling of
spatial correlation. In MCCNN, one convolution kernel is used to process data of multiple
channels, so only incomplete decoupling of the channel and spatial correlation can be
achieved, which is the most significant difference between them. The method based on
MSDWF and SAM obtains the utmost out of the spatial and temporal information in
multi-sensor data and can realize end-to-end fault diagnosis effectively and efficiently.
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2. Basic Method
2.1. SAM

SAM is the unique attention mechanism (AM) that is the theory in natural language
processing (NLP). AM is to imitate the way humans think when they observe things [24].
That is, when people observe things, to fully use computing resources, they will automati-
cally ignore unimportant information and focus more on information that is more important
to the target. Its essence is a method of data weighting. By increasing the weighting of
important information and reducing the weighting of interference information, limited
computing resources can be reasonably utilized to process the information efficiently. The
mathematical expression for the method is as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

where Q represents Query, that is, the information of the entire text, K represents Key, that
is, the prompt information of the text, V represents Value, that is, the content obtained
according to the prompt information, and

√
dk represents the length of the text information,

which is a scaling factor used to normalize data.
SAM is unique AM that calculates the similarity between data located at different

positions in the vector to obtain the intrinsic relationship between these data. In the SAM, the
value of Q is equal to K and V. The original input vector is used to obtain the inline relationship
between its data. In SAM, QKT represents that the original input vector is multiplied by its
transposed vector to obtain a similarity matrix. In the matrix, each row represents the similarity
between data at different positions in the vector, as shown in Figure 1.
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The matrix is scaled by the scaling factor
√

dk and normalized by Softmax to make
the sum of data in each row of the matrix one. The resulting matrix is the weighting matrix,
as shown in Figure 2.
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In the end, the weighting matrix is multiplied by the original input vector to obtain
the final weighted vector.

2.2. Depth-Wise Separable Convolutions

DWSC is an improved convolution model for MCCNN. It consists of DWC and PWC,
by which the channel and spatial correlation are completely decoupled, and better diagnosis
results are achieved [25].



Appl. Sci. 2022, 12, 7640 4 of 17

In DWSC, DWC is to convolve each sensor data independently. That is, a convolution
kernel calculates only the data of one channel, thereby realizing the mapping of cross-
channel correlation and decoupling the channel correlation. Therefore, the number of
input and output channels is equal, and then the data are processed by PWC for the next
operation. The size of the convolution kernel in DWC is generally 3 × 3.

PWC is processed by the 1 × 1 convolution kernel on all channels simultaneously,
which realizes the mapping and decoupling of spatial correlation and can also reduce
the number of parameters involved in the whole operation. DWSC achieves complete
decoupling of cross-channel and spatial correlations through DWC and PWC. In MCCNN,
a convolution kernel usually processes data of multiple channels, which decouples cross-
channel and spatial correlation to a certain extent but does not achieve complete decoupling,
which is the most significant difference between the two methods. The specific comparison
between the two methods is shown in Figure 3.
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It should be noted that the sequence of 1 × 1 convolution and 3 × 3 does not affect the
performance of DWSC. The paper uses the operation sequence of the first DWC.

3. Proposed Method Based on MSDWF and DWSC

The proposed basic structure based on MSDWF and DWSC is shown in Figure 4. Its
structure consists of SAM, DWSC equipped with a residual connection, convolutions, BN,
pooling, and Sigmoid, and a fully connected layer (FCL). The bearing vibration signal
is a time series vector, and its internal data have an extremely high correlation. For the
multi−sensor vibration signals obtained by different sensors, SAM is first used to find out
the associated information between the internal data of the vibration signal and strengthen
the interaction information between the data to obtain the signal sequence with more
obvious characteristics. Then, the weighted data of each sensor are convoluted by DWC
respectively to fully extract the unique features and realize the decoupling of the channel
correlation of the multi−sensor data. Then the output results are processed by PWC to
obtain the spatial features hidden in the multi−sensor data and to completely decouple the
spatial correlation. The detailed fault diagnosis structure based on MSDWF and DWSC can
be seen as follows:
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Step 1: Sensors are arranged at different positions of mechanical equipment to obtain
vibration signal information at different spatial positions. When the number of sensors
arranged is n, the obtained vibration data can be indicated as S = {s, s2, . . . , sn}, where
si represents the data obtained by the ith sensor.

Step 2: The data obtained by each sensor are input into SAM for weighting, in which a
group of sensor data as a vector sequence is weighted, and the weighted data can be expressed
as w = {w1, w2, . . . , wn}, where wi represents the weighted data of the ith sensor.

Step 3: The weighted data are divided into two sets for training and test, and then
the training data are input into DWSC to realize the decoupling of channel correlation
and spatial correlation. After that, the rich features extracted by DWSC are subject to a
series of operations such as convolution, BN, pooling, and Sigmoid to characterize the
advanced features further. Then, FCL is used to process the obtained advanced features
for classification.

Step 4: The test data are input into the trained model for testing and to obtain the test
results and analyze the results.

Step 5: The different comparative experiments were carried out to verify the ad-
vantage and performance of the method proposed in the paper, and the contrast results
were analyzed.

4. Experiment Validation

In order to thoroughly verify the performance of the model proposed, two types of
bearing datasets were used for verification. The first type of dataset is the vibration signal of
the rolling bearing from Case Western Reserve University (CWRU). The second type is the
accelerated life experimental data of the rolling bearing from the rotor bearing laboratory
of Xi’an Jiaotong University (XJTU). The two experiments were conducted to compare the
differences in fault diagnosis results between the different number of sensors, weighted
and unweighted data, and other fault diagnosis methods.

4.1. Case 1: Bearing Fault Diagnosis Based on CWRU Bearing Datasets
4.1.1. Experiment Setup and Data Description

The experimental equipment of CWRU is shown in Figure 5. It consists of a power
meter, a torque sensor, an acceleration sensor, and a 2-horsepower motor. In the experiment,
three sets of sensor data were obtained by placing the sensors at the motor supporting base
and at the twelve o’clock direction of both the fan end (FE) and drive end (DE) of the motor
housing. By electro discharge machining, 7, 14, and 21 mils diameter faults were introduced
to SKF bearings. The faults were located in three, six, and twelve o’clock directions of the
inner race, ball, and outer ring, respectively. The sampling frequency is 12 K and 48 K.
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For the original multi-sensor data, the SAM is used to weight them first to obtain the 
time series data with more obvious features, which is to facilitate the subsequent convo-
lution operation to extract more typical and representative features. As shown in Figure 
7, the outer race fault data with no motor load and the fault diameter of 7 mils are selected 
to compare the time domain graphs of the unweighted and weighted. By comparing the 
time domain graphs composed of the first 1024 points of the data in Figure 7a,d, it can be 
observed that by weighting, the waveforms of the data with high similarity in the signal 
become more unified, the characteristics of the signal become more obvious, and the over-
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Figure 5. The experimental platform of CWRU.

The data used in the experiment are one of DE with the sampling frequency of
12 K. The ball pass frequency on the outer race (BPFO) of the experimental bearing is
104.56 Hz, ball pass frequency on the inner race (BPFI) is 157.94 Hz, and ball spin frequency
(BSF) is 137.48 Hz. The selected fault types are inner race, ball, and outer race faults in the
six o ‘clock direction. The selected fault diameter is 7 and 14 mils diameter faults, and
the motor load is 0 and 1 horsepower (HP). There are nine different failure types in the
experiment. Each type of bearing failure can be seen in Figure 6. A total of 2700 samples
were selected from three sets of sensor data with 1024 data as one sample, and the number
of samples in each set of sensor data is 900. In order to verify the proposed method, three
samples were selected from three sets of sensor data, respectively, and the three selected
samples were merged into a matrix with three rows and 1024 columns. That is, the number
of the new sample is 900, of which 80% were used for training and 20% for tests. A detailed
and specific description of the data used in the experiment of CWRU is listed in Table 1.
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Table 1. Experimental datasets of CWRU.

Location Inner Race Ball Outer Race@6

Diameter (mil) 7 14 14 7 14 14 7 14 14

Label 0 1 6 2 3 7 4 5 8

Motor Load (hp) 0 1 1 0 1 1 0 1 1

Train 80 80 80 80 80 80 80 80 80

Test 20 20 20 20 20 20 20 20 20

For the original multi-sensor data, the SAM is used to weight them first to obtain
the time series data with more obvious features, which is to facilitate the subsequent
convolution operation to extract more typical and representative features. As shown
in Figure 7, the outer race fault data with no motor load and the fault diameter of
7 mils are selected to compare the time domain graphs of the unweighted and weighted.
By comparing the time domain graphs composed of the first 1024 points of the data in
Figure 7a,d, it can be observed that by weighting, the waveforms of the data with high
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similarity in the signal become more unified, the characteristics of the signal become more
obvious, and the overall waveform of the signal becomes more regular and symmetrical.
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4.1.2. Model Parameters and Results Analysis

The data weighted by the SAM are input into DWSC for DWC and PWC, as well
as the subsequent convolution, BN and pooling, Sigmoid, and classification. The model
parameters are given in Table 2. The results of training and testing of the proposed model
on CWRU datasets are shown in Figure 8. Figure 8a,b show changes in the accuracy and
loss of training and testing datasets with epoch, respectively. As can be seen in Figure 8,
when the epoch is about 15 times, the model basically reaches convergence, and the change
of accuracy and loss tends to be basically stable. The highest fault diagnosis accuracy rate
is 100%. Figure 8c,d are the visualization results by t-SNE, Figure 8c is the visualization
graph of the training result, and Figure 8d is the visualization graph of the test result. It can
be seen that diverse fault types are almost perfectly separated in Figure 8c,d. Figure 8e,f
are the confusion matrix of the training and test results. It can be observed that for the
nine fault types, the proposed model can identify and classify them perfectly, and the
recognition accuracy of each type of fault is 100%.

4.1.3. Comparison between Different Number of Sensors

To further test the performance of MSDWF, the signals obtained by different numbers
of sensors were input into DWSC to compare the fault diagnosis accuracy. Each sensor data
have two states: weighted and unweighted. That is, a total of seven different curves are
shown in Figure 9. It can clearly be seen that the weighted single sensor data have higher
accuracy and faster convergence rate than the unweighted data and the weighted data
fusion of all sensors has the highest accuracy, fastest convergence rate, and best stability,
which indicates the superior performance and advantages of the method. In addition,
the t-SNE visualization results of different kinds of input data are shown in Figure 10.
Figure 10a–c are the visualization results of the weighted data of the base sensor, FE sensor,
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and DE sensor, respectively, which show a high degree of separation for each fault type,
but a small part of the different fault types is still mixed; Figure 10d–f are the visualization
results of the unweighted data, and it can be observed that the most of all the fault types are
mixed. Compared with the weighted data, there is no good recognition between various
types of faults of unweighted data; Figure 10g is the t-SNE visualization result of the
weighted data of all sensors, and there is the highest degree of separation for each type of
bearing fault.

Table 2. Structure and parameters of DWSC and other layers.

Layer Structure Parameters Title 4

1 Depth-wise separable
convolutions

Channel = (3, 3)

Batch size = 32
Initial learning

rate = 0.01
MaxPool = (1, 2)
Dropout = 0.5

Ceil mode = True
Optimizer = Adam

Test sample
rate = 20%

Kernel size = (1, 3)

2 Point-wise separable
convolutions

Channel = (3, 16)
Kernel size = (1, 1)

3 Conv1 + BN1
Channel = (16, 32)
Kernel size = (1, 3)

4 Conv2_1 + Conv2_2 + BN2
Channel = (32, 64), (64, 128)

Kernel size = (1, 3), (1, 5)

5 Conv3 + BN3
Channel = (128, 128)
Kernel size = (1, 3)

6 Conv4 + BN4
Channel = (128, 32)
Kernel size = (1, 5)

7 Conv5 + BN5
Channel = (32, 1)

Kernel size = (1, 1)

8 Linear
Input = 128
Output = 9

4.1.4. Comparison between Different Methods

To test the differences between DWSC and other methods, such as Resnet, DCNN,
ShuffleNet, MCCNN, and boosting type of integrated algorithm Light Gradient Bosting
Machine (LightGBM) that has eminent performance in the field of machine learning, a total
of ten comparative experiments were conducted, and the comparative results of accuracy
are shown in Figure 11. The average value and SD of fault classification accuracy of each
method in ten experiments are listed in Table 3. The average accuracy of DWSC is 100%,
followed by MCCNN, with an average accuracy of 98.17% and SD of 0.015. ShuffleNet and
ResNet have similar accuracy, 87.89% and 84.33%, with SD of 0.055 and 0.062, respectively.
DCNN and LightGBM have the lowest accuracy, 71.11% and 68.78%, with SD of 0.033 and
0.046, respectively.

Table 3. Average accuracy and SD of the different methods.

Method Average (%) Standard Deviation

LightGBM 68.78 0.046

ShuffleNet 87.89 0.055

ResNet 84.33 0.062

MCCNN 98.17 0.015

DCNN 71.11 0.033

Proposed Method 100 —
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4.2. Case 2: Bearing Fault Diagnosis Based on XJTU Bearing Datasets
4.2.1. Experiment Setup and Data Description

The test platform of XJTU consists of the rotating shaft, motor speed controller, support
and test bearing, AC motor, and other parts; the test platform can be seen in Figure 12.
Two unidirectional sensors were fixed in the vertical direction and horizontal direction of
the test bearing by the magnetic base to obtain two sets of sensor data. The experimental
bearing is LDK UER 204 rolling bearing, and the experiment has a 25.6 KHz sampling
frequency. BPFO of the bearing is 115.62 Hz, BPFI is 184.38 Hz, and BSF is 144.66 Hz. The
parameter information of the bearing is listed in Table 4.

Table 4. LDK UER 204 rolling bearing parameters.

Parameter Names Value Parameter Names Value

Diameter of inner
ring raceway/mm 29.30 ball diameter/mm 7.92

Diameter of outer
ring raceway/mm 39.80 Number of balls 8

Basic static
load rating/KN 6.65 Contact angle/(◦) 0

Basic Dynamic
Load Rating/KN 12.82 Pitch diameter/mm 34.55

The selected fault types include five fault types: inner race, cage, outer race, composite
fault of the inner and outer race (CFIO), and composite fault of the inner race, cage, and
rolling body (CFICR). By taking 1024 data as a sample, a total of 2000 samples were selected
from two sets of sensor data, and the sample number of each set of sensor data is 1000. In
order to verify the method proposed in the paper, two samples were selected from two sets
of sensor data, respectively, and the two selected samples were merged into a matrix with
two rows and 1024 columns. That is, the new number of samples is 1000, of which 80%
were used for training and 20% for tests. A detailed and specific description of the data
used in the experiment of XJTU is given in Table 5.
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Table 5. Experimental datasets of XJTU.

Label Fault Type Radical
Force (KN) RPM Train Test

0 CFICR 12 2100 160 40

1 Inner race 11 2250 160 40

2 Outer race 11 2250 160 40

3 Cage 11 2250 160 40

4 CFIO 10 2400 160 40
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4.2.2. Diagnostic Results and Analysis

First, the data were weighted by SAM, and then the weighted data were input into
DWSC for DWC and PWC, as well as the subsequent convolution, BN and pooling, Sigmoid
in turn, and classification.

The training and testing results of the proposed method on the XJTU datasets are
shown in Figure 13. Figure 13a,b show the accuracy and loss changes of the training and
testing datasets with epoch, respectively, and it can be observed that when the epoch
is about 12, the model basically reaches convergence, and the changes of accuracy and
loss tend to be basically stable, and the highest fault diagnosis accuracy rate is 100%.
Figure 13c,d are the visualization results by t-SNE, Figure 13c is the visualization graph
of the training result, and Figure 13d is the visualization graph of the test result. It can
be clearly seen in Figure 13c,d that diverse fault types have an almost perfect separation
degree. Figure 13e,f are the confusion matrix of the training and test results. It can be
observed that the model proposed in the paper can identify and classify the five fault types
perfectly and the recognition accuracy of each type of fault is 100%.
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4.2.3. Diagnostic Results and Analysis

On the XJTU-bearing datasets, the performance of the MSDWF was also verified.
That is, the multi-sensor and single sensor inputs are compared, and the weighted and
unweighted data are compared. The results are shown in Figure 14. As can be seen in
Figure 14, the weighted single sensor data have higher accuracy and faster convergence
rate than the unweighted data, and the weighted data fusion of all sensors has the highest
accuracy, fastest convergence rate, and best stability, which indicates the superior capacity
and advantages of the method. The t-SNE visualization results of all the types of input are
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shown in Figure 15. Figure 15a,b are the t-SNE visualization results of the weighted data of
the vertical sensor and horizontal sensor, respectively, which show a high degree of separation
for each fault type, but a small part of the data is still mixed; Figure 15c,d are the t- SNE
visualization results of the unweighted data respectively and the most of the data are mixed.
Compared with the weighted data, there is no good recognition of various types of faults of
the unweighted data. Figure 15e is the t-SNE visualization result of the weighted data of all
sensors, and there is the highest degree of separation for each fault type.
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4.2.4. Comparison between Different Methods

On the XJTU datasets, the proposed method was compared with Resnet, DCNN,
ShuffleNet, MCCANN, and LightGBM. A total of ten comparison experiments were con-
ducted, and comparative results can be seen in Figure 16. The average value and SD of
classification results of all the methods are listed in Table 6. The average accuracy of the
method proposed is 100%, followed by the MCCNN with an average accuracy of 95.95%
and SD of 0.015. The accuracy of ShuffleNet and ResNet are 92.45% and 88.15%, with SD of
0.030 and 0.075, respectively. DCNN and LightGBM have the lowest accuracy, 58.45% and
64.70%, with SD of 0.037 and 0.106, respectively.
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Method Average (%) Standard Deviation

LightGBM 64.70 0.106

ShuffleNet 92.45 0.030

ResNet 88.15 0.075

MCCNN 95.95 0.015

DCNN 58.45 0.037

Proposed Method 100 —

5. Conclusions and Future Work

Firstly, the weighting matrix is extracted from the data themselves of each sensor, and
the weighted data are obtained by multiplying the raw data with the weighting matrix.
The weak features in raw data are strengthened, and the effect of interference information
caused by strong noise and variable working conditions on data features is weakened; the
weighted data of all sensors are used as the input of DWSC to realize the decoupling of
the channel and spatial correlation. In the proposed method, the data of multiple sensors
are weighted and fused, taking into account the spatial and temporal information in the
data. Through the comparative experiments between a different number of sensor inputs, the
weighted and unweighted data, different fault diagnosis methods, and multiple datasets, the
method based on MSDWF and DWSC shows superior performance, but it is worth pointing
out that the training speed of the method needs further optimization and improvement.

Next, we will first consider optimizing this method to reduce the time it takes for
each round of training. Secondly, the method will be tested in more complex and harsh
environments and the performance in load adaptability so as to optimize and improve the
method in a targeted manner. In addition, we will also test whether the accuracy can be
further improved when using other types of sensors and different measuring points.
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Nomenclatures

MSDWF Multi-sensor data weighted fusion
DWSC Depth-wise separable convolutions
MCCNN Multi-channel convolutional neural networks
BPFI Ball pass frequency on inner race
BPFO Ball pass frequency on outer race
BSF Ball spin frequency
SAM Self-attention method
PWC Point-wise convolutions
DWC Depth-wise convolutions
FCL Fully connection layer
AM Attention mechanism
CNN Convolutional neural networks
MCCNN Multi-channel convolutional neural networks
LightGBM Light Gradient Bosting Machine
BN Normalization batch
DL Deep learning
NN Neural networks
RMS Root means square
SD Standard deviation
t-SNE t-distributed Stochastic Neighbor Embedding
KNNC K-nearest neighbor classifier
PE Permutation entropy
MPE Multiscale permutation entropy
NLP Natural language processing
DE Drive end
FE Fan end
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