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Abstract: In recent years, human–computer interactions have begun to apply deep neural networks
(DNNs), known as deep learning, to make them work more friendly. Nowadays, adversarial example
attacks, poisoning attacks, and backdoor attacks are the typical attack examples for DNNs. In this
paper, we focus on poisoning attacks and analyze three poisoning attacks on DNNs. We develop a
countermeasure for poisoning attacks, which is Data Washing, an algorithm based on a denoising
autoencoder. It can effectively alleviate the damages inflicted upon datasets caused by poisoning
attacks. Furthermore, we also propose the Integrated Detection Algorithm (IDA) to detect various
types of attacks. In our experiments, for Paralysis Attacks, Data Washing represents a significant
improvement (0.5384) over accuracy increment, and can help IDA detect those attacks, while for
Target Attacks, Data Washing makes it so that the false positive rate is reduced to just 1% and IDA
can have a high accuracy detection rate of greater than 99%.

Keywords: poisoning attack; DNNs; detection algorithms

1. Introduction

Machine learning (ML) has been widely used in many applications nowadays. Human–
computer interaction systems also use such deep learning technology to make them work
more friendly. However, there are also many threats to ML systems which are vulnerable
to malicious attack. Recently, this issue has caught much attention. The authors in [1,2]
discuss the data security of ML models. The correctness of the ML outcome depends on
the integrity of its datasets. Fortunately, ML models are usually set up in a well-designed
format, which causes the attacker difficulty in directly modifying or attacking ML models.
However, the malicious attacker can easily manipulate the datasets that the ML models
operate. For example, he or she can upload malicious datasets directly to the internet or
can upload malicious data through Crowdsource systems [3]. The security threat to ML
models is exacerbated by the fact that the datasets used by ML systems are typically very
large and frequently contain data with high dimensions. Thus, it is not only relatively easy
for an attacker to corrupt the dataset, but also extremely difficult for the user to detect
such attacks.

Once ML model makes use of a poisoning dataset, it leads to serious misclassification
errors, which even leads to complete paralysis of the system. Given the sensitive nature of
many of today’s ML applications, such errors may have disastrous effects. One study [4]
surveys the challenges and countermeasures for adversarial attacks, and another study
on medical datasets [5] showed that poisoning attacks can cause serious misclassification
errors of cancer and disease samples. Furthermore, some studies [6,7] have shown that
some attacks can induce misclassification errors while leaving the overall performance
of the ML model intact. For example, in the case of facial recognition systems [8], the
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attacker can pass the facial recognition test simply by wearing special glasses. Since such
impersonation attacks are aimed at a particular individual, and have no wider effect on the
whole system, they are almost impossible for the system administrator to detect.

Broadly speaking, adversarial attacks on ML systems can be classified as either back-
door attacks or poisoning attacks. In attacks of the former type, the model behaves as
intended for clean inputs, but misbehaves in a manner predetermined by the attacker when
fed with inputs stamped with a particular trigger. By contrast, in poisoning attacks, the
adversary injects bad data into the training dataset in order to corrupt the learning process
and distort the inference rules learned by the model. Poisoning attacks seriously affect
the weight update process and training trend of the model, and thus have a significant
effect on the correctness of the inference process. However, the literature contains very
little information on the protection of deep neural networks (DNNs) against poisoning
attacks [3,5,9]. Moreover, the literature lacks effective countermeasures for protecting
DNNs against new attack algorithms. Hence, there is an urgent need to solve the problems
of the poisoning and manipulation of data sets.

The main contributions in this study are as follows:

• This study proposes a Data Washing algorithm. It can recover the poisoned training
dataset algorithm

• This study proposes Integrated Detection Algorithm (IDA) to resist the DNN poisoning
attacks proposed in [6,7,10] and the Category Diverse attack proposed in the present
study. the IDA algorithm provides an accurate means of detecting datasets containing
abnormal data and thus provides effective protection against paralysis attacks, targeted
attacks, and others.

The remainder of this paper is organized in the following sections. Section 2 describes
background and related works in this paper, including an overview of deep learning, attack
model on DNN, and countermeasures against those attacks. In Section 3, we introduce our
proposed Data Washing algorithm and IDA algorithm in details. Next, we validate that our
proposed algorithms can resist various attacks on different DNN models through several
experiments. Finally, we conclude this paper.

2. Background and Related Works
2.1. Overview of Deep Learning

This section commences by describing the basic structures and operating principles of
the three DNNs, VGG [11], GoogLeNet [12], and ResNet [13]. The general principles of the
training process used to train such models are then introduced and discussed.

Deep Neural Networks (DNNs)

Neural networks usually have multiple layers, in which each layer is composed of
multiple neurons. Deep neural networks (DNNs) mean neural networks having more
than two layers; however, they usually have more than ten layers. Depending on the
particular composition method, each layer may be either a fully connected layer or a
convolutional layer. Ir-respective of the layer type, the neurons compute their outputs
using a particular activation function, such as ReLU or sigmoid. Neural networks composed
of fully connected layers are referred to as multiple layer perceptrons (MLPs), while those
consisting mainly of convolutional layers are called convolutional neural networks (CNN).
A deep neural network generally consists of both convolutional layers and fully connected
layers, where the former layers account for most of the layers and are arranged at the front
end of the model, while the smaller number of fully connected layers are arranged at the
back end. The DNN model also may contain some special-purpose layers interspersed
between the convolutional and fully connected layers. For example, pooling layers may
be used to reduce the dimensions of the sample data, while dropout layers and batch
normalization layers may be used to prevent overfitting.

As described above, three of the most common DNN architectures in use nowadays are
VGG, GoogLeNet, and ResNet. The following paragraphs describe each architecture briefly.
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1. VGG: A deep neural network with the front part of the network consisting of a cyclic
arrangement of convolutional layers and pooling layers. This deep neural network
exists in several variants, with different numbers of layers in each case. For instance,
VGG16 owns 13 convolutional layers and three fully connected layers, and VGG19
has 16 convolutional layers and three fully connected layers.

2. GoogLeNet: GoogLeNet is a deeper neural network, having not only additional
convolutional and pooling layers, but also the incorporation of inception modules.
In its standard form, GoogLeNet owns 27 layers, where these layers include nine
inception modules.

3. ResNet: ResNet inherits some of the features of AlexNet [14] and LeNett [15]. How-
ever, ResNet also incorporates additional residual blocks. In these blocks, the input is
added to the output. Adding these residual modules makes ResNet possible to deepen
the network, which can avoid the vanishing gradient problem. ResNet also owns
several versions with different combinations of layers, including ResNet18, consisting
of one convolutional layer, eight residual modules, and one fully connected layer.

2.2. Attacks on Machine Learning Models

Usually, the attacker tries his/her best to detect, as much as possible, the structure
and parameters of the victim model. The attacker’s knowledge of the target system can be
categorized as either perfect or limited [16]. In the case of perfect knowledge, the attacker
possesses all the information of the model, including its structure, weights, test dataset, and
training data. By contrast, in the case of limited knowledge, the attacker possesses some,
but not all, of the model information. Given perfect knowledge of the victim model, the
attacker can initiate an attack directly by utilizing the victim’s model parameters. However,
given only limited knowledge, the attacker requires the use of an alternative technique to
carry out the attack. One of the most common techniques is that of producing a surrogate
model, which uses existing knowledge such as the structure and training dataset of the
victim model to train an alternative model.

Attacks on ML models usually can be categorized into three kinds, namely, adversarial
example attacks, poisoning attacks, and backdoor attacks. The distinction between them
lies in the dataset targeted by the attacker. Table 1 shows a summary for the attack on
ML models.

Table 1. Summary for the attack on ML models.

The Kinds
of Attacks

Adversarial
Example Attack Poisoning Attacks Backdoor Attacks

Attack target The test dataset The training dataset The test dataset

The details of each type of attack are presented in the following.

2.2.1. Adversarial Example Attack

Adversarial examples, also known as evasion attacks [17], are aimed at the test dataset
of the victim model. In such an attack, the victim trains a well-behaved model in accor-
dance with the usual training procedure. However, the attacker then modifies the test
dataset based on some knowledge of the victim model in order to deliberately produce
errors during the testing process. Taking the Fast Gradient Sign (FGSM) attack [18] as an
example, the attacker calculates the gradient of the loss function for the input, and then
adds this value to the original input. The resulting increase in the loss function significantly
increases the probability of misclassification errors (see Figure 1). Other attacks, such as
DeepFool [19], aim to make the data of a certain category close to those of another category.
In such attacks, the attacker calculates the gradient and resulting values iteratively and
then manipulates the testing dataset accordingly, causing the resulting decision to approach
and finally cross the decision boundary.
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Adversarial examples can be classified as either targeted or nontargeted, where the
former types of attacks cause the final category to be misclassified as a specified (incorrect)
category, and the latter attacks aim simply to make the final category be misclassified. One
of the most well-known targeted attacks is the Carlini and Wagner attack [20], originally
designed to trick speech recognition systems.

Adversarial examples often have a certain degree of transferability. In other words,
even though the attack is generated based on the weights, architecture, or parameters of one
victim model, it may also be effective against other models. Black box attacks (i.e., attacks
based on limited knowledge, see Table 1) can be achieved by training a surrogate model
and then generating attack data based on the structure and parameters of this model.
Furthermore, good transformability can greatly improve the attack ability and success
probability of the attack, which is one of the goals pursued by many attack algorithms.

2.2.2. Poisoning Attacks

Poisoning attacks target the training dataset and aim to poison an existing dataset
or propagate a new maliciously manipulated dataset for use by unsuspecting users. The
machine learning model trained with a poisoning dataset will work abnormally. For
non-DNNs, such attacks can paralyze the whole system with even a low poisoning rate.
For example, in the poisoning attack proposed by Biggio, Battista et al. [21], the attacker
simply maximized the hinge loss under the consideration of the information in the training
dataset and caused a significant increase in the system error rate. For DNNs, by contrast,
a relatively high poisoning rate is required to paralyze the system. In one such attack [6],
the attacker tries to produce the output of the penultimate layer of one target ML model,
which causes data collisions between the training dataset and target testing dataset.

Attack algorithms aimed at DNNs and non-DNNs, respectively, are somewhat differ-
ent due to the different architectures of the network models in the two cases. For example,
ML methods such as support vector machines (SVMs) and linear regression are usually
optimized by applying the Karush–Kuhn–Tucker (KKT) conditions, whereas neural net-
works are generally optimized using a multiple iterative gradient descent method [16,21,22].
Thus, compared to adversarial examples, poisoning attacks have poorer transferability
since the training characteristics of the model are usually very different for different model
training settings.

2.2.3. Backdoor Attacks

Backdoor attacks add a signal to the test dataset of the victim network in order to cause
the model to misclassify certain target data as a category which the attacker determines in
advance. For pure inputs, the model behaves normally, and hence, backdoor attacks are
notoriously difficult to detect. In practice, backdoor attacks can be implemented in two
different modes. In the first mode, the user downloads and makes use of an apparently
well-performing network model previously uploaded by the attacker. In the second mode,
the attacker directly poisons the training dataset used by the victim to train their network
model. For example, Chen, Xinyun et al. [8] proposed a backdoor attack against a facial
recognition system, in which the target model was trained with a poisoned dataset such
that the system could be tricked by individuals wearing special glasses.
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2.3. The discussion on Poisoning Attacks

The present research focuses mainly on poisoning attacks. This attack renders the
attack hard to detect, which may lead to serious damage to the learning model. Now, we
give a deep discussion on this poisoning attacks. This section commences by describing
several common poisoning attacks on non-DNNs and DNNs, respectively. A comparison
is then made between poisoning attacks on DNNs and other forms of attacks.

2.3.1. Poisoning Attacks on Non-DNNs

The following discussions introduce three classic non-DNN poisoning attack algorithms
targeted at SVM [21], linear regression [16], and multiple ML models [22], respectively.

• Poisoning Attacks against Support Vector Machines [21]

SVMs are usually developed using the hinge loss function. The main objective of
poisoning attacks against SVMs is to maximize this hinge loss with the addition of a
poisoned point (xc, yc) to a training dataset, as shown in Equation (1), where fxc(xk) is the
output function of the SVM and yk is the predicted label.

max
xc

L(xc) =
m

∑
k=1

(1− yk fxc(xk))+ (1)

In a poisoning attack, the attack algorithm produces a new input, x(p)
c = x(p−1)

c + tu,
where u is a fabricated value. The optimization process of the SVM then obtains
w = ∑n

i=1 αiyixi under the KKT conditions. This outcome is then substituted into Equation (1)
and partially differentiated with respect to u. Finally, the result is projected onto a unit
vector and used to update u. The detailed attack process is described in [21], including the
use of the KKT conditions and the LDU solutions, which is a gradient ascent method. (It is
worth noting that w is a function of x, and is obtained from the KKT conditions rather than
the gradient descent method).

• Poisoning Attacks against Linear Regression Models [17]

In linear regression models, the system is updated in accordance with a particu-
lar loss function and the goal of the attacker is to maximize this function, as shown in
Equation (2), where `(yi, f (xi)) is the loss function and λΩ(w) is the normalization term of
linear regression.

max
xc

L(xc) =
1
m

m

∑
i=1

(`(yi, f (xi)) + λΩ(w)) (2)

Through the KKT condition, we can obtain the weight and substitute it into the loss
function. In a typical poisoning attack, techniques such as matrix manipulation are used
to solve the partial differential and, having obtained this differential, the input value
is updated in accordance with a particular operation to generate an attack. Generally
speaking, the update method is similar to a gradient ascent method.

• Poisoning Attacks against SVM, Linear Regression, and Logistic Regression Models [22]

The authors in [22] designed an attack method that could be used against various
ML models, including SVM, linear regression, and logistic regression. In contrast to the
attack methods described above, the proposed method presets target weights of the victim
network model and then tries to make the current weights approach these weights by
updating the network model iteratively in accordance with Equation (3). As shown, the
attack aims to minimize OA(D, θ̂D) subject to OL(D, θ) under the optimization conditions
of g(θ) and h(θ), where D is the training data and θ̂D is the learned model.

min
D,θ̂D

OA(D, θ̂D)

s.t.θ̂D ∈ argminθOL(D, θ)

s.t.g(θ) ≤ 0, h(θ) = 0

(3)



Appl. Sci. 2022, 12, 7753 6 of 18

Equation (3) is a bilevel optimization problem. In particular, the KKT conditions are
used to reduce the optimization problem to a single-layer problem, and this problem is then
solved by updating the input data using methods such as projecting the gradient values.
Having solved the equation, it is used to produce attack data to corrupt the target model.

2.3.2. Poisoning Attack on DNNs

Poisoning attacks on DNNs can be categorized as either target attacks or paralysis
attacks, depending on their particular effect. In target attacks, the aim is to cause the model
to misclassify certain specific targets without reducing the overall accuracy of the whole
system. By contrast, in paralysis attacks, the aim is to degrade the entire system. The
following discussions describe three of the most common poisoning attacks on DNNs,
namely, TensorClog [10], a form of paralysis attack; and Feature Collisions [6] and Convex
Polytope [7], both of which are forms of target attack.

• TensorClog [10]

When updating a neural network model, the update amount of each weight is deter-
mined according to the weight gradient of the loss function. That is,

dw = ∇wL( f (x, w), y) (4)

The main idea of TensorClog is to make the weight gradient of the loss function
approach zero by fabricating the input value in such a way as to achieve gradient descent
of the loss function shown in Equation (5), where this loss function is the L2-norm of the
weight gradient of the loss function plus a suppression term.

LT
(
x′, f

)
=

1
2

n

∑
l=0

dw2
l + λ

(
x′ − x

)2 (5)

As with any paralysis attack method, the aim of TensorClog is to reduce the overall
accuracy of the neural network model. In contrast to poisoning attacks against non-DNN
models, in which the attackers only require a small poisoning rate that is enough to cause
a significant effect, poisoning attacks against DNN models attempt to poison the entire
dataset. Consequently, launching poisoning attacks is more challenging. However, due
to the scale and complexity of DNN models, they are also more difficult for the system
operator to detect and guard against.

• Feature Collisions [6]

In general, the objective of ML attack models is to disrupt the parameters of the neural
network in such a way to cause the loss function to perform badly. However, the Feature
Collisions attack method breaks this mold and aims instead to manipulate the output of
the penultimate layer of the neural network in such a way to produce feature collisions
between the training dataset and the test dataset.

Assume that xj and yj are data points in the training set and test set, respectively.
Assume also that the output function of the penultimate layer is f (x). The aim of the feature
collision attack is to make f (xj) close to f (yj), such that the neural network model believes
that the two data points are the same. Equation (6) shows the objective function of such an
attack, where a suppression term is deliberately used to alleviate the modification effect.

LT
(
x′, y

)
=‖ f

(
x′
)
− f (y) ‖2

2 + β ‖ x′ − x ‖2
2 (6)

In other words, the feature collision attack is an optimization problem based on the
target function, and is generally solved using the forward–backward–splitting method.

• Convex Polytope Attack [7]

The convex polytope attack is similar in concept to the feature collisions attack in
that it also tries to control the output of the penultimate layer of the neural network.
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Again, assume that xj and yj are data points in the training set and test set, respectively,
and f (x) is the output function of the penultimate layer. The underlying principle of the
convex polytope attack is that as long as f (yj) is a convex combination of f

(
xj, j=1,...,n

)
,

and all f (xj) are in the same category, f (yj) will also be classified as the same category.
Note that convex combination is a special case of linear combination, in which all of the
coefficients are non-negative and their sum is equal to one. In other words, the target
point is enclosed in a polytope composed of multiple points. Compared with the feature
collisions attack, the convex polytope attack aims to produce collisions between a single
point and multiple points. Although it is computationally expensive and time consuming,
it has good transferability.

2.3.3. Effect Comparisons for Poisoning Attacks on Non-DNN and DNN Models

Poisoning attacks perform very differently for neural networks and non-neural net-
works, respectively. From the perspective of model training and updating, many non-neural
network ML algorithms update the model after running the entire dataset. However, neural
networks are updated after running each small input batch. Thus, poisoning attacks can
more easily succeed on non-neural networks than on neural networks. Muñoz-González,
Luis et al. [23] compared the performance of several attack algorithms, including the simple
label flipping model, on linear regression and three-layer convolutional neural networks,
respectively, and found that the algorithms were far more effective against the former
networks than the latter. Furthermore, DNNs are more effective than non-neural networks
in resisting poisoning attacks conducted using random white noise. For example, Shen,
Juncheng et al. [10] showed that paralyzing attack models implemented using small white
noise interference are ineffective even if the entire dataset is poisoned. In summary, for
low poison rates, both label flipping and high-level noise attacks are both ineffective when
applied to DNNs. However, both attack methods are more effective when the poison rate
exceeds 0.5, and can paralyze the neural network model if the poisoning rate reaches a
sufficiently high level. For some non-neural network ML models such as SVM [24] and
linear regression, the optimization solutions can be obtained relatively easily using opti-
mization theory and an appropriate algorithm. For example, the KKT conditions can be
applied to simplify the optimization problem, and the problem can then be solved using a
quadratic programming (QP) technique. This approach is typically highly successful for
nondeep neural networks, and allows the attacker to paralyze the entire system with only
a small amount of data. However, it cannot be similarly applied to DNNs since the loss
functions of such networks are nonconvex, and hence, the use of the KKT conditions to
optimize the attack algorithm is infeasible. Furthermore, for DNNs, the number of weight
parameters contained in each layer is extremely large. Thus, even if the optimization
method described above can be used, the solution process is prohibitively time consuming.
Yang, Chaofei et al. [25] tried to apply attack methods designed for non-neural networks to
neural networks. The results showed that for such an approach to be successful, the data
points would have to be poisoned before the start of each update step. However, this is
infeasible since neural network models operate continuously and extremely rapidly, and it
is thus almost impossible to obtain the current weights in real time. Moreover, the input
data are randomly selected in the training process, and hence, there is no guarantee that
the newly added poisoned point will actually be chosen.

Overall, poisoning attacks have a good success rate for nondeep neural networks, but
perform less well when applied to DNNs. However, given a sufficiently high poisoning rate,
they can nevertheless achieve paralysis of the target DNN and are almost imperceptible to
the user.

2.4. Countermeasures against Attacks on Network Models
2.4.1. Countermeasures against Adversarial Examples

Countermeasures against adversarial examples can be divided into two different types,
namely, those aimed at making the neural network model inherently more robust, and those
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designed to detect or defend against such attacks [26]. Many methods have been proposed
for enhancing the robustness of neural network models by modifying their architectures
in some way. For example, Papernot, Nicolas et al. [27] used a neural network distillation
method to condense a neural network with a large structure into an equivalent network
with a small structure. Goodfellow, Ian J et al. [18] proposed a robust defense method
known as adversarial training, in which the training dataset was purposely poisoned with
a certain percentage of precomputed adversarial examples and the model was then trained
accordingly. However, while this method can improve the robustness of the neural network
model, it is effective only against attack algorithms sharing the current settings. That is, it
is ineffective against the same attack with different attack parameter settings or different
attack methods. Overall, a review of the adversarial training method shows that while
increasing the loss function does not provide adequate protection against poisoning attacks,
training the neural network model using a dataset containing malicious data can yield an
effective improvement in the system robustness.

Metzen, Jan Hendrik et al. [28] proposed an intuitive detection method in which
defense against adversarial examples was provided by training the neural network clas-
sifier using a dataset consisting of manipulated images and original images as abnormal
and normal data, respectively. However, while the method performed well initially, its
protection performance declined rapidly if the attacker subsequently reset the related attack
parameters. Song, Yang et al. [29] proposed a detection and protection method based on
PixelCNN, a generative model capable of inferring the likelihood of a particular pixel
being selected through all the pixels selected before it. The experimental results revealed
that the probability density distributions obtained from poisoned data and nonpoisoned
data, respectively, were very different. Consequently, abnormalities could be identified
by setting suitable threshold values, and noise-reduced images could then be generated
by predicting the correct probability distribution. Gu, Shixiang et al. [30] used an autoen-
coder as a protection method by deliberately adding noise to interfere with the malicious
signal of the adversarial example. However, the noise was found to interfere with the
entire dataset, thereby degrading the overall performance of the training process. Meng,
Dongyuu et al. [31] designed a detection and protection architecture based on the use of a
self-encoder. The detection component of the architecture consisted of two stages, namely,
calculating the reconstruction error and evaluating the degree of divergence, where the
process of calculating the reconstruction error was based on the difference between the
inputs and outputs of the autoencoder. However, the reconstruction error proved effective
as a protection mechanism only when the malicious signal added to the training dataset
was relatively strong. By contrast, the degree of convergence of the output data was far
more sensitive to the presence of abnormal conditions, i.e., malicious signal injection, and
therefore provided a more reliable indicator of anomalies in the neural network model.

2.4.2. Countermeasures against Poisoning Attacks

To the best of the authors’ knowledge, existing countermeasures against poisoning
attacks all depend on abnormality detection. That is, the system employs some form of
detection algorithm to recognize abnormal data and then removes this data accordingly. In
general, the algorithms and update methods of DNNs and non-DNNs are very different.
Consequently, the corresponding attacks are also different. Therefore, in discussing existing
countermeasures against poisoning attacks, this section commences by considering the
detection and protection schemes proposed for non-DNNs and then moves on to consider
the schemes proposed for DNNs. Jagielski, Matthew et al. [17] proposed an algorithm
designated as TRIM for the defense of non-DNNs, in which the algorithm first found a
subset D of the training data which resulted in a normal well-behaved ML model and then
used this subset to calculate the loss of the model with all of the data point inputs in order to
identify abnormalities. Steinhardt, Jacob et al. [32] tried to design a set of defense schemes
that could be widely used to various machine learning models. In the proposed approach,
the authors first generated a poisoned dataset by implementing a poisoning attack on their
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network model in order to maximize the loss function. A threshold value below which the
data points were assumed to be normal was then determined by computing the Euclidean
distance between the averages of the loss functions with the normal points and all the
poisoned points, respectively. This method is also called data sanitization; however, it
cannot be extended to nonconvex models such as DNNs.

In 2016, Shen, Shiqi et al. [3] proposed a protection system for collaborative DNNs
in which the distribution of the datasets uploaded by the users was checked using a K-
means clustering approach. However, the proposed method was designed specifically for
collaborative deep learning structures rather than general DNNs. Moreover, the efficacy of
the proposed method was evaluated using only a simple attack method similar to label
flipping. Subedar, Mahesh et al. [9] identified abnormalities in the inputs to a DNN by
using an algorithm, designated as DeepFeatures, to fit the distribution of the features in
the input data and then determining anomalies in the data based on the likelihood of the
data points. Mozaffari-Kermani, Mehran et al. [3] implemented several multilayer neural
networks and non-neural networks for datasets related to the medical field and proposed a
method for detecting abnormalities in the testing data using a threshold value based on
the CCI or Kappa statistics. The proposed method proved to be effective in countering
simple label flipping poisoning attacks. However, its robustness toward more sophisticated
attacks was not evaluated.

Overall, most existing countermeasures against poisoning attacks provide adequate
protection against relatively simple attack algorithms designed to reduce the accuracy of
the model. Generally speaking, such countermeasures firstly analyze the accuracy and
loss function performance of the model and then detect abnormalities using a predefined
threshold value.

3. System Structure

This section introduces system assumptions used in this study, attack models on DNN,
and our proposed algorithms, including Data Washing and IDA algorithms. Then we
commence system assumption in this section.

3.1. System Assumptions

The present study adopts three main assumptions, described as follows.

• The status (i.e., normal or poisoned) of the dataset input to the system is unknown.
However, the labels of the dataset are well-confirmed, and hence, the attacker cannot
launch label flipping attacks or randomly destroy the data for this dataset. Further-
more, the method used by the attacker to poison the dataset is ruled to be out of the
scope of the present research.

• Model training is performed using frozen transfer learning with all of the layers frozen
except for the last fully connected layer. It can greatly reduce the model training time.

• Four poisoning attacks are considered, namely, TensorClog, Feature Collisions, Convex
Polytope, and a newly developed Category Diverse attack proposed in [33]. Note that
the TensorClog and Category Diverse attacks are paralysis attacks, while the Feature
Collisions and Convex Polytope attacks are target attacks.

3.2. Robust Denoising Algorithm and IDA Detection Algorithm

In addition to the Category Diverse attack model, this paper also proposes a robust
denoising method, designated as Data Washing, for recovering a poisoned dataset by
cleaning any data items containing malicious signals. The paper additionally proposes
an integrated detection algorithm (IDA) designed to detect various attack scenarios. The
details of the two algorithms are described in the following.

3.2.1. Data Washing Algorithm

In general, denoising autoencoders, which remove the malicious signal added by
the attacker, achieve good protection against target attacks, but are less effective against
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paralysis attacks. By contrast, the Data Washing algorithm proposed in this study provides
an effective protection against both types of attacks. The details of the proposed algorithm
are described as follows.

As shown in Figure 1, the data are first passed through a denoising autoencoder.
A small amount of Gaussian noise (also called a lightweight Gaussian white noise) is
then added to the data and the data are then passed through the autoencoder once again
to obtain the restored data. Through denoising autoencoder, the algorithm effectively
eliminates the malicious signal added by the attacker.

Intuitively, the accuracy of the denoising process should improve as the number of
washing operations increases. However, the preliminary experimental results showed
that the modification effect of the picture data became too large, and some of the pictures
became blurred, when the washing process was repeated multiple times. Furthermore,
limiting the modification effect to a certain maximum value was also found to reduce
the cleaning effect. Hence, in processing the poisoned dataset, the number of washing
operations was limited to just one.

The denoising autoencoder proposed in the present study comprises three encoding
layers and one convolutional layer on the encoding side and three decoding layers and one
convolutional layer on the decoding side. Although the main aim of the denoising autoen-
coder is to restore the signal with Gaussian noise to a clean signal, the autoencoder also can
eliminate some non-Gaussian noise. Thus, the proposed algorithm provides an effective
defense against not only specific attack algorithms, but also general unknown algorithms.

3.2.2. IDA Detection Algorithm

It is generally difficult to detect malicious signals in the datasets used by DNNs, and
hence, determining whether or not a particular data point is abnormal is also extremely
challenging. Anomaly detection algorithms, such as Isolation Forest and One Class SVM, do
not perform well, and hence, it is difficult to distinguish between normal and contaminated
values in the related cluster classification algorithms. Furthermore, analyzing the output
of the penultimate layer of the model does not provide much help either. Finally, a single
detection method fails to provide a robust defense capability against all attacks since the
algorithms and effects of paralysis attacks and target attacks (or some other unknown
attacks) are all different. To tackle this problem, the present study proposes an integrated
detection algorithm to provide a robust detection performance for various attack scenarios,
including paralysis attacks, target attacks, and others. The proposed algorithm, designated
as IDA, consists of three stages, namely, detection of paralysis attacks, detection of target
attacks, and detection of other attacks. Figure 2 shows the basic steps in the proposed IDA
algorithm. Paralysis attacks have the ability to shut the entire system down, causing serious
damage to the system’s operation as a result. Consequently, the algorithm commences
by detecting paralysis attacks. In the event that no such attack is detected, the algorithm
proceeds to check for the presence of any other form of attack. If no obvious attack
is detected, the algorithm makes a final check for a target attack. If the data are still
determined to be normal, the algorithm terminates. If the IDA algorithm detects the attacks
in the detection procedure, it claims the occurrence of a particular attack and ends this
detection directly. Note that detecting a target attack requires the computation of a collision
table, and hence, the detection process is deliberately performed as the final step in the
detection algorithm in order to reduce unnecessary computational cost.

Detection of Paralysis Attacks: In normal situations without attacks, the accuracy
rates of the models trained with normal and cleaned data, respectively, are approximately
the same. However, for the model suffering from poisoned attacks, the accuracy rate
obtained when using the Data Washing algorithm was much better than that obtained
when the algorithm was not employed. Thus, in the IDA algorithm, the difference between
the accuracy results obtained with and without data washing, respectively, was used to
detect the occurrence of a paralysis attack. In particular, the DNN model was trained twice,
once with uncleaned data and once with washed data. The two models were then applied
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to the same testing dataset and the difference between the resulting accuracy rates (referred
to as the differential accuracy rate) was computed in order to evaluate the occurrence of a
paralysis attack in accordance with a certain preset threshold value. Figure 3 shows the
detection of paralysis attacks in IDA algorithm.
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Notably, the proposed detection method is applicable to different DNN models and
different paralysis attack algorithms. However, it cannot detect the presence of single
poisoned data points in the dataset. Thus, the IDA detection algorithm proceeds to check for
any further signs of malicious activity in the dataset, as described in the following sections.

Detection of Other Attacks: Having confirmed the absence of a paralysis attack, the
IDA algorithm checks for the occurrence of any other form of poisoning attack based
on an inspection of the reconstruction error of the proposed denoising autoencoder. As
shown in Figure 4, the training dataset is input to the denoising autoencoder and the
L2-norm between the original picture data and the picture data exported from the denoising
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autoencoder is computed. If the L2-norm is greater than a certain preset threshold value,
the data are classified as abnormal and the algorithm terminates. Otherwise, the detection
algorithm proceeds to check for the occurrence of a target attack.
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Detection of Target Attacks: The goal of target attacks is to make the outputs of the
penultimate layer of the learning model be the same for the training data and testing data,
respectively. In other words, the training dataset and target data appear to be the same
to the ML model even though their resulting labels are actually different. That is, the ML
model misclassifies the true label of the testing data point. Consequently, poisoned data
points can be identified by comparing the outputs of the penultimate layer of the model for
the testing data points with the outputs obtained for the training data points. As shown in
Figure 5, the ML model is thus trained, as usual, using the training dataset, and the labels
produced at the penultimate layer of the model are stored in a collision table. For each
subsequent testing point, the output of the penultimate layer is compared with the entries
in the collision table. If the output label is found to be very close to one of the values in the
collision table, the data point is judged to be abnormal.
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4. Experimental Results

The experiments were performed on a PC with Windows 10, an i7-7700 CPU, and 16 G
of RAM. Model building was performed with Tensorflow [34] and PyTorch using Python
as the programming language. Since the experiments involved DNNs, the calculations
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were accelerated using a GPU GeForce GTX1060 (6 GB) graphics card. The training process
was conducted for 40 epochs using a transfer learning approach and the model showing
the highest accuracy for the test dataset between the 30th and 40th epochs was selected as
the optimal model.

4.1. Data Washing Algorithm

The Data Washing algorithm was implemented using the denoising autoencoder pro-
posed in [35]. As described in Section 3.2.1, a lightweight Gaussian white noise, which here
equals 0.05 times Gaussian white noise, was added prior to the second denoising process.
The autoencoder was trained using the Cifar100 [36] dataset. The performance of the Data
Washing algorithm was evaluated for four different attack models, namely, the TensorClog
and Category Diverse paralysis attack [33] models, and the Feature Collisions (FC) and
Convex Polytope (CP) target attack models. The paralysis attacks were conducted using the
parameters described in Section 4.1. The FC attacks [6] were implemented using the model
results obtained after 100 training epochs, with parameter setting β = 0.2 × 20482/dimb

2, a
learning rate of 127,500, and a maximum number of iterations equal to 1500. Finally, the CP
attacks [4] were implemented using the results obtained from 60 training epochs, namely,
an initial value of c(i) = 1/10, a maximum change limit of ε = 0.1, a learning rate of 0.04,
and a maximum number of iterations equal to 4000. CP attack produced five attack data
items for each target.

4.1.1. Effectiveness of Data Washing Algorithm against Paralysis Attacks

The experiments commenced by observing the performance of the proposed Data
Washing algorithm when applied to datasets corrupted by the TensorClog and Category
Diverse attacks with a clip coefficient of 0.1 in both cases. Figure 6 presents the typical
experimental results obtained for the two attack methods. Comparing the images in the
first two rows, it is evident that the Data Washing algorithm achieves a significant reduction
in the noise, ir-respective of the attack method applied. Moreover, comparing the images in
the second and third rows, it is seen that the apparent effectiveness of the Data Washing
algorithm increases with an increasing amount of noise in the image.
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Table 2 shows the effect of the Data Washing algorithm in improving the accuracy
of the ResNet [17] model when subjected to TensorClog and Category Diverse paralysis
attacks, respectively. In the case where the Data Washing algorithm is applied to the original
clean dataset, the accuracy reduces by 0.0138. Following the TensorClog and Category
Diverse attacks, the accuracy reduces to 0.6166 and 0.1660, respectively. In other words, the
Category Diverse attack renders the dataset virtually unusable. However, following Data
Washing, the accuracy rate is improved to 0.7044. While this result is not as good as that
obtained for the original dataset (0.8316), it represents a significant improvement (0.5384)
over that of the corrupted dataset.

Table 2. Effectiveness of Data Washing algorithm in mitigating effects of paralysis attacks on Resnet18 [10].

Statistic
Algorithm

Original TensorClog Category Diverse

Accuracy 0.8316 0.6166 0.1660

Accuracy after DW 0.8178 0.7446 0.7044

Accuracy increment −0.0138 0.1280 0.5384

Table 3 compares the effectiveness of the Data Washing algorithm with that of a
simple denoising autoencoder (DAE). It is seen that for both attack models, the Data
Washing algorithm results in a greater improvement in the ResNet performance than the
conventional denoising autoencoder. In other words, the Data Washing algorithm provides
a superior cleaning performance. The improvement is particularly apparent in the case of
the Category Diverse attack.

Table 3. Effectiveness of Data Washing algorithm and denoising autoencoder in mitigating effects of
paralysis attacks on Resnet18 [10].

Statistic
Algorithm

Original TensorClog Category Diverse

Accuracy after DW 0.8178 0.7446 0.7044

Accuracy after DAE 0.8270 0.6936 0.5372

Accuracy increment −0.0092 0.0510 0.1672

4.1.2. Effectiveness of Data Washing Algorithm against Target Attacks

Table 4 shows the effects of the FC and CP attacks on the ImageNet [37] and Cifar10 [36]
datasets. Table 5 shows the equivalent results for the case where the Data Washing algo-
rithm is applied. It is seen that the false positive rate is reduced to just 1% for the FC attack
on the ImageNet dataset and 0% for the FC and CP attacks on the Cifar10 dataset.

Table 4. Effects of FC and CP target attacks without Data Washing algorithm.

Statistic
Algorithm FC Attack [6]

ImageNet [37]
FC Attack [6]
Cifar10 [36]

CP Attack [7]
Cifar10 [36]

Accuracy 98.00% 99.50% 93.34%

Target Number 100 200 10

Misclassified 98 185 9

Target’s False Positive Rate 98.00% 92.50% 90%
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Table 5. Effects of FC and CP target attacks with Data Washing algorithm.

Statistic
Algorithm FC Attack [6]

ImageNet [37]
FC Attack [6]
Cifar10 [36]

CP Attack [7]
Cifar10 [36]

Accuracy 99.00% 100% 93.33%

Target Number 100 200 10

Misclassified 1 0 0

Target’s False Positive Rate 1.00% 0.00% 0.00%

4.2. Integrated Detection Algorithm
4.2.1. Effectiveness of IDA Detection Algorithm against Paralysis Attacks

In practice, the ability of the IDA algorithm to detect paralysis attacks depends on
the effectiveness of the Data Washing algorithm in improving the model accuracy. Table 6
shows the accuracy improvements obtained by the Data Washing algorithm for the original
dataset and the datasets attacked by the TensorClog and Category Diverse algorithms
with two different clip rates (0.05 and 0.1). In the absence of any attack, the Data Washing
algorithm results in almost no change in the accuracy. However, for both attack methods,
the Data Washing algorithm results in a notable improvement in the accuracy. Hence, both
attacks can be theoretically detected using the IDA algorithm, provided that an appropriate
threshold value is set (see Figure 3). It should be noted that the IDA algorithm does not
seek to identify every attacked data point in the dataset, but simply to determine whether
or not the dataset has been attacked.

Table 6. Accuracy improvements obtained by Data Washing algorithm for TensorClog and Category
Diverse paralysis attacks.

Statistic
Algorithm TensorClog

Clip 0.05
Category Diverse

Clip 0.05
TensorClog

Clip 0.1
Category Diverse

Clip 0.1

Accuracy Increment 0.0266 0.1990 0.0748 0.3690

4.2.2. Effectiveness of IDA Detection Algorithm against Target Attacks

The effectiveness of the IDA detection algorithm against target attacks was evaluated
using the FC attack algorithm with 100 attack items and 984 normal data items in the
ImageNet dataset and 200 attack items and 1800 normal data items in the Cifar10 dataset. As
described in Section 3.2.2, the detection of target attacks in the IDA algorithm is performed
based on the distance between the output values of the test items and those of the training
items, as recorded in a collision table. Table 7 shows the experimental results for the
mean and standard deviation values of the L2-norm distance in the FC attacks against the
ImageNet and Cifar datasets. It is observed that the mean L2-norm distance for the normal
data is very large, whereas that for the abnormal data is very small. Table 8 shows the
corresponding detection statistics for the two datasets. For both datasets, the accuracy rate
is greater than 99%. In other words, the ability of the IDA algorithm to detect the FC attack
is confirmed for both datasets.

Table 7. L2-norm statistics between target test data and collision table data for FC attacks against
ImageNet [37] and Cifar [10] datasets.

L2-Norm
Algorithm Original

ImageNet
FC Attack
ImageNet

Original
Cifar10

FC Attack
Cifar10

Mean 18.2909 2.9688 19.3545 3.6706

Standard deviation 2.6572 0.2671 2.7426 0.5807
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Table 8. IDA detection algorithm performance for FC attacks against ImageNet and Cifar datasets.
(Note that target attack detection threshold is 0.5.).

Statistic
Algorithm

FC Attack ImageNet FC Attack Cifar10

Accuracy 0.9991 0.9970

Precision 0.9901 1.0000

Recall 1.0000 0.9700

F1 Score 0.9950 0.9848

4.2.3. Effectiveness of IDA Detection Algorithm against Other Attacks

The CP attack is a target attack. However, due to the large-scale change it produces
in the targeted dataset, it is used here to illustrate the performance of the IDA detection
algorithm in detecting “other forms of attack” (see Section 3.2.2). The experiments consid-
ered 50 CP attacks, 25,000 Gaussian attacks, and 50,000 normal data items. As described in
Section 3.2.2, the IDA algorithm detects “other attacks” based on an inspection of the recon-
struction error. Table 9 shows the mean and standard deviation values of the reconstruction
error for the present detection experiments. It is apparent that the CP attack produces a
discernible mean reconstruction error between the normal data and the abnormal data.
Table 10 shows the corresponding detection results obtained when using a reconstruction
error threshold value of 2.5. It is evident that the IDA algorithm achieves a good detection
performance for both attacks, i.e., CP and Gaussian attacks.

Table 9. Mean and standard deviation values of reconstruction error for attacks on Cifar10 dataset.

Statistic
Algorithm Original

Cifar10
CP Attack

Cifar10
0.1 Gaussian

Cifar10

Mean 1.0319 2.9455 4.4168

Standard deviation 0.0485 0.0132 0.1720

Table 10. Detection performance of IDA algorithm for “other attacks”. (Note that reconstruction
error threshold is 2.5.).

Statistic
Algorithm CP Attack [4]

Cifar10 [36]
Gaussian

Cifar10 [36]

Accuracy 0.9978 1.0

Precision 0.8197 1.0

Recall 1.0 1.0

F1 Score 0.9009 1.0

5. Conclusions and Future Work

In this research, poisoning attacks on DNNs, including three new poisoning attacks,
are studied and discussed deeply. We found that the poisoning attacks on non-DNN
models may not perform well on DNN models. However, because DNNs are usually more
complex and bigger than non-DNN models, the poisoning attacks on DNNs are usually
hard to detect even if they should successfully attack DNN models under a relatively high
poisoning rate. In this paper, we also discovered a new paralysis attack, known as the
Category Diverse attack, which has a stronger paralysis effect than TensorClog. It leads
to serious accuracy drops compared to TenserClog under the same truncation coefficient.
We also found that the standard deviation standardization can make the attack more
imperceptible. In order to resist these new poisoning attacks, we proposed Data Washing
algorithms developed based on autoencoders and integrated detections algorithms. Data
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Washing algorithms greatly reduce the effect of paralysis attacks and our experiments
show that our algorithm makes the false positive rate of target attack drop to nearly zero.
Integrated Detection algorithms can accurately detect three attacks through threshold-based
schemes and collision tables, and our experiments also confirmed the excellent detection
performance of our IDA algorithm. Based on the research conducted in this study, DNNs
are expected to have a more powerful ability to resist poisoning attacks.
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