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Abstract: Bone age assessment (BAA) is an important indicator of child maturity. Generally, a person
is evaluated for bone age mostly during puberty stage; compared to toddlers and post-puberty stages,
the data of bone age at puberty stage are much easier to obtain. As a result, the amount of bone
age data collected at the toddler and post-puberty stages are often much fewer than the amount
of bone age data collected at the puberty stage. This so-called data imbalance problem affects the
prediction accuracy. To deal with this problem, in this paper, a data imbalance immunity bone age
assessment (DIIBAA) system is proposed. It consists of two branches, the first branch consists of a
CNN-based autoencoder and a CNN-based scoring network. This branch builds three autoencoders
for the bone age data of toddlers, puberty, and post-puberty stages, respectively. Since the three
types of autoencoders do not interfere with each other, there is no data imbalance problem in the
first branch. After that, the outputs of the three autoencoders are input into the scoring network, and
the autoencoder which produces the image with the highest score is regarded as the final prediction
result. In the experiments, imbalanced training data with a positive and negative sample ratio of 1:2
are used, which has been alleviated compared to the original highly imbalanced data. In addition,
since the scoring network converts the classification problem into an image quality scoring problem,
it does not use the classification features of the image. Therefore, in the second branch, we also add
the classification features to the DIIBAA system. At this time, DIIBAA considers both image quality
features and classification features. Finally, the DenseNet169-based autoencoders are employed in the
experiments, and the obtained evaluation accuracies are improved compared to the baseline network.

Keywords: bone age assessment; data imbalance; CNNs; autoencoder; scoring network

1. Introduction

For children with different growth conditions, the differences in the growth process
caused by the environment, genes, diet, etc., can usually be reflected by bone maturity, and
then used to evaluate the development of children in cases such as endocrine disorders
and pediatric syndromes. Therefore, assessing bone age is an important task in clinical
application. In general, estimating the bone age of the non-dominant hand is the most
commonly used method. Using the non-dominant hand to estimate bone age has several
advantages. First, there are a lot of bones in palms. Second, the non-dominant hand is used
less frequently and is less affected by external forces. Because most people’s non-dominant
hand is the left hand, most estimates of bone age are based on the left hand. The assessment
of bone age is mostly before and after puberty. For adults, due to the fusion of the growth
plate, it is difficult to use the condition of the palm bones for assessment. Traditionally,
there are two most commonly used methods for bone age assessment: the Greulich & Pyle
Atlas (GP) method [1] and the Tanner Whitehouse (TW) method [2,3]. In the GP method,
the X-ray to be assessed for bone age is compared with the GP atlas to give bone age. This
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approach has several disadvantages. First of all, it takes a long time to assess bone age,
and it also requires professional medical personnel to evaluate. Secondly, due to manual
evaluation, there are human errors. In the TW method, 20 bones are scored separately,
these scores are then combined to obtain a composite score, which is then mapped to a
table to calculate bone age. Since bone age is determined by scoring, a possible problem is
that an overly simplistic scoring method may lead to inaccurate estimates of bone age.

Since the above disadvantages lie in traditional bone age assessment methods, in the
past, automatic bone age assessment systems have been proposed in many studies, while
due to the development of deep learning technology, more and more systems for medical
purposes are based on deep learning, including medical human–computer interfaces,
medical diagnosis systems, medical data analysis, medical registration systems, etc. These
various applications are increasingly inseparable from deep learning. For automatic bone
age assessment systems, many studies also build their systems based on CNN. In these
studies, the way of estimating bone age can be divided into two types. First, directly use
CNNs to build a regression model for bone age [4,5], since this method is to fit all bone ages
of palm bone X-ray by one CNN, in this case, the main problem is that if the estimation
is wrong, it is easy to have great errors. Another way is to divide the palm bone X-ray
into several stages according to the bone age [6,7]. At this time, the CNNs are dealing
with the classification problem, however, the main problem of this method is that if the
stages are divided too coarsely, the estimation of bone age will be not accurate enough.
If the stages are divided too finely, the difference between the stages will be not obvious,
which will cause it to be difficult to fit by CNNs and prone to overfitting. In order to avoid
these problems, a compromise solution can be considered. First, the palm bone X-rays are
divided into several rough stages, and for each stage an independent regression model is
trained to estimate the bone age. Therefore, the accuracy of classification of the rough stages
is very important. In this paper, we mainly deal with the problem of data imbalance in the
classification at the coarse stage, and use the classification results to the CNN regression
network to calculate bone age.

Although many existing bone age studies have trained a large number of palm bone X-
ray databases [8], which has led to good results on classification, however, due to differences
in the growth process of children, due to differences in races, diets, and different growth
environments, the development process of children varies in different regions. Therefore, it
is necessary for each region to build its own bone age estimation system. For this reason,
this paper is based on the palm bone X-ray films taken by children in Taiwan to build
a system. In this case, we consider a problem: it will take a long time for X-ray data to
accumulate to a sufficient number. Especially in toddler and post-puberty stages, there are
few outpatient cases, so the data at these two stages will be greatly lacking. In the initial
research stage of the bone age system, there will be a problem of very unbalanced data.
For example, in this paper, in the three stages we use, the proportion of the database we
collected in females is approximately 5:90:5, which is a very biased data distribution. In
our follow-up experiments, we will find that when training directly with CNNs all the
classification results are in the puberty stage.

This kind of X-ray data imbalance problem often occurs. For example, disease cases are
usually much smaller than those without disease, or, as in the case of this paper, outpatient
cases during toddler and post-puberty stages are very scarce, but these are a small number
of cases, usually the system still must be able to distinguish them, so many existing studies
are devoted to alleviating the problem of serious imbalances of X-ray data. The most
commonly used methods are several: re-sampling the data by undersampling [9,10] or
oversampling [11–14], using transfer learning [15–17] to pre-train network parameters with
other datasets with relatively sufficient data, and using the target task dataset to fine-tune
the model. In addition, the loss function of its CNNs is improved [18–21]. The loss function
is usually designed to compensate for a small number of classes during training.

The undersampling and oversampling methods each have their shortcomings. In
oversampling, if the amount of data of certain classes is quite lacking, no matter how the
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data is augmented, the data generated by the augmentation is always generated from the
original small amount of classes. Therefore, the features that can be learned in CNNs are
still very limited. In undersampling, if we have to discard those samples from a large
number of classes, it is a waste of these discarded data, especially in medical imaging
where image collection is more difficult. By using the loss function to compensate for the
small number of classes, the network is made to learn more towards the small number of
classes to alleviate the data imbalance problem, but the network always learns all classes
of datasets on the same network, which is still susceptible to a large number of classes.
Therefore, in this paper, we use three (three-stages target in this paper) autoencoders [22]
and a CNN-based scoring network to alleviate the data imbalance problem, because in
each stage each autoencoder is independent, they do not influence each other, so the small
number stage will not be disturbed by the large number stage. In DIIBAA, the classification
problem is turned into an image quality scoring problem. Its classification is mainly based
on the features of image quality. However, the classification’s features are still precious
information. Therefore, we also add a classifier for the bone age stage and integrate these
two different results for the final judgment result. After the classification is completed, we
use a CNN-based regression network to determine the bone age value.

In the subsequent section of this article, we first describe the dataset used in this article
and detail the DIIBAA method proposed in this article in Section 2, which includes two
branches which use image quality features and classification features, respectively. And
finally, we use the two to jointly determine the results of bone age stage prediction. After
the stage prediction, we build the bone age regression models to evaluate the bone age. In
Section 3, we will show the experimental results and their comparisons. In Section 4, we
discuss the advantage and limitations of our method. In Section 5, we give the conclusion
of the DIIBAA method proposed in this article.

2. Materials and Methods

The datasets used in this paper are shown in Table 1. These stages are based on [23]
(in fact, they have a total of 6 stages, we consider that the two stages are too similar, so the
adjacent stages are merged). S1 is the toddler stage, S2 is the puberty stage, and S3 is the
post-puberty stage. The data set is from the Taoyuan Cheng Hsin General Hospital, and
the labels are judged by two professional physicians. These two professional physicians
refer to the clinical database in the hospital to give the bone age stage and the bone age
value. In order to reduce human error, our bone age value is the average judgment of
the two physicians. These data were collected by the hospital in 2018 to 2020. It can
be found that in these three stages, regardless of gender, they are very unbalanced. As
the follow-up experiments show, in this extremely unbalanced situation, when directly
using CNN training, they are very unbalanced and both ends (S1 and S2) of stages have
weak discernment.

Table 1. Bone age dataset used in this paper.

Stage Number of Female Number of Male

S1 66 63
S2 1140 875
S3 73 133

In order to clearly illustrate the input data of this paper, we sample three pictures from
each stage of the data in Table 1, as shown in Figure 1, from left to right are toddlers (S1),
puberty (S2) and post-puberty (S3) stages.
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Figure 1. Three-stage metacarpal X-ray images.

The DIIBAA consists of two branches, as shown in Figure 2. Branch 1 consists of three
autoencoders and a scoring network. This branch converts the classification problem into
an image quality assessment problem, and because the high-quality images and low-quality
images have been converted into 1:2, the problem of data imbalance in this branch can
be greatly alleviated. In the second branch, the classification information is actually very
valuable since the classification features are not used in the first branch, but the network
trained directly using all the data is extremely imbalanced and relationships are almost
indistinguishable for each stage. Therefore, in order to utilize classified information, we
use mixup data augmentation [24] on branch 2 to alleviate the problem of data imbalance
and make the network slightly more distinguishable. For the samples that are ambiguous
in the first branch, we use branch 2 to judge them, and finally, give a CNN-based regression
network to the three bone age stages, respectively, and use it to give the bone age values.
In short, we first use branch 1 to predict, then check its results. If the check is passed, the
bone age prediction stage is the result of branch 1, otherwise, branch 2 is used as the result
of the bone age prediction stage.
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Figure 2. Framework of DAIIBAA.

2.1. Autoencoder-Based Scoring Classification System

In branch 1, we use three autoencoders to represent three stages (S1~3 in Table 1). In
each autoencoder, the input and output image sizes are 224 × 224. During the encoding
process, we have a total of three convolutional layers, their kernel size are all 3 × 3, and the
number of channels from the first layer to the third layer are 512, 256, and 128, respectively.
After each convolutional layer, a pooling layer is followed, and in each pooling is the
reduced feature map which is 1/2 times that of the previous layer. In the decoder part,
the convolution kernels from shallow to deep layers are 128, 256, and 512, respectively.
The rest of the convolution kernel parameters are the same as those of the encoder. After
convolution, they are all upsampled to double the size of the previous layer, and finally,
a single-channel 1 × 1 convolution layer will be connected. The output of this layer
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represents the reconstructed image. The sigmoid function is used in this layer for nonlinear
transformation, and the rest are all ReLU. The architecture of a CNN-based autoencoder
is as shown Figure 3. In the scoring network, we use DesnseNet169 [25], we use it for the
regression of score, so the output layer activation function is sigmoid. In the following, we
will divide the training and testing phases to illustrate the branch 1 part in this paper.
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Figure 3. The architecture of CNN-based autoencoder.

In the phase of training, we first train three autoencoders. As shown in Figure 4, we
use the corresponding autoencoders for training. For example, in the blue branch, we only
use the data in the S1 stage for training. In the orange branch, only the training of the
data in the S2 stage is used. During the training process, we add the perturbed data of
the other stages to weaken the reconstruction ability of the images that are not of our own
stage. The input of the perturbed data pair is the original image, and the output (that is
labeled) is the result of perturbing the original image. In this paper, the perturbation in the
branch is Gaussian noise [26]. Density in Gaussian noise simulation are added to the image
in a random way. Its SNR value is about 6.989 to 10, and the SNR value is calculated as:
SNR = 10 × log10(signal/noise). The number of perturbed degraded images in this paper
is 5% of the images of this stage.
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After the training of the three autoencoders is completed, we will then use the re-
construction results of these three autoencoders to generate data for the scoring network
as training data. The training data we generate will eventually generate two classes, T
and F. T is the result after the training image is reconstructed by the autoencoder of its
own corresponding stage. For example, the image of the S1 stage is reconstructed by
autoencoders1, and F is the result of the training image reconstructed by the autoencoder
of its own non-corresponding stage. For example, the image of the S1 stage is reconstructed
by autoencoders2 or autoencoders3, such as (1) and (2):

T = {DecoderS1(EncoderS1(S1)),
DecoderS2(EncoderS2(S2)),
DecoderS3(EncoderS3(S3))},

(1)
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F = {DecoderS1(EncoderS1(S2, S3)),
DecoderS2(EncoderS2(S1, S3)),
DecoderS3(EncoderS3(S1, S2))},

(2)

Among them, Decoder_S1 and Encoder_S1 are the encoding and decoding functions
(CNNs) of stage S1, respectively, and S1, S2 and S3 are the training X-ray data. After taking
the data of the two sets of T and F, we set T as 1.0 points, F as 0.0 points, using such a
configuration to train the scoring network, here we can see that the ratio of T to F is 1:2
(each image will generate 1 T and 2 F), which is a considerable alleviate for the original
extremely imbalanced data (Table 1).

In the test, when an image X is an unknown stage, we first input X to three different
autoencoders, they will generate XS1

r, XS2
r and XS3

r, three images, as shown in Figure 5.
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r or XS3
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Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 13 
 

Among them, Decoder_S1 and Encoder_S1 are the encoding and decoding functions 
(CNNs) of stage S1, respectively, and S1, S2 and S3 are the training X-ray data. After taking 
the data of the two sets of T and F, we set T as 1.0 points, F as 0.0 points, using such a 
configuration to train the scoring network, here we can see that the ratio of T to F is 1:2 
(each image will generate 1 T and 2 F), which is a considerable alleviate for the original 
extremely imbalanced data (Table 1). 

In the test, when an image X is an unknown stage, we first input X to three different 
autoencoders, they will generate XS1r, XS2r and XS3r, three images, as shown in Figure 5. 

 
Figure 5. Reconstruct the test image X with three autoencoders separately. 

Then, input XS1r, XS2r and XS3r into the scoring network, respectively, and each will 
receive a score of either XS1r, XS2r or XS3r, as shown in Figure 6: 

 
Figure 6. Scoring network. 

Finally, X is predicted to be the stage corresponding to the autoencoder network cor-
responding to the highest score of XS1r, XS2r and XS3r, as shown in Equation (3): 

Predict result =  max{Score of Xrs1, Xrs2, Xrs3},                 (3) 

In branch 1, our principle is that if the image is input into the non-corresponding 
autoencoders, these autoencoders should not be able to reconstruct it well, conversely, if 
the X-ray image is input to the corresponding autoencoder there should be excellent re-
constructed image quality. Therefore, in the scoring network, we can say that it predicts 
the image quality to give the input image score. Therefore, if the image has a better recon-
struction effect in a certain autoencoder, the image should be the corresponding class for 
this autoencoder. 

2.2. Use Mixup Augmentation to Train CNN Network 
Since the above-mentioned way of independent autoencoders does not mainly take 

into account the fact that the images are actually distinguishable features, in order to keep 
these features from being wasted, we use a CNN that also builds classification purposes 
to make DIIBAA’s system also take into account classification features. Since CNN is di-
rectly used to classify these extremely unbalanced data, they have almost no classification 
ability (experimental description in the next chapter). Therefore, we use the mixup aug-
mentation [24] method to augment the data of S1 and S3. The mixup augmentation is as 
follows (4): The formula: 

imagemixup = λ × imagex + (1 − λ) × imagey, (4) 

In the above equation, imagemixup  represents the synthesized image, and λ  is a 
value of 0–1. Here we generate λ in a random way, imagex and imagey are two randomly 

Figure 6. Scoring network.

Finally, X is predicted to be the stage corresponding to the autoencoder network
corresponding to the highest score of XS1

r, XS2
r and XS3

r, as shown in Equation (3):

Predict result = max
{

Score of Xs1
r , Xs2

r , Xs3
r

}
, (3)

In branch 1, our principle is that if the image is input into the non-corresponding
autoencoders, these autoencoders should not be able to reconstruct it well, conversely,
if the X-ray image is input to the corresponding autoencoder there should be excellent
reconstructed image quality. Therefore, in the scoring network, we can say that it predicts
the image quality to give the input image score. Therefore, if the image has a better
reconstruction effect in a certain autoencoder, the image should be the corresponding class
for this autoencoder.

2.2. Use Mixup Augmentation to Train CNN Network

Since the above-mentioned way of independent autoencoders does not mainly take
into account the fact that the images are actually distinguishable features, in order to
keep these features from being wasted, we use a CNN that also builds classification
purposes to make DIIBAA’s system also take into account classification features. Since
CNN is directly used to classify these extremely unbalanced data, they have almost no
classification ability (experimental description in the next chapter). Therefore, we use
the mixup augmentation [24] method to augment the data of S1 and S3. The mixup
augmentation is as follows (4): The formula:

imagemixup = λ× imagex + (1− λ)× imagey, (4)
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In the above equation, imagemixup represents the synthesized image, and λ is a value
of 0–1. Here we generate λ in a random way, imagex and imagey are two randomly selected
images, respectively, and here we use Formula (4) for the X-ray films of the S1 and S3 stages
to generate synthetic images until the number of images in S1 and S3 is equal to the number
of images in S2. Figure 7 is a mixup operation, using (4) to superimpose two images at the
same bone age stage with the random λ.
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With this data we train a CNN network, called, CNN_mixup, which is an improv-
ment compared to the indistinguishable (without mixup) augmentation, as shown in
Tables 2 and 3 (female and male, respectively):

Table 2. Compare the CNN trained with or without mix-up augmentation in the female.

Stage w/o Mixup Augmentation with Mixup Augmentation

S1 0.00% 41.67%
S2 100.00% 95.67%
S3 0.00% 30.77%

Table 3. Compare the CNN trained with or without mix-up augmentation in the male.

Stage w/o Mixup Augmentation with Mixup Augmentation

S1 0.00% 41.67%
S2 93.14% 94.86%
S3 33.33% 66.67%

When using mixup augmentation, compared to 0% at both ends before no augmenta-
tion, with mixup augmentation the two end stages in female are increased from 0%, 0% to
41.67%, 30.77%, and male from 0.00% and 33.33% to 41.67%, 66.67%, respectively. Such a
result shows that CNN_mixup has some discrimination ability.

2.3. Integration 2model

Next, we must integrate the results of the two branches. First, we use the results of
the scoring network. If the difference between their top two scores > th_score, then since
the network with the highest score is significantly better reconstructed than the other two,
this indicates that it has a fairly high chance for this stage, so in this case, we take the final
classification result as the result of the scoring network, otherwise the predicted result
using CNN_mixup is the final output result. The details are shown in Algorithm 1:
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Algorithm 1. Integration 2 model

Input: Encoder_S1, Encoder_S2, Encoder_S3, Scoring_CNN, CNN_mixup, image_x, th_ score
Sc1(image_x) = Scoring_CNN(Encoder_S1(image_x))
Sc2(image_x) = Scoring_CNN(Encoder_S2(image_x))
Sc3(image_x) = Scoring_CNN(Encoder_S3(image_x))
hs = highest score(Sc1(image_x), Sc2(image_x), Sc3(image_x))
shs = second highest score(Sc1(image_x), Sc2(image_x), Sc3(image_x))
If hs – shs > th_score

Result = hs
Else

Result = result of CNN_mixup
Return Result

Next, we find a suitable th_score, we use Algorithm 2 to find this threshold. On the
validation set, at an interval of 0.1, find the th_score with the highest accuracy for the
overall validation.

Algorithm 2. Finding th_score

Input: Algorithm 1, validation data
Highest accuracy = 0.0
For th from 0.05 to 0.5

Accuracy = Algorithm 1(validation data, th)
If Accuracy > Highest accurazy

th_score = th
Return th_score

In this step, we use a CNN regression model to assessment bone age values. In the
dataset of Table 1, bone age values are in years and include decimal points (example:
6.5 years means 6 years and 6 months). We built three independent regression models for
each of the three bone maturation stages (S1~3), and before training the CNN regression
model, we normalized the value of bone age to range from 0 to 1. We use the Equation (5)
for normalization.

BA′Sn
=

BASn −minimun BASn

maximun BASn −minimunBASn

, (5)

In (4), BA′Sn
represents the normalized bone age value, and BASn represents the original

bone age value. After regressing the results given by the network, we use Equation (6) to
calculate the true bone age value.

BA = base + BA′∗scale, (6)

In (5), BA represents the final predicted bone age, the base is the minimum bone age
value in the connection, as shown in the Table 4, the scale is the bone age range at this stage,
maximun BA–minimum BA.

Table 4. CNN-based bone age regression.

Stage
Maximum

BA of
Female

Minimum
BA of

Female

Maximum
BA of
Male

Minimum
BA of
Male

S1 2.5 0.5 2.7 1.0
S2 15.5 5.0 16.0 4.4
S3 18.0 12.0 19.0 13.5

3. Results

In our experiments, we use DenseNet169 as the backbone of CNNs, and the baseline
represents the original DenseNet169 architecture, and directly classify the three stages in
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Table 1. The branch 1 column represents the results using three independent autoencoders
and scoring networks. The branch 2 column uses the exact same architecture as the baseline.
The difference is that the training data is augmented by mixup. DIIBAA is the final staged
result of the system in this paper. The th_score calculated by Algorithm 2 is 0.45 and 0.6
for female and male, respectively, according to the validation set results. These results
are shown in Tables 5 and 6, which represent boys and girls, respectively. The following
accuracies are all test set accuracies, 80% are training and validation sets, and 20% are test
sets. The amount of data is shown in Table 1 above.

Table 5. Results on female.

Stage Baseline Branch 1 Branch 2 DIIBAA (th_Score = 0.45)

S1 0.00% 50.00% 41.67% 66.67%
S2 100.00% 86.14% 95.67% 99.13%
S3 0.00% 53.84% 30.77% 61.54%

Table 6. Results on male.

Stage Baseline Branch 1 Branch 2 DIIBAA (th_Score = 0.5)

S1 33.33% 50.00% 41.67% 75.00%
S2 93.14% 89.14% 94.86% 97.71%
S3 0.00% 59.26% 66.67% 77.78%

As these two tables show, the baseline, S1 and S3 have almost no recognition ability,
and even in females, all inputs are predicted as S2. Although the performance of the
autoencoder drops in S2, it has at least some discriminative ability in the two minority
stages S1 and S3, the drop in the S2 stage does not imply that the baseline has a better ability
to identify S2, for example, for male, it just predicts all inputs as S2. In branch 1, although
its performance is worse than that of autoencoder at both ends, it has less degradation to
S2, which allows us to use the results of branch 2 to improve the insufficiency of branch 1
for S2 accuracy.

Next, in Tables 7 and 8, we list the results for all th_scores. It can be found that the
th_score needs to be high enough to have good performance. This is because when the
th_score is too low (because branch 1 uses the image quality score as the classification basis)
the image quality is not much different, and the result of branch 1 is easily susceptible to
errors. Therefore, the th_score is used to adjust the output result, so that the classification
result of branch 1 is used when th_score is appropriately high, otherwise the result of
branch 2 is used as the finally result.

Table 7. th_score on female.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S1 58.33% 58.33% 58.33% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67%
S2 96.53% 96.70% 97.40% 98.27% 99.13% 99.13% 99.13% 99.13% 99.13% 99.13%
S3 53.85% 53.85% 61.54% 61.54% 61.54% 61.54% 61.54% 61.54% 61.54% 61.54%

Table 8. th_score on male.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 00.4 0.45 0.5

S1 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 75.00%
S2 92.00% 93.14% 93.71% 94.29% 94.86% 95.43% 95.43% 97.14% 97.71% 97.71%
S3 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 70.37% 74.07% 74.07% 77.78%

Here, we must compare with other methods for data imbalance problem alleviation.
We adopt three methods commonly used to alleviate the data imbalance on CNN on our
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data set. We employ these methods on the task of bone age stage identification task and
use their staged identification results to input into the corresponding bone age estimation
regression network. We compare the application research of these three methods in the
medical images. The three methods are: oversampling method, ref. [14] using DCGAN [27]
to perform data augmentation for the minority classes, ref. [21] using focal loss [28] to
deal with data imbalance problem, ref. [17] is based on transfer learning (ImageNet as the
source domain dataset) and data augmentation to deal with the imbalance problem. In the
first two methods, we still use densenet169 as the backbone network. In [17], since they
pointed out that Xception is the most superior in their method, we use Xception as the
backbone network in the method of [17]. Tables 9 and 10 are the comparison of accuracy
and MAE, respectively.

Table 9. Accuracy on three common methods for data imbalance alleviation.

Gender Ref. [14] DCGAN-Based
Data Augmentation Ref. [21] Focal Loss Ref. [17] Transfer

Learning on Xception
Our Method

(DIIBAA)

Female (S1) 30.77% 46.15% 61.54% 66.67%
Female (S2) 99.56% 92.67% 96.55% 99.13%
Female (S3) 0.00% 41.66% 25.00% 61.54%
Male (S1) 7.41% 70.37% 59.25% 75.00%
Male (S2) 99.42% 92.00% 97.14% 97.71%
Male (S3) 25.00% 25.00% 0.00% 77.78%

Table 10. MAE on three common methods for data imbalance alleviation.

Gender Ref. [14] DCGAN-Based
Data Augmentation

Ref. [21] Focal
Loss

Ref. [17] Transfer Learning
on Xception

Our Method
(DIIBAA) w/o Staging

Female 1.24 (year) 1.33 (year) 1.28 (year) 1.06 (year) 8.86 (year)
Male 1.94 (year) 1.83 (year) 1.67 (year) 1.34 (year) 8.88 (year)

As shown in Tables 9 and 10, DIIBAA outperforms the other three methods on the
problem of this article. We explain these reasons for each method separately. There are
two main problems with the DCGAN-based method. First, if the DCGAN cannot be well
trained, their help for data augmentation is limited. In addition, as we mentioned earlier,
this kind of oversampling method usually just augments the existing data, they are helpful
in the expansion of the decision boundary, but since the amount of data in our two stages
is too scarce, this method will have ineffective results. For focal loss, it strengthens training
on hard samples (equivalent to the minority stages in this article), and minority stages
are actually too scarce, so the focal loss is still not enough for training in hard samples.
Therefore, its method has a considerable improvement over the baseline network, but still
not accurate enough. In the transfer learning-based method, since this method does not
directly design data imbalance, it may be more helpful for slightly imbalanced data, but it
performs poorly for the more difficult cases of this article.

In the comparison of MAE, due to the stage prediction error, the error caused by it is
even greater, and DIIBAA is still better than the above three methods because of its error
rate. Of course, the MAE of DIIBAA has better results.

Finally, we use experiments to explain why we need to classify the mature stages of
bone age first, instead of directly using a regression CNN for all stages. We calculate the
MAE of the two to compare, and the results are shown in last column of Table 10.

It can be found that when the bone age is directly regressed without distinguishing
stages, the error of their MAE is very large, compared with the first stage. This is because
when all stages are mixed training, the range between them is larger and the variation is
larger. This makes CNN regression harder to fit. When the stages are separated, each inde-
pendent network fit is less problematic and therefore more likely to have accurate results.
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4. Discussion

Although our results have been greatly improved compared to the case where the base-
line has almost no discriminative ability, there is still the possibility of further improvement
in the future. In the branch 1 part, there still can be improvement in the S1 and S3 stages. In
future, we can try to enhance it in the following ways, such as adding richer perturbation
of the autoencoder, and the improvement of the loss function of the scoring network, etc. I
believe that under the framework of this paper, there is still a certain potential to further
improve this extremely imbalanced data. In the part of mixup augmentation, this is a
way of oversampling. Maybe we can think about how to make the data generated in the
process of oversampling more diverse, so that the decision boundary of a small number
of classes can be more practically expanded, and then make the branch 2 network more
distinguishable. If the two branches can be further improved, I believe that the DIIBAA
system can give more reliable classification results.

Additionally, this paper uses autoencoders and scoring networks to build a system
to alleviate data imbalanced problem. We also suggest that this method is quite suitable
to alleviate the data imbalance problem encountered by other medical images, but there
is a problem to consider, we convert the data ratio to 1:2. However, if the dataset has
many classes, such as a dataset with 100 classes, then the ratio of DIIBAA will become
1:99 in the training of the scoring network. At this time, we can consider the operation
of undersampling the F category, which is different from directly undersampling a large
number of categories, because in 99% of the data in F, each data actually has another 99
of the same origin. For the data generated by the graph, each original graph has a high
probability to exist in F, and must exist in T, so data will not be wasted.

Finally, with the migration of the ages, the living conditions of human beings will
inevitably change, and with the changes in eating habits, living habits, etc., the develop-
mental process of children will inevitably change, and the method in this article is built
using a changeless data set (2018 to 2020), in the face of future changes, the system must be
able to update the model with the times, such as adding online learning methods.

5. Conclusions

Automatic BAA is an important task for pediatrics, and in order to accurately assess
bone age, in the experiment, we show that assessment of bone age in divided stages is
a better way. Therefore, the stage is independently given to a regression network before
we must first perform stage prediction on the unknown X-ray films, and in order to train
the stage discriminant classifier, we meet a serious data imbalance problem. If we directly
use them for CNN training, the CNN has almost no discriminative ability. It is just that
almost all samples are predicted as a large number of stages. Therefore, this paper mainly
converts the classification problem into an image quality assessment problem, because the
autoencoders in these stages are independent and do not interfere with each other, which
naturally avoids data imbalance problems. In addition, considering that the classification
features between these X-ray films are also valuable information, in order to effectively
utilize them, we use mixup data augmentation to make branch 2 in DAIIBA system have
some classification ability, and finally we use th_score to leverage the advantages of both of
them. Finally, we also show that the correct prediction of bone age stage is helpful for the
prediction of bone age value.
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