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Abstract: This paper investigates the trajectory tracking control problem for underactuated under-
water vehicles, for which a model is expressed in terms of quasi-velocities arising from the inertia
matrix decomposition. The control approach takes into account non-modeled dynamics and external
disturbances and is suitable for symmetric vehicles. It is shown that such systems can be diagonalized
using inertial quasi-velocities (IQVs). The strategy consists of the velocity controller and two adaptive
integral sliding mode control algorithms. The proposed approach, introducing velocity transforma-
tion and using backstepping methods and integral sliding mode control, allows trajectory tracking
for vehicles in described models with symmetric inertia matrix. Proof of the stability of the closed
system was carried out using IQV. The proposed scheme has been verified on two 3 DOF models of
underwater vehicles with thruster limitations. A brief discussion of the results is also given.

Keywords: underactuated marine vehicle; trajectory tracking; backstepping; integral sliding mode
control; robustness; velocity transformation; quasi-velocities; simulation

1. Introduction

The control of marine vehicles is an area where active research is being conducted due
to the various theoretical challenges and significant practical applications of these vehicles.
Most marine vehicles are underactuated, which means they have more degrees of freedom
to control than the number of independent control inputs.

Particularly interesting and challenging among the control problems studied for
marine vehicles are trajectory tracking and path tracking. The latter issue is particularly
relevant for mobile vehicles and robots, e.g., [1–3]. In [1], the predictive Stanley controller
was applied to path tracking. The authors of [2] has presented a robust path tracking
algorithm under the vehicle-infrastructure cooperative system (i-VICS) based on Kalman
filter. Another article [3] proposed a navigation method modeled on the use of bookmarks
as in the memory of living beings to reach a destination using key points.

In general, an underwater vehicle is modeled with 6 degrees of freedom (DOF) and
control schemes are designed for such a model, as can be found in [4–6]. However, in some
works, the dynamics model is reduced to 5 DOF and only the controller is designed for it.
Such an approach is presented, e.g., in [7,8].

However, this paper only addresses the problem of tracking the desired trajectory
for a 3 DOF vehicle model in horizontal motion. In the simplest case, the inertia matrix is
assumed to be diagonal. There are various control schemes that have been successfully
applied to this class of vehicles. One can point to works that use sliding mode control
(SMC), such as [9,10]. Another group of controllers is based on Lyapunov method [11,12].
Control strategies based on the backstepping approach are also widely used [13–15]. This
technique is often combined with other methods, such as SMC [16,17], direct Lyapunov
method [18,19], averaging approach [20], dynamic surface control method [21], nonlinear
model predictive control (NMPC) [22], neural network (NN) and SMC [23,24]. Another
group of methods uses NN, such as in [25]. Such approaches are also a combination
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of different algorithms, such as with SMC [26] or with fuzzy logic [27]. Fuzzy logic-
based control schemes are also available for solving trajectory tracking problems, for
example [28,29]. Many control algorithms based on other methods can be found, such
as event-triggered control (ETC) with fuzzy system approximation [30] or with NN [31]
as well as proportional integral derivative sliding mode control (PID-SMC) [32] or with
prescribed performance [33].

Models with a diagonal inertia matrix allow simplification of the controller, but from
the point of view of dynamics they often deviate from the real vehicle. For this reason,
some control schemes are designed based on a model with a symmetric inertia matrix.
Many approaches to the issue under consideration can be identified here. The NN has been
used, for example, in [34,35], although additional methods such as backstepping in [36]
or backstepping and SMC in [37] are sometimes applied. Various approaches can be cited
here, such as those based on the backstepping method [38], SMC [39] terminal sliding mode
control [40], prescribed performance [41] or input–output linearization [42]. For this type
of model, control strategies that are a combination of different methods are also applied,
such as backstepping or the Lypunov approach [43].

Some control algorithms are based on the transformation of variables. In such cases,
the control scheme is designed in new variables. One possible solution is to introduce
coordinate transformation as in [14,29] for a model with a diagonal inertia matrix. The
coordinate transformation is also used for models with a non-diagonal inertia matrix as
in [41,42,44].

The proposed control scheme for tracking the trajectory of 3 DOF underactuated
underwater vehicles that move in the horizontal plane is based on a velocity transformation
instead of a coordinate transformation. The controller uses the inertial quasi-velocity (IQV)
originally described for mechanical systems in [45]. Because of the difficulties associated
with the velocity transformation (since there is additional dynamic coupling due to the
coupling between these velocities), controllers incorporating the IQV are used in systems
with fully actuated input signals, as can be found in [46,47] (for serial manipulators)
or [48,49] (for fully actuated marine vehicles). This means that for vehicles with incomplete
input signals, developing control algorithms in terms of IQV is still a difficult problem. The
present work is an attempt to fill this research shortfall.

An important advantage of controllers based on IQV is the availability of information
about the impact of vehicle dynamics during the control task. This means that, in addition
to trajectory tracking, it is possible to gain insight into the dynamics of the system, and thus
study the behavior of the vehicle with the controller depending on the assumed desired
trajectory, as well as changes in the model parameters. An example of such studies for
a system with full forcing is given in [49]. Thus, the novelty of the work is also due to
the fact that IQV cannot be easily applied to mechanical systems with underactuation.
Simulation results show effectiveness of the proposed control scheme and give an answer
to the question of the usability of using QV for trajectory tracking control of underactuated
underwater vehicles.

Paper [50] dealt with an algorithm based on a velocity transformation but also a
coordinate transformation, while this one uses only the first transformation. The dynamic
models are different in the two works and the disturbances are defined differently. The
algorithm expressed in IQV [50] was only a slight modification of the original controller
while here the control scheme is based on a combination of IQV, backstepping and SMC,
i.e., it is grounded on a different control idea.

The main contributions of this study are:

(i) Development of a trajectory tracking controller in terms of IQV for asymmetric under-
actuated vehicles moving in the horizontal plane.

(ii) Extension of IQV concept for tracking controller for underactuated vehicles with
3 DOF.
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(iii) Compared to existing controllers employing a combination of baskstepping and SMC
methods, the proposed algorithm uses a velocity transformation resulting in a vector
of new variables that includes the dynamic parameters of the vehicle model.

(iv) Indication of the mathematical conditions for the implementation of such an algorithm
and its verification based on simulation studies performed for two vehicles with
different dynamics and for two different desired trajectories.

Comment. Verification of the control algorithm for models with different parameters, as
well as the use of two trajectories and an intuitive method of selecting controller gains seems
reasonable, as it can happen that such changes affect the performance of the controller, as
shown, for example, in [51].

The present work is organized as follows. Section 2 presents the formulation of the
problem. Section 3 describes the equations of motion in terms of quasi-velocities. Section 4
provides a theoretical analysis of the proposed control scheme. Section 5 presents numerical
results for two different underwater vehicles and two trajectories to demonstrate the
effectiveness of the controller. Section 6 discusses the obtained results in comparison with
other works on the issue under consideration. Finally, Section 7 presents conclusions.

2. Problem Formulation

Consider the model of marine vehicle moving horizontally given in Figure 1.
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Figure 1. Marine vehicle model sketch.

For the position and orientation description, the North–East–Down (NED) frame is
applied, namely η = [x, y, ψ]T . The velocities in the body frame are defined by ν = [u, v, r]T

which means that the surge velocity, the sway velocity, and the yaw velocities are taken
into account. The equations of motion for a marine vehicle moving horizontally are as
follows [4,5]:

η̇ = R(ψ)ν, (1)

Mν̇ + C(ν)ν + D(ν)ν = τ + fE, (2)

where R(ψ) is the rotation matrix, M is the symmetric inertia matrix which contains addi-
tional mass (the matrix is positive definite), C(ν) is the matrix of Coriolis and centripetal
terms, and D(ν) is the damping matrix. Moreover, τ = [τu, 0, τr]T , where τu is the thruster
force and τr is the yaw torque, fE means the vector of external disturbances. The corre-
sponding matrices and vectors are of the form:

R(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

, M =

 m11 0 0
0 m22 m23
0 m23 m33

,
C(ν) =

 0 0 c13
0 0 c23
−c13 −c23 0

, D(ν) =

 d11 0 0
0 d22 d23
0 d32 d33

, fE =

 fEu
fEv
fEr

 (3)
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with: m11 = m − Xu̇, m22 = m − Yv̇, m23 = m32 = mxg − Yṙ, m33 = Jz − Nṙ, c13 =
−m22v− m23r, c23 = m11u, d11 = Xu + X|u|u|u|, d22 = Yv + Y|v|v|v|+ Y|r|v|r|, d23 = Yr +
Y|v|r|v|+ Y|r|r|r|, d32 = Nv + N|v|v|v|+ N|r|v|r|, and d33 = Nr + N|v|r|v|+ N|r|r|r|.

3. Equations of Motion in Terms of Quasi-Velocities

To use the decomposition method, one must assume that the matrix M is symmetric. It
is possible to meet this assumption as long as one takes into account all model inaccuracies
and external disturbances in the disturbance function with limitations on its values, as
will be shown in the next section. The M symmetric matrix can be decomposed using one
of the known methods, such as [45] which was successfully applied for marine vehicles,
for example in [49] (Equation (1) is valid). This method was developed for mechanical
systems [45]. It is easy to implement [49] and has low computational complexity which
reduces simulation time. In addition, it allows physical interpretation of IQV, and the
physical units are the same as in classical equations of motion. The inertia matrix is
factorized as M = Υ−T NdiagΥ−1 which leads to a diagonal matrix Ndiag = ΥT MΥ. However,
since the control algorithm must use known quantities, the decomposed matrix is of the
form N = Υ̂T MΥ̂ (the matrix Υ̂ contains nominal parameters), so the resulting errors ∆Υ
are included in the new disturbance vector which is defined as f = fE + ∆Υ. Then, the
kinematic Equation (1) remains unchanged, but instead of (2) one obtains:

Nζ̇ + Υ̂TC(ν)ν + Υ̂T D(ν)ν = Υ̂Tτ + Υ̂T f , (4)

ν = Υ̂ζ, (5)

Υ̂ =

 1 0 0
0 1 Υ̂23
0 0 1

, N = diag{N1, N2, N3}, (6)

where the new vector of quasi-velocities ζ = [ζ1, ζ2, ζ3]
T . The introduced quantities are

defined as: N1 = m11, N2 = m22, N3 = m33 − (m2
23/m22), Υ̂23 = −(m̂23/m̂22).

Equations of motion replacing (4) and (5) may be written as:

ζ1 = u, (7)

ζ2 = v− Υ̂23r, (8)

ζ3 = r, (9)

N1ζ̇1 = F1(ζ) + τu + fu, (10)

N2ζ̇2 = F2(ζ) + fv, (11)

N3ζ̇3 = F3(ζ) + τr + fζ3 , (12)

where fζ3 = Υ̂23 fv + fr. This means that only v 6= ζ2 because v = ζ2 + Υ̂ζ3. In order to
avoid a decomposition that would result in unknown quantities, the original variables
were used where they are present, namely:

F1(ζ) =
(
m22v + m23r

)
r− d11u, (13)

F2(ζ) = −m11ur− (d22v + d23r), (14)

F3(ζ) = −(m22v + m23r)u + m11uv− Υ̂23m11ur− (Υ̂23d22 + d32)v− (Υ̂23d23 + d33)r. (15)

4. Trajectory Tracking Control Algorithm

The proposed controller in terms of the IQV enables the trajectory tracking in the
horizontal plane taking into account parameter perturbations in the presence of external
disturbances.

4.1. Tracking Problem and Assumptions

The desired trajectory is expressed as ηd = [xd, yd, ψd]
T whereas the tracking errors are

[xE
e , yE

e , ψe]T = [x− xd, y− yd, ψ− ψd]
T . The functions xd, yd defined in the reference frame
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{E}must be smooth and continuous. The desired attitude angle trajectory is determined
from the desired trajectory from the Equation (such as in [15]):

ψd = arctan
(

ẏd
ẋd

)
. (16)

Moreover, the coordinate transformation is applied:

xe = cos ψ xE
e + sin ψ yE

e (17)

ye = − sin ψ xE
e + cos ψ yE

e , (18)

because xe, ye are defined in the body frame {B}. Calculating the time derivative of the
kinematic tracking errors and making use of (1), the following can be written:

ẋe = u− ud cos ψe + rye (19)

ẏe = v + ud sin ψe − rxe, (20)

ψ̇e = r− rd, (21)

where ud =
√

ẋd + ẏd and rd = ψ̇d mean the reference velocities.

Assumption 1. The model parameter perturbations are bounded, i.e., |mij − m̂ij| ≤ m̃ij, |dij −
d̂ij| ≤ d̃ij where i, j = 1, 2, 3, |N3− N̂3| ≤ Ñ3, and ·̂ means the nominal value of the real parameter.
This means that there exists the upper bound of the parameter perturbation. Moreover, all the vehicle
states are measurable and can be applied in the controller.

Assumption 2. The external disturbances fu, fv, fr are unknown but bounded (as, e.g., in [52,53]).
This is also true for their first time derivatives [53]. The disturbances may be constant or time-
varying.

Assumption 3. In order to avoid chattering during the vehicle motion under the proposed con-
troller, the discontinuous function signum is approximated by the hyperbolic tangent function, i.e.,
sgn(Si) ≈ tanh(γiSi) and γi is a positive scalar where i = 1, 2 [9].

Remark 1. The control strategy consists of two control algorithms. The first is used to stabilize
tracking errors, while the second is used to move the vehicle to the desired trajectory.

4.2. Kinematic Control Algorithm

In order to design the kinematic controller the following Lyapunov function candidate
is proposed, e.g., [54]:

Vk =
1
2

x2
e +

1
2

y2
e + (1− cos ψe). (22)

Its time derivative, after using (19)–(21), has the form:

V̇k = xe ẋe + yeẏe + ψ̇e sin ψe = (u− ud cos ψe)xe + (r− rd + udye) sin ψe + vye. (23)

Next, because the velocities u, r are understood as the virtual control variables to
ensure that V̇k < 0, then the desired velocities are proposed as [8,55]:

υdu = ud cos ψe − kxxe, (24)

υdr = rd − udye − kψ sin ψe, (25)
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where kx > 0, kψ > 0 are some gain coefficients. If the virtual variables are equal to the
desired variables, then substituting the Equations (24) and (25) into the expression (23), the
following can be written:

V̇k = −kxx2
e − kψ sin2 ψe + vye ≤ −kxx2

e − kψ sin2 ψe + |vye|. (26)

The following lemma is proposed because the direct control in sway direction cannot
be ensured.

Lemma 1. The velocity v is bounded if the disturbances fv are bounded and consequently also the
quasi-velocity ζ2 is limited.

Proof. The Lyapunov function candidate is as follows:

Vζ2 =
1
2

ζ2
2. (27)

Since the drag coefficients are dependent on the velocity v and the equation of mo-
tion (11) in IQV, to make the analysis easier it can be transformed and expressed by the
formula:

ζ̇2 = N−1
2 (−m11ur− d22v− d23r + fv). (28)

The time derivative of (27) can be given in the form:

V̇ζ2 = ζ2ζ̇2 = ζ2N−1
2 (−m11ur− d22v− d23r + fv). (29)

Moreover, the drag coefficients can be given in the form d22 = Y22(r) + Y|v|v|v|,
d23 = Y23(r) + Y|v|r|v| where Y22(r) = Yv + Y|r|v|r| and Y23(r) = Yr + Y|r|r|r|. Therefore,
using the above and (8) it can be written that:

V̇ζ2 = ζ2N−1
2 (−m11ur− d22v− d23r + fv)

= N−1
2 (v− Υ̂23r)

(
−m11ur− (Y22(r) + Y|v|v|v|)v− (Y23(r) + Y|v|r|v|)r + fv

)
. (30)

Let A = −m11ur − Y23(r)r − Y|v|r|v|r + fv. The function V̇ζ2 < 0 if the following
conditions are fulfilled:

(1) v < Υ̂23r < 0 and
(

A−Y22(r)v−Y|v|v|v|v
)
> 0, and (v− Υ̂23r) < 0, (31)

(2) Υ̂23r < v < 0 and
(

A−Y22(r)v−Y|v|v|v|v
)
< 0, and (v− Υ̂23r) > 0, (32)

(3) v > Υ̂23r > 0 and
(

A−Y22(r)v−Y|v|v|v|v
)
< 0, and (v− Υ̂23r) > 0, (33)

(4) 0 < v < Υ̂23r and
(

A−Y22(r)v−Y|v|v|v|v
)
> 0, and (v− Υ̂23r) < 0. (34)

Taking into account boundedness of u and r (they are controlled and bounded) and
the disturbance function fv bounded by condition (31)–(34) one obtains:

(1), (2) − vmax ≤ v <
Y22(r)−

√
∆1

2Y|v|v
, (35)

(3), (4) vmax ≥ v >
−Y22(r) +

√
∆2

2Y|v|v
, (36)

where ∆1 = Y2
22(r)− 4Y|v|v A and ∆2 = Y2

22(r) + 4Y|v|v A. It follows from this condition that
v is decreasing and therefore bounded. Considering that ζ2 = v− Υ̂23r, it can be concluded
that also ζ2 is limited.

Because the desired trajectory ud arises from trajectory planning and values of the
velocity u are limited by thrusters, then the desired trajectory is bounded. Moreover, the
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error ye is bounded. From the analysis it follows that v and ye are both bounded. Taking
into account Young’s inequality, i.e., ab ≤ ε2

2 |a|2 +
1

2ε2 |b|2 for (a, b) ∈ R, where ε is a
positive constant value [18], the following can be written:

V̇k = −kxx2
e − kψ sin2 ψe + vye ≤ −kxx2

e − kψ sin2 ψe +
ε2

2
|v|2 + 1

2ε2 |ye|2

= −(kxx2
e + kψ sin2 ψe −

ε2

2
|v|2 − 1

2ε2 |ye|2). (37)

From this it follows that V̇k ≤ 0 as long as kxx2
e + kψ sin2 ψe > ρk, where ρk =

ε2

2 |v|2 +
1

2ε2 |ye|2. The symbol ρk denotes a variable parameter that depends on the velocity v, the
error ye and on the assumed value of ε. Thus, selecting sufficiently great values of kx,
kψ and appropriate value ε the velocity control subsystem will be asymptotically stable.
However, if this condition is not met, then:

V̇k ≤ −(kxx2
e + kψ sin2 ψe) + ρk. (38)

This result means that all the time-varying signals are uniformly ultimately bounded
(UUB) and the errors converge to a small neighborhood of zero.

4.3. Dynamic Control Algorithm

The task of the dynamic controller is to move the vehicle to the desired velocities using
τu and τr, while the velocity errors are assumed as:

[ue, re]
T = [u− ud, r− rd]

T . (39)

Because, the algorithm is expressed using IQV therefore ζ1e = ζ1 − ζ1d and ζ3e =
ζ3 − ζ3d are applied. From (7)–(9) it is noticeable that it is also ue = u− ud and re = r− rd.

For the surge force τu the following integral sliding surface is defined:

S1 = ζ1e + λ1

∫ t

0
ζ1e(σ)dσ, (40)

where λ1 > 0 is a control coefficient. The time derivative of S1 taking into account (10) is
Ṡ1 = ζ̇1e + λ1ζ1e (where ζ̇1e = ζ̇1 − ζ̇1d):

Ṡ1 = N−1
1
(

F1(ζ)− N1ζ̇1d + N1λ1ζ1e + τu + fu
)
. (41)

To ensure the convergence of the error to zero along the sliding surface S1 the following
control algorithm is proposed:

τu = −F̂1(ζ) + N̂1ζ̇1d − N̂1λ1ζ1e − f̂u − Γ1sgn(S1), (42)

where the last term, designed according to Assumption 3, is related to the parameters’
perturbation reducing, and f̂u means the estimated value of the external disturbance
force fu.

In order to prove the stability of the vehicle under the parameters’ perturbation and
external disturbances, the following Lyapunov function candidate is assumed:

V1 =
1
2

N1S2
1 +

1
2

β1 f̃ 2
u , (43)
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where f̃u = fu − f̂u denotes the estimated error of the disturbance force and β1 > 0 a
constant coefficient (control parameter). The time derivative of V1 calculated using (41) and
(42) is:

V̇1 = N1S1Ṡ1 + β1 f̃u
˙̃fu = S1

(
F1(ζ)− F̂1(ζ) + (N̂1 − N1)ζ̇1d + λ1(N1 − N̂1)ζ1e

−Γ1sgn(S1)
)
+ f̃uS1 + β1 f̃u

˙̃fu, (44)

where:
F1(ζ)− F̂1(ζ) = (m22 − m̂22)vr + (m23 − m̂23)r2 + (d̂11 − d11)u. (45)

Next, making use of Assumption 1 the gain term Γ1 is applied:

Γ1 = m̃22|vr|+ m̃23|r2|+ d̃11|u|+ Ñ1|ζ̇1d|+ λ1Ñ1|ζ1e|+ δ1. (46)

Then under Assumption 2 (if ḟu = 0, i.e., for constant disturbances), Equation (44)
becomes:

V̇1 = N1S1Ṡ1 + β1 f̃u
˙̃fu ≤ −δ1|S1|+ f̃uS1 + β1 f̃u

˙̂fu = −δ1|S1|+ f̃uS1 + β1 f̃u( ḟu − ˙̂fu)

≤ −δ1|S1|+ f̃u(S1 − β1
˙̂fu). (47)

Designing the adaptive term ˙̂fu = β−1
1 S1 one obtains:

V̇1 ≤ −δ1|S1| ≤ 0. (48)

This result means that V̇1 = 0 provided ζ1e converges to zero along the sliding surface
S1. However, ζ1e = ue, thus also ue tends to zero. Therefore, the surge velocity error ue
converges asymptotically to zero if the signal τu (42) is used.

For the yaw moment (torque) the integral sliding surface is given in the form:

S2 = ζ3e + λ2

∫ t

0
ζ3e(σ)dσ, (49)

where λ2 > 0 is a control coefficient. The time derivative of S2 taking into account (12) is
Ṡ2 = ζ̇3e + λ2ζ3e (where ζ̇3e = ζ̇3 − ζ̇3d):

Ṡ2 = N−1
3
(

F3(ζ)− N3ζ̇3d + N3λ2ζ3e + τr + fζ3

)
. (50)

The proposed input control signal τr has the form:

τr = −F̂3(ζ) + N̂3ζ̇3d − N̂3λ2ζ3e − f̂ζ3 − Γ2sgn(S2), (51)

where the last term meets Assumption 3 and is related to the parameters’ perturbation
function, whereas f̂ζ3 is the estimated value of the external disturbance force fζ3 .

The Lyapunov function candidate is assumed as follows:

V2 =
1
2

N3S2
2 +

1
2

β2 f̃ 2
ζ3

, (52)

where f̃ζ3 = fζ3 − f̂ζ3 is the estimated error of the disturbance force and β2 > 0 is a constant
control parameter. Calculating the time derivative of V2 and applying (50) and (51) it can
be written:

V̇2 = N3S2Ṡ2 + β2 f̃ζ3
˙̃fζ3 = S2

(
F3(ζ)− F̂3(ζ) + (N̂3 − N3)ζ̇3d + λ2(N3 − N̂3)ζ3e

−Γ2sgn(S2)
)
+ f̃ζ3 S2 + β2 f̃ζ3

˙̃fζ3 , (53)
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where:

F3(ζ)− F̂3(ζ) = (m̂22 −m22)uv + (m11 − m̂11)uv + (m̂23 −m23)ur + Υ̂23(m̂11 −m11)ur

+Υ̂23(d̂22 − d22)v + Υ̂23(d̂23 − d23)r + (d̂32 − d32)v + (d̂33 − d33)r. (54)

Now using Assumption 1, the following gain function is adopted to guarantee the
stability of the control system against parameter perturbations:

Γ2 = (m̃22 − m̃11)|uv|+ (m̃23 + Υ̂23m̃11)|ur|+ (d̃32 + Υ̂23d̃22)|v|
+(d̃33 + Υ̂23d̃23)|r|+ Ñ3|ζ̇3d|+ λ2Ñ2|ζ3e|+ δ2. (55)

Then, given Assumption 2 and the first case, i.e., ḟζ3 = 0 (which implies from (12)
that both ḟv = 0 and ḟr = 0, i.e., for constant disturbances), the function V̇2 (53) can be
expressed as:

V̇2 = N3S2Ṡ2 + β2 f̃ζ3
˙̃fζ3 ≤ −δ2|S2|+ f̃ζ3 S2 + β2 f̃ζ3( ḟζ3 −

˙̂fζ3)

≤ −δ2|S2|+ f̃ζ3(S2 − β2
˙̂fζ3). (56)

Designing the adaptive term ˙̂fζ3 = β−1
2 S2 one obtains:

V̇2 ≤ −δ2|S2| ≤ 0. (57)

This result means that V̇2 = 0 provided ζ3e converges to zero along the sliding surface
S2. However, ζ3e = re, thus also re tends to zero. Therefore the yaw velocity error re
converges asymptotically to zero if the signal τr (51) is used.

Finally, for the entire control system, the following inequality is obtained:

V̇d = V̇1 + V̇2 ≤ −δ1|S1| − δ2|S2| ≤ 0, (58)

which means that the proposed dynamic control algorithm can stabilize velocity errors ue
and re.

Remark 2. The discontinuous sign function can be replaced by using another smooth function
which allows us to avoid the well-known chattering problem. For example, in [18], a definition of
a smooth function was given. The properties of such a function satisfies, e.g., fs(χ) = tanh(χ).
Replacing the discontinuous function sgn by the tanh(aχ) function, which, however, is only an
approximation sgn(χ) ≈ tanh(aχ) where a is a positive scalar can be found, e.g., in [9]. In [56]
it was shown that if instead of using sgn(χ), the approximation by the use of sat(χ/ε) is carried
out, then the sliding mode control algorithm guarantees ultimate boundedness with an bound that
can be controlled by the design of parameters ε (globally uniformly asymptotically stabilization
can be proven). Taking the above into account and knowing that both functions, i.e., sat and tanh,
are smooth saturation functions, one may conclude that also for the tanh function only globally
uniformly asymptotically stabilization is ensured.

Remark 3. A more realistic situation than before will now be considered. This problem was
discussed for manipulators in [57] and for underwater vehicles in [53]. If ḟu ≈ 0 or ḟu 6= 0 the
uncertainties are arbitrarily large and fast time-varying and then it is:

V̇1 = N1S1Ṡ1 + β1 f̃u
˙̃fu ≤ −δ1|S1|+ β1 f̃u ḟu ≤ −δ1|S1|+ ρ1 ≤ 0, (59)

where a positive scalar ρ1 ≥ |β1 f̃u
˙̂fu| can be found for the well-designed controller and bounded

signal ḟu (Assumption 2). It is necessary to meet the condition |β1 f̃u
˙̂fu| < δ1|S1|. However, in this

case only uniformly ultimate boundedness will be guaranteed.
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If the uncertainties ḟζ3 ≈ 0 or ḟζ3 6= 0 (what means at least one of ḟv and ḟv is not equal
to zero) then it is:

V̇2 = N3S2Ṡ2 + β2 f̃ζ3
˙̃fζ3 ≤ −δ2|S2|+ β2 f̃ζ3 ḟζ3 ≤ −δ2|S2|+ ρ2 ≤ 0, (60)

where a positive scalar ρ2 ≥ |β2 f̃ζ3
˙̂fζ3 | can be found for the well-designed controller and

bounded signal ḟr (Assumption 2). It is necessary to meet the condition |β2 f̃ζ3
˙̂fζ3 | < δ2|S2|.

However, in this case only uniformly ultimate boundedness will be guaranteed.
If the uncertainties ḟu ≈ 0 or ḟv 6= 0, ḟv ≈ 0 or ḟu 6= 0, ḟr ≈ 0 or ḟr 6= 0 then one has:

V̇d = V̇1 + V̇2 ≤ −δ1|S1| − δ2|S2|+ ρ3 ≤ 0, (61)

where a positive scalar ρ3 = ρ1 + ρ2. In this case only uniformly ultimate boundedness will
be guaranteed.

4.4. Controller

The obtained results can be summarized in the following proposition.

Proposition 1. Consider an underactuated vehicle described by Equations (1) and (4)–(12) where
the control objective is to stabilize trajectory tracking errors, i.e., limt→∞ xe = 0, limt→∞ ye = 0,
and limt→∞ ψe = 0. If Assumptions 1–3 are fulfilled then the output signals τu (42) and τr (51) of
the vehicle controller enable it to follow a desired trajectory in the horizontal plane in the presence of
parameter perturbations and external disturbances. The full control scheme consists of:

(a) Kinematic control algorithm which makes the velocity control subsystem uniformly ultimately
bounded;

(b) Dynamic control algorithm which moves the vehicle to a desired trajectory (and at least ensures
uniformly ultimate boundedness).

Proof of Proposition 1. Taking into considerations presented in Section 4.1 (assumptions),
Sections 4.2 and 4.3 it can be concluded using the kinematic controller the velocity control
subsystem is uniformly ultimately bounded, while the dynamic controller moves the
vehicle to a desired trajectory and ensures uniformly ultimate boundedness. The control
signals τu (42) and τr (51) guarantee that a desired trajectory in the horizontal plane under
parameter perturbations and external disturbances is tracked. Thus, it can be stated that
the stability analysis is completed.

5. Simulations and Comparison

The thruster saturation effect is sometimes taken into consideration in the control
algorithm [58]. However, when the thrust saturation effect is not serious, then the problem
is omitted [8,52]. Such a situation occurs when the trajectories set for tracking are not
complicated and the saturation effect for thrusters occurs only temporarily or occasionally.

5.1. Vehicle Models and Test Conditions

Simulation studies were performed to include at least partially real conditions. Two un-
derwater vehicle models known from the literature were selected. Moreover, the technical
capabilities resulting from the design of each vehicle were taken into account, namely the
values of forces and moments which can be obtained from the thrusters and the possible ve-
hicle velocities. The parameters of SIRENE [59] and Kambara [60] are given in Table 1. Since
the test of the control algorithm was performed assuming the inertia matrix as symmetric,
additional parameters were assumed in the simulations, namely: m23 = m32 = −700 kgm
(for SIRENE), m23 = m32 = −35 kgm (for Kambara) and values Yr = Nv = 10, Yr|v| = Yv|r|
= Yr|r| = Nr|v| = Nv|r| = Nv|v| = 10 (the same for both vehicles). It is worth noting that
the parameters of the models of the two vehicles are significantly different, which allows
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verification of the proposed algorithm for vehicles with different dynamic parameters. For
tracking, the desired trajectory position profiles are assumed, described as pd = [xr, yr]T :

pd1 = [0.4 t, 0.2 t]T , (62)

pd2 = [0.6 t− 3 cos(0.02 t), 10− 3 sin(0.02 t)]T , (63)

linear and cycloid trajectory, respectively. The starting points (the same for both vehicles)
were p01 = [−5, 2, 0]T and p02 = [−5, 12, 0]T . These points were assumed in order to
ensure realistic condition of work.

Moreover, time of motion was t = 200 s (for linear trajectory), t = 500 s (for cycloid
trajectory) with the time step ∆t = 0.03 s, and using the method ode 3 Bogacki–Shampine
(in Matlab/Simulink). The simulation test was done based on software given in [61] but
adapted for use with IQV.

Two types of disturbances were considered, i.e., constant and variable of the form (as
an example of Assumption 2):

fu = 12 N, fv = −1.5 N, fr = 2 Nm, (64)

fu(t) = 2 + 1.5 sin(0.3 t) + 0.5 cos(0.2 t) N, (65)

fv(t) = 1 + 0.5 sin(0.1 t) + 0.3 cos(0.3 t) N, (66)

fr(t) = 1 + sin(0.2 t) + 0.2 cos(0.4 t) Nm, (67)

Table 1. Parameters of SIRENE and Kambara.

SIRENE Kambara

Symbol Value Value Unit

L 4.0 1.2 m
b 1.6 1.5 m
h 1.96 0.9 m

m11 2234.5 175.4 kg
m22 2234.5 140.8 kg
m33 2000 16.07 kgm2

Xu 0 120 kg/s
Yv 346 90 kg/s
Nr 1427.2 18 kgm2/s

Xu|u| 35.4090 90 kg/m
Yv|v| 667.5552 90 kg/m
Nr|r| 26,036 15 kgm2

For evaluating the tracking control performance the following indexes were assumed—
MIA (mean integrated absolute error), MIAC (mean integrated absolute control), RMS (root
mean square of the tracking error), i.e.,

MIA =
1

t f − t0

∫ t f

t0

|πe(t)|dt, MIAC =
1

t f − t0

∫ t f

t0

|τ(t)|dt,

RMS =

√
1

t f − t0

∫ t f

t0

‖e(t)‖dt, Km = mean(KE), (68)

where πe = xe, ye, ψe, . . ., ‖e(t)‖ =
√

xE
e + yE

e (xE
e , yE

e mean the position error in the refer-
ence frame) and KE is the kinetic energy, respectively.

A heuristic method was used to select control parameters, as in [51]. This method is
similar to the trial-and-error method, but also reflects the dynamics of the vehicle model.
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5.1.1. SIRENE Test Using Proposed Algorithm

The vehicle data were taken from [59,62]. Conditions of the investigation were as
follows: the forces and torques values were limited here, based on the references, i.e.,
|τu| ≤ 500 N, |τr| ≤ 500 Nm, and the velocities umax = 2 m/s, vmax = 0.8 m/s. The
operating conditions of the vehicle are in accordance with the technical data provided in
the cited literature.

For the controller used, the inaccuracy of the model parameters was assumed as
W = 0.2 (20%) and the following set of control parameters:

kx = 20, kψ = 2, λ1 = λ2 = 0.1, Γ1 = Γ2 = 0.1, β1 = β2 = 0.1. (69)

The set of coefficients was selected to ensure that the tracking task could be carried
out under the specified constraints.

The results for the desired linear trajectory (62) and constant disturbances (64) are given
in Figure 2. From Figure 2a–c it can be seen that the trajectory is tracked correctly. Likewise,
the velocities u, r tend towards the desired ones (large values of ud and rd at the beginning
of the movement are due to the conditions of the method and the vehicle dynamics) as it
arises from Figure 2d,e. All velocities u, v, r have acceptable values (Figure 2f) and force τu
and torque τr only have large values at the beginning, as results from Figure 2g.
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Figure 2. Simulation results for SIRENE–IQV controller and linear trajectory (constant disturbances):
(a) desired and realized trajectory; (b) position errors (E-frame); (c) position errors (B-frame) and angu-
lar error; (d) desired and realized velocity (ud, u); (e) desired and realized velocity (rd, r); (f) realized
velocities; (g) applied force and torque.

Very similar results were obtained for the same trajectory but using variable distur-
bances (65)–(67). They are shown in Figure 3a–g.

Simulation results for the cycloid trajectory (63) and constant disturbances (64) are
presented in Figure 4a–g. As can be seen, also in the case of a curvilinear trajectory, the
tracking task is carried out correctly. Compared to the previous graphs, some fluctuations
of the variables can be observed (position, velocity, control signals).
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When the variable disturbances described by (65)–(67) were applied, one can found
that the performance was very close to that obtained for the constant disturbances as can
be observed from Figure 5a–g.

For a more accurate comparison, the results obtained using criteria (68) are summa-
rized in Table 2 (C. dist.—constant disturbances, V. dist.—variable disturbances).

It was found that for the SIRENE vehicle, the mean position and velocity errors were
smaller when a cycloid trajectory was used instead of the linear trajectory. The forces and
the torque also had smaller values while the mean kinetic energy had a significantly larger
value. The use of constant and variable disturbances (with the given parameters) resulted
in only minor changes in the performance.

Table 2. Performance for SIRENE.

Linear Trajectory Cycloid Trajectory

Index C. Dist. V. Dist. C. Dist. V. Dist.

MIA xE
e 0.2807 0.2821 0.0752 0.0757

yE
e 0.0972 0.1047 0.0771 0.0756

ψe 0.0287 0.0262 0.0155 0.0128
xe 0.2807 0.2820 0.0753 0.0759
ye 0.0981 0.1054 0.0769 0.0754
ue 5.3909 9.4245 1.3491 1.3603
re 0.0360 0.0353 0.0361 0.0362

MIAC τu 22.817 21.654 7.9840 15.953
τr 6.2126 5.2778 4.5685 4.2121

RMS ||e|| 1.0112 1.0176 0.4257 0.4297
KE Km 253.92 253.96 429.61 429.61
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Figure 3. Simulation results for SIRENE—IQV controller and linear trajectory (variable disturbances):
(a) desired and realized trajectory; (b) position errors (E-frame); (c) position errors (B-frame) and angu-
lar error; (d) desired and realized velocity (ud, u); (e) desired and realized velocity (rd, r); (f) realized
velocities; (g) applied force and torque.
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Figure 4. Simulation results for SIRENE—IQV controller and cycloid trajectory (constant distur-
bances): (a) desired and realized trajectory; (b) position errors (E-frame); (c) position errors (B-frame)
and angular error; (d) desired and realized velocity (ud, u); (e) desired and realized velocity (rd, r);
(f) realized velocities; (g) applied force and torque.
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Figure 5. Simulation results for SIRENE—IQV controller and cycloid trajectory (variable distur-
bances): (a) desired and realized trajectory; (b) position errors (E-frame); (c) position errors (B-frame)
and angular error; (d) desired and realized velocity (ud, u); (e) desired and realized velocity (rd, r);
(f) realized velocities; (g) applied force and torque.
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5.1.2. Kambara Test Using Proposed Algorithm

The vehicle data come from [60,63]. Conditions of the investigation were as follows:
the forces and torques values were limited here, based on references, i.e., |τu| ≤ 140 N,
|τr| ≤ 8 Nm, and the velocities umax = 1 m/s, vmax = 0.2 m/s.

For the controller used, the inaccuracy of the model parameters W = 0.2 (20%) and the
following set of control parameters were assumed:

kx = 25, kψ = 1.2, λ1 = λ2 = 0.1, Γ1 = Γ2 = 0.1, β1 = 0.2, β2 = 0.01. (70)

The set of coefficients was chosen to ensure that the tracking task is accomplished
under the constraints introduced.

Figure 6 shows the results obtained for linear trajectory (62) tracking and constant
disturbances (64). From Figure 6a–e it can be observed that the position tracking task
is realized correctly and the velocities u, r tend towards the desired ones. The velocities
u, v, r are below the limits (Figure 6f) as well as the force τu and torque τr are limited with
exception the first phase of motion (Figure 6g).

Using time-varying disturbances (65)–(67), the controller also accomplished the trajec-
tory tracking task as shown in Figure 7a–g, but the effect of these disturbances is clearly
visible for position, velocity, and force and moment errors (fluctuating variables).

Next, in Figure 8a–g, simulation results for the cycloid trajectory (63) and constant
disturbances (64) are given. These are similar to those obtained for the linear trajectory
and perturbation constants shown in Figure 6a–g. However, such movement causes some
signal changes during trajectory tracking.

For the variable disturbances (65)–(67), the performance shown in Figure 9a–g was very
close to that obtained for the time-varying disturbances as can be noted from Figure 7a–g.
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Figure 6. Simulation results for Kambara—IQV controller and linear trajectory (constant distur-
bances): (a) desired and realized trajectory; (b) position errors (E-frame); (c) position errors (B-frame)
and angular error; (d) desired and realized velocity (ud, u); (e) desired and realized velocity (rd, r);
(f) realized velocities; (g) applied force and torque.
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Figure 7. Simulation results for Kambara—IQV controller and linear trajectory (variable distur-
bances): (a) desired and realized trajectory; (b) position errors (E-frame); (c) position errors (B-frame)
and angular error; (d) desired and realized velocity (ud, u); (e) desired and realized velocity (rd, r);
(f) realized velocities; (g) applied force and torque.
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Figure 8. Simulation results for Kambara—IQV controller and cycloid trajectory (constant distur-
bances): (a) desired and realized trajectory; (b) position errors (E-frame); (c) position errors (B-frame)
and angular error; (d) desired and realized velocity (ud, u); (e) desired and realized velocity (rd, r);
(f) realized velocities; (g) applied force and torque.
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Figure 9. Simulation results for Kambara—IQV controller and cycloid trajectory (variable distur-
bances): (a) desired and realized trajectory; (b) position errors (E-frame); (c) position errors (B-frame)
and angular error; (d) desired and realized velocity (ud, u); (e) desired and realized velocity (rd, r);
(f) realized velocities; (g) applied force and torque.

For a more objective evaluation, criteria (68) were used and summarized in Table 3.

Table 3. Performance for Kambara.

Linear Trajectory Cycloid Trajectory

Index C. Dist. V. Dist. C. Dist. V. Dist.

MIA xE
e 0.2573 0.2583 0.0530 0.0700

yE
e 0.1371 0.1425 0.0855 0.0793

ψe 0.0518 0.0516 0.0302 0.0223
xe 0.2566 0.2582 0.0531 0.0702
ye 0.1380 0.1432 0.0853 0.0791
ue 6.2570 6.2901 1.1692 1.6046
re 0.0505 0.0544 0.0321 0.0371

MIAC τu 64.652 74.632 96.729 106.75
τr 1.8703 1.1113 1.8144 1.1432

RMS ||e|| 0.9303 0.9671 0.3643 0.3950
KE Km 19.679 19.662 33.637 33.635

It can be observed that for the Kambara vehicle, the mean position and velocity errors
are smaller when a cycloid trajectory is used instead of the linear trajectory. The mean force
τu and the mean kinetic energy have however greater values. It may be observed that the
differences in system response in the presence of fixed and time-varying disturbances are
small. However, as can be seen from the figures shown there are differences in the variables
obtained (oscillation of some signals).
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5.1.3. Comparison with Another Controller

The trajectory tracking algorithm proposed in [42] was chosen for comparative simu-
lation studies. It is suitable for marine vehicles in horizontal motion, for which the inertia
matrix in the mathematical model is symmetric. The reason for choosing this algorithm
is that it, too, is based on a transformation of variables, except that instead of a velocity
transformation (as in the proposed control scheme), it uses a transformation of coordinates
describing the vehicle’s position. Moreover, this control scheme has the advantage of
having been tested in both simulation studies and a sea trial. In both tests it proved to be
effective. In this regard, its effectiveness was compared with that of the proposed controller
by simulation. This is not equivalent to an experiment, of course, but it indirectly provides
information on the importance of the presented control approach.

Simulation tests were conducted according to the method described in detail in [42].
In this work, the tests performed for this controller are designated CL (classical controller).
Verification of the selected algorithm could be performed only for constant velocity dis-
turbances as these are the requirements of its applicability. The vehicles and trajectories
used for tracking were as in the tests of the previously proposed control algorithm. The
transformed equations of motion described in [42] are as follows (z1 = ψ, z2 = r):

ż1 = z2, (71)

ż2 = Fz2(z1, ξ3, ξ4) + τr, (72)[
ξ̇1
ξ̇2

]
=

[
ξ1
ξ2

]
+

[
Vx
Vy

]
, (73)[

ξ̇3
ξ̇4

]
=

[
Fξ3(z1, ξ3, ξ4)
Fξ4(z1, ξ3, ξ4)

]
+

[
cos z1 −l sin z1
sin z1 l cos z1

][
τu
τr

]
. (74)

The input signals are expressed as:[
τu
τr

]
=

[
cos ψ −l sin ψ
sin ψ l cos ψ

]−1[ −Fξ3(z1, ξ3, ξ4) + µ1
−Fξ4(z1, ξ3, ξ4) + µ2

]
, (75)

with the control inputs:

µ1 = −kvx (ξ3 − ξ3d)− kpx (ξ1 − ξ1d)− kIx (ξ1I − ξ1dI ) + ξ̇3d , (76)

µ2 = −kvy(ξ4 − ξ4d)− kpy(ξ2 − ξ2d)− kIy(ξ2I − ξ2dI ) + ξ̇4d , (77)

where kvx , kvy , kpx , kpy , kIx , and kIy mean positive real gains and ξ I where i ∈ {1, 2, 1d, 2d}
are integrals of the appropriate signals. All symbols are defined in the cited reference.

According to the requirements of the control method, the following parameters
for SIRENE, velocity disturbances Vx = 0.1 m/s, Vy = −0.1 m/s, and linear trajectory
were assumed:

kvx = 5.5, kvy = 5.5, kpx = 1.0, kpy = 1.4, kIx = 0.02, kIy = 0.02, (78)

and l = 1.5 (to avoid oscillations). As can be seen from Figure 10a, the desired trajectory
is not tracked exactly, which is confirmed in Figure 10b; in spite of that, the quantities
∆ξ1, ∆ξ2, ∆ξ3, ∆ξ4 (Figure 10c,d) tend to zero which is a requirement for the effectiveness
of the control algorithm. The velocities (Figure 10e) are permitted and the force and torque
are small (Figure 10f). For the cycloid trajectory the algorithm failed.
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Figure 10. Simulation results for SIRENE, CL controller and linear trajectory: (a) desired and realized
trajectory; (b) position errors; (c) position error states; (d) velocity error states; (e) velocities; (f) applied
force and torque.

Next, the simulation test of the controller for Kambara, using the same velocity
disturbances and for both linear and cycloid trajectory, was performed. The following set
of parameters was applied:

kvx = 20, kvy = 20, kpx = 2.5, kpy = 2.5, kIx = 0.1, kIy = 0.1, (79)

and l = 1.2 (to avoid oscillations). As it shown in Figure 11a, the desired linear trajectory is
also not tracked exactly, which is confirmed in Figure 11b here it is seen that the position
errors do not tend to zero. On the contrary, all variables ∆ξ1, ∆ξ2, ∆ξ3, ∆ξ4 go to zero in the
considered time as is presented in Figure 11c,d. Moreover, velocity v given in Figure 11e
exceeds the allowed value assumed for the test, whereas the force and torque have small
values (Figure 11f).
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Figure 11. Simulation results for Kambara, CL controller and linear trajectory: (a) desired and
realized trajectory; (b) position errors; (c) position error states; (d) velocity error states; (e) velocities;
(f) applied force and torque.
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For the cycloid trajectory, the results are shown in Figure 12. From Figure 12a,b, it
can be observed that the trajectory position tracking errors are significant and thus the
tracking task is not performed satisfactorily. Meanwhile, the time history of the variables
∆ξ1, ∆ξ2, ∆ξ3, ∆ξ4, as is shown in Figure 12c,d, indicates that they converge to zero. The
velocity r (Figure 12e) has big value (although this is an acceptable value). In practice,
however, this means that the vehicle will perform an oscillating motion about a vertical
axis. The applied force and torque have very small values (Figure 12f).
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Figure 12. Simulation results for Kambara, CL controller and cycloid trajectory: (a) desired and
realized trajectory; (b) position errors; (c) position error states; (d) velocity error states; (e) velocities;
(f) applied force and torque.

The performance of the algorithm is collected in Table 4. For SIRENE values of indexes
are grater than for the proposed control algorithm (with exception of MIAC). Note however
that the mean kinetic energy is comparable for both controllers. Similar observation can
be made for the Kambara vehicle (but the mean kinetic energy is slightly larger for the
proposed algorithm).

Table 4. Performance for SIRENE and Kambara.

SIRENE Kambara Kambara
Linear t. Linear t. Cycloid t.

Index C. Dist. C. Dist. C. Dist.

MIA xE
e 0.6669 0.5464 0.0953

yE
e 0.6032 0.4637 0.2962

ψe 0.4111 0.3167 0.1988
MIAC τu 0.0117 0.3051 0.3627

τr 0.0196 0.0117 0.0246
RMS ||e|| 1.2537 0.9804 0.4147
KE Km 252.74 16.377 24.452

An additional test was done for velocity disturbances Vx = 0.4 m/s, Vy = −0.5 m/s.
In this case, it was found that the results are much worse, which means significantly larger
tracking errors (according to the assumed indexes) and a significant increase in average
kinetic energy (mostly more than doubled, with the exception of the cycloid trajectory
for Kambara).
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5.1.4. Discussion of Results

In order to verify the effectiveness of the proposed trajectory tracking algorithm,
simulations were carried out on models of two vehicles with significantly different dy-
namics. Two types of trajectories (linear and curvilinear) were also considered, as well as
perturbation functions of constant and variable value.

For the developed algorithm, the values of the control parameters were only slightly
different for the two vehicle models and the trajectories implemented. This may suggest
that in the proposed control scheme, the dynamic parameters have a significant impact
on vehicle motion and the controller gains are tuned to improve performance (for the
controller used for comparison, the control parameters had to be significantly changed).

The indexes for control errors and had similar values for both vehicles but differed
depending on the trajectory being tested (the effect of the disturbance function was less
significant). Kinetic energy consumption depended on the vehicle and the trajectory
realized. On the other hand, the figures show that the time to reach the desired trajectory is
short considering the weight of the vehicles and the limitations of the thrusters (according
to the technical data).

The comparative simulations show that the control algorithm described in [42] can
work for various vehicles, but its effectiveness depends on the dynamic parameters of
the vehicle, the trajectory realized and the operating conditions. Tracking time is very
long and velocity disturbances must have small values (about 0.1 m/s). Compared to
this controller, the proposed algorithm has a slightly larger range of applicability (the
interference function can be varied) and the position errors are adjusted directly (without
coordinate transformation), which makes it possible to reduce their values more effectively.

Taking into account the simulation studies conducted, the following conclusions can
be made: (1) the control algorithm can be applied to different vehicles, but its effectiveness
may vary due to different model parameters (mass, drag coefficients, etc.); (2) the results
of trajectory tracking depend on the shape of the desired trajectory (linear, curvilinear);
(3) external disturbances reduce the effectiveness of the algorithm, and this effectiveness
depends on whether they have constant values or are changed during the movement of the
vehicle; (4) the consumption of kinetic energy and the applied force and torque required to
perform the task depend on the shape of the trajectory, and to a lesser extent on the realized
trajectory (for small disturbances such as those used in this work).

6. Comments on the Proposed Algorithm Using IQV

The proposed control algorithm was developed for the diagonalized equations of
dynamics, which were obtained from the decomposition of a symmetric inertia matrix.
However, the algorithm in a simplified version is also suitable for trajectory tracking when
the vehicle is described by a model with a diagonal inertia matrix.

In the control strategies of recent years, it is very common that the inertia matrix is
diagonal. This means that dynamic couplings are compensated by the controller. Infor-
mation about the couplings is then not available. To guarantee good performance of the
controller, combinations of different methods are also used. For example, the use of the
following control methods can be given:

1. SMC [9,10] or SMC and backstepping [16];
2. NN based controllers [26] (with SMC), [16,17,23,37] (with SMC and backstepping),

[31] (and event-triggered control);
3. Observer-based control schemes [30] (event-triggered dynamic surface control), [28]

(using fuzzy logic), [40] (line-of-sight (LOS) adaptive trajectory tracking controller
with terminal sliding mode control);

4. Nonlinear model predictive control (NMPC) strategy [22];
5. Controllers with prescribed performance [33].

The proposed controller based on IQV uses SMC and backstepping methods, but also
velocity transformation. Thus, it is a slightly different combination than the methods in
Group 1. In NN-based methods (Group 2), additional knowledge (about NN) is required,
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which can improve the performance of the controller, but at the same time the control
scheme is more complicated. Control strategies based on observer (Group 2) allow the use
of inaccessible signals. However, the dynamics of the system with an observer also changes,
which distorts the information about the dynamics of the system itself (i.e., without an
observer). The IQV controller only takes into account the vehicle model. In [22], additional
optimization was used, and such a mechanism is not included in the developed IQV
algorithm. In the prescribed performance based methods as in [33], it is necessary to
guarantee that the signals run within certain limits, while the IQV controller does not have
to meet this condition.

It is worth recalling some control strategies suitable for asymmetric vehicles because
the proposed algorithm belongs to this group. However, one should point out the differ-
ences between it and selected controllers developed in recent years and performing the
same task.

1. SMC [39];
2. Controllers using NN [34], ref. [36] (disturbance observer, backstepping, pre-

scribed performance);
3. Observer-based approaches [41] (prescribed performance), ref. [44] (Lyapunov approach),

ref. [43] (Lyapunov and backstepping control methods);
4. Input–output linearization [42];
5. Controllers with prescribed performance [64].

The differences between the proposed algorithm and the previously mentioned control
methods have already been indicated. However, the methods for vehicle models with asym-
metry serve the same purpose as the proposed algorithm. The method described in [42]
uses the transformation of coordinates and for this reason it was chosen for comparison in
the simulation test.

This article focuses on showing the operation of the control scheme using IQV, but
ignores its other important property known in the literature. The dynamical equations
denoted can also be used to study vehicle dynamics (e.g., coupling estimation), as shown
for fully actuated vehicles in [49]. An identical possibility is not provided by the aforemen-
tioned control strategies for asymmetric vehicles, because, although the model equations
can be transformed so that the accelerations are independent, e.g., in [36,42,64], the inertial
couplings are only transformed (the diagonalizing method of the acceleration equations
is not used). In addition, the authors of these papers did not indicate that their proposed
strategies can be used to analyze vehicle dynamics, while the offered controller can be used
for this purpose during the trajectory tracking task.

The algorithm developed here serves only for tracking desired trajectories, while it
is not useful for path tracking. For this reason, the results obtained using it cannot be
compared with the performance of the control schemes considered in [1–3]. In contrast, the
control strategy proposed in [42] would be suitable for such comparisons because it is more
universal than the algorithm presented in this paper and is suitable for following the path.

Thus, it is possible to point out some advantages that result from using the proposed
algorithm with IQV:

• It can be applied to asymmetric vehicles, and thereby to a dynamic model more
realistic than the model with a diagonal inertia matrix;

• Selection of controller parameters is intuitive and does not require any additional search
methods (this can be explained by the fact that the dynamic parameters are already
included in the algorithm, which makes it easier to select the controller parameters);

• In contrast to the usually used algorithms, it gives a potential possibility to estimate
the effect of couplings on the vehicle behavior in motion (this is possible because
after the velocity transformation one can obtain additional information hidden in the
symmetric inertia matrix, but this issue, however, was not the subject of this paper);

• This is also an extension of the IQV control concept for underatuated vehicles with
3 DOF (since for fully activated marine vehicles there are algorithms for up to 6 DOF,
such as, e.g., in [49]).
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7. Conclusions

In this paper a trajectory tracking problem for underactuated underwater vehicles
moving horizontally using some inertial quasi-velocities is considered. The control scheme
consists of a backstepping technique along with integral sliding mode control with IQV
consideration. These quasi-velocities, resulting from the transformation of the equations
of motion in velocity space, are crucial to the control process because the other methods
have already been used many times. The feature that distinguishes the developed control
scheme from others based on a combination of the aforementioned methods is the fact
that the model parameters are used in the dynamic controller and thus the dynamic
couplings. This is not just the well-known kinematic transformation because, as a result
of the decomposition of the inertia matrix, the obtained IQV contain both kinematic and
dynamic parameters. The stability analysis conducted in the sense of Lyapunov showed
the feasibility and limitations in the applicability of the presented algorithm.

Simulations were carried out taking into account the actual thrusters and velocity
limits of the selected vehicles. The obtained numerical results, obtained for two vehicles
with different dynamics, show that the proposed tracking control algorithm can effectively
guide underwater vehicles to the desired trajectory and is robust to perturbations of model
parameters and selected external disturbances functions. In addition, it is found that the
proposed algorithm achieves better control performance than the chosen control scheme in
tracking the trajectory of an underwater vehicle moving in the horizontal plane, given the
assumed operational conditions.

Based on the results obtained (theoretical analysis and simulation results), it can be
concluded that the transformation of variables alone does not guarantee effective perfor-
mance under different conditions, but should be incorporated into a control scheme that
guarantees the expected performance. In turn, the transformation of variables should either
improve this performance under certain criteria, or give some insight into the dynamics of
the vehicle being regulated.

Some comments are also made on the proposed algorithm using IQV in comparison
with other control schemes. Further work may extend the results obtained to other vehicles,
as the developed approach can also be applied to other types of underactuated systems for
which it is possible to describe the dynamics using a symmetric inertia matrix.
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