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Abstract: Road hazards such as jaywalking pedestrians, stray animals, unmarked speed bumps,
vehicles, and road damage can pose a significant threat in poor visibility conditions. Vehicles are
fitted with safety technologies like advanced driver assistance systems (ADAS) and AW (automatic
warning) systems to tackle these issues. However, these safety systems are complex and expensive,
and these proprietary systems are exclusive to high-end models. The majority of the existing vehicles
on the road lacks these systems. The YOLO model (You Only Look Once Architecture) was chosen
owing to its lightweight architecture and low inference latency. Since YOLO is an open-source
architecture, it can enhance interoperability and feasibility of aftermarket/retrofit ADAS devices,
which helps in reducing road fatalities. An ADAS which implements a YOLO-based object detection
algorithm to detect and mark obstacles (pedestrians, vehicles, animals, speed breakers, and road
damage) using a visual bounding box was proposed. The performance of YOLOv3 and YOLOV5 has
been evaluated on the Traffic in the Tamil Nadu Roads dataset. The YOLOv3 model has performed
exceptionally well with an F1-Score of 76.3% and an mAP (mean average precision) of 0.755, whereas
the YOLOV5 has achieved an F1-Score of 73.7% and an mAP of 0.7263.
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1. Introduction

The number of road accident fatalities in India has been alarming. According to the
accidental deaths and suicides in India reported by the National Crime Records Bureau of
India in 2019, 154,732 fatalities and 439,262 injuries were caused due to road accidents. An
alarming 38% of the road fatalities involved two-wheelers, while 14.6% and 13.7% involved
trucks and cars, respectively. Furthermore, 7.7% of the total fatalities were pedestrians [1].
Advanced driver assistance systems can significantly reduce road collisions and related
fatalities by up to 47%. A study based on data from Polish road crashes in 2015 indicated
that wide deployment of ADAS systems such as advanced emergency braking systems
(AEBS), adaptive cruise control (ACC), and lane departure warning (LDW) systems has the
potential to reduce road crashes by 47% when deployed in combination. AEBS alone has
the potential to reduce the crash rate by 33%. Meanwhile, ACC alone can reduce the crash
rate by 27%, and LDW alone by 4% when deployed widely [2].

2. Literature Review

Many researchers and authors conducted research and presented their results. For
instance, Khan et al., in 2019, [3] conducted research on the personal and societal benefits
of ADAS systems such as blind-spot monitoring, lane departure warning, and forward-
collision warning in light-duty vehicles sold in the United States in 2015. Their research
estimated that the technologies above can collectively prevent up to 1.6 million crashes
every year, including 7200 fatal crashes. Thus, ADAS adoption will lead to positive personal
and societal benefits. A study [4] evaluated the field effectiveness of ADAS technologies
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such as frontal collision warning with autonomous emergency braking, lane departure
warning, and blind-spot detection deployed in BMW cars sold in the United States between
2014 and 2017 in preventing moderate-to-severe crashes. Their research shows that in the
2014 model year, vehicles equipped with ADAS were 13% less likely to crash than their
non-ADAS versions. Similarly, in the 2017 model year, vehicles were 34% less likely to
crash when all the systems above were deployed together. Enhancing the hazard warning
systems available to drivers and automated systems such as AEBS (advanced emergency
braking systems), pedestrian warning, and blind-spot warning systems with visual and
auditory warning can help improve the driver’s behavior on the road. Thompson in
2018 [5] evaluated driver behavior in a trial of retrofitting the CAT (collision avoidance
technology) ADAS system in government fleet vehicles, which provided LDW and FCW
(forward collision warning) in the form of audio and visual warnings to drivers. The
analysis from the driver feedback survey and other vehicle parameters from the CAT
system indicated that the system effectively improved drivers’ behavior on-road and
helped reduce crashes. Nevertheless, the drivers felt that such a system was distracting
and would not use it themselves but agreed that it would improve overall road safety. The
authors suggested that optimism bias might be a reason for such feedback from the drivers
and concluded that appropriate training about the CAT system will be useful in increasing
the acceptance and perception of such a system among drivers. This was reiterated by
Oviedo-Trespalacios et al. [6], that there is a need for proper driver education on ADAS
systems to improve driver behavior and effective system use in improving overall road
safety and preventing collisions. Lack of standardization and appropriate visual guides
leads to an incomplete understanding of the system’s behavior and limitations.

Camera sensors that provide computer vision-based object detection capability using
deep learning-based algorithms are a vital part of ADAS across all levels of automation.
From a simple level 0 camera-based parking assist system to a comprehensive level 5 fully
autonomous vehicle, the computer vision-based object detection system acts as the eyes in
the environment to the ADAS based on which crucial warnings, decisions, and automation
tasks are accomplished [7]. A study by Benjdira et al. [8] compared the performance of two
state-of-the-art convolutional neural networks (CNN) algorithms, namely, faster R-CNN
(region-based CNN) and YOLOV3, for detecting cars from aerial images. Both models were
trained and tested on a large car dataset taken from UAVs. These authors demonstrated in
this paper that YOLOv3 outperforms faster R-CNN in terms of sensitivity and processing
time, despite being similar in terms of precision. Al-qaness et al. [9] developed an intelligent
vehicle tracking system based on video surveillance. In order to track vehicles, this system
integrates neural networks with image-based tracking, and You Only Look Once (YOLOV3).
Different datasets were used to train this system. Babayan et al. [10] presented a comparison
of different neural network architectures for object detection and recognition. Pedestrians
and vehicles were the subjects of their study. A study by Byeon and Kwak [11] presented
a performance comparison of pedestrian detection using faster R-CNN and aggregated
channel features (ACF). CNN’s feature vectors are extracted from each regional image by R-
CNN independently looking for candidates for detectable objects. Support-vector machines
(SVMs) are then used to classify the images. The ACF algorithm combines several channels
from one image and obtains a low-resolution channel by integrating them into a smoothed
one. Pixels turn into features, and these features turn into feature vectors. By using decision
trees and boost, pedestrians and background are separated. Rahman et al. [12] used the
Dhaka Traffic Detection Challenge Dataset (DhakaAl) to train and evaluate the performance
of the YOLOV5 architecture-based model pretrained on the COCO dataset with 17 classes
out of 80 available for vehicles in the DhakaAl dataset to detect vehicular objects in densely
crowded images for real-time application. They achieved a maximum (mean average
precision) mAP (@ 0.5) of 0.485 on an NMS (nonmaximum suppression)-based ensemble
of four models trained using the YOLOvS5 model pretrained using the COCO dataset and
then evaluated on the DhakaAl dataset.
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3. Technical Overview
3.1. The Evolution of the ADAS System

Advanced driver assistance systems (ADAS) is a driver assistance technology designed
to enhance a driver’s ease of driving and enhance road safety. The difference between
advanced driver assistance systems and traditional driver assistance systems lies in the
level of automation provided and the sensor set used. Traditional driver assistance systems
such as ABS (antilocking braking systems) measure the onboard vehicle parameters and
actuate the control mechanism to improve driver safety and comfort. In this case of the
antilock braking system, the wheel speed sensor measures the wheel speed and contin-
uously actuates a brake valve to prevent locking of the wheels during braking. In the
case of advanced driver assistance systems such as frontal collision avoidance systems,
the surrounding environment is sensed using sensors to warn about driver hazards and
perform automatic control or maneuvers to prevent mishaps. This enhances the safety
and comfort of drivers. In this case, computer vision-based object detection identifies the
hazard via a camera. A radar-based sensor is used to localize the hazard, i.e., estimate
the distance of the hazard to perform corrective action (audio, visual, or haptic feedback
warning). There are five levels of vehicle driving automation specified by SAE (Society of
Automotive Engineers), from level 1 to level 5.

e Level 0—No Automation: The system performs no automation (control task) but only
provides information on onboard or external parameters measured by the vehicle to
the driver for his information or warning. This system includes the surround view
parking assistance system which uses traditional ultrasonic sensors combined with
a camera to provide the driver with a video stream where vehicle lines, curbs, walls,
and obstructions are superimposed and highlighted on the video stream to assist the
driver. The traffic sign recognition system assists drivers by identifying and providing
information on current road rules posted on traffic signs. The system uses the camera
video feed from the windshield as input. With the help of computer vision-based text
recognition and object detection, deep learning algorithms recognize the information
on the signs and provide information and warnings to the driver. A few common
applications belonging to Level 0 are:

- Lane Departure Warning: This provides an audio and/or visual warning to
the driver if the vehicle is accidentally deviating from the current lane. It is
implemented with the help of a forward-facing camera.

- Night Vision: helps the driver with better visibility of the road in low light and
dark conditions by using a camera feed and an IR illuminator.

- Blind Spot Detection: provides a visual and optionally auditory warning about
obstacles present in the driver’s rear-view blind spot using two short-range radars,
which are fixed in the rear corners of the vehicle.

- Forward Collision Warning: makes use of a combination of mid-range RADAR as
well as a front-facing camera to provide the driver with audio and visual warnings
about an obstacle ahead that may collide with the vehicle.

e  Level 1—Driver Assistance: these systems assist the driver in performing the driver’s
tasks by controlling a single specific driving function, but they leave the driver in
complete control of the vehicle and require them to be alert at all times.

e Level 2—Partial Automation: it is similar to level 1 systems but provides additional
automation in the form of combined automated intervention of various level 1 systems
but requires the driver to be alert all the time.

o Level 3—Conditional Automation: these systems do not require the driver to be alert
all the time, but the driver should be ready to take control of the vehicle at any time if
the system determines that it cannot handle the situation and alerts the driver.

e Level 4—High Automation: This system is an extension of Level 3 automation, where
the system can handle unknown situations based on its decision-making intelligence
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without the driver’s intervention. It may still require a limited amount of driver
intervention in certain conditions.

o  Level 5—Full Automation: This level of automation is a scenario where the driver’s
intervention is never required for all scenarios. The system is fail-safe and fail-
operational, i.e., it has the ability to handle unknown scenarios without the driver’s
intervention. The driver may still control the vehicle manually voluntarily (Gal-
vani 2019).

3.2. Technical Overview of Artificial Intelligence

A classical neural network (NN) can recognize patterns and classify different types
of information. Layers serve as filters, thereby increasing the likelihood of finding the
best output. Deep learning and convolutional neural networks are essential tools for
detecting objects. The two main categories of deep learning algorithms are single-stage and
two-stage classifiers. A two-stage algorithm generates regions containing objects. A neural
network then classifies these regions into objects. Consequently, they are generally more
accurate than single-stage classifiers. However, their inference speed is slower because
of the multiple stages involved in detecting anomalies. Alternatively, in single-stage
detectors, the region proposal step is removed, and object classification and localization
coincide. As a result, single-stage classifiers are faster than two-stage classifiers. The
R-CNN method first generates potential bounding boxes in an image and then runs a
classifier on them. Following classification, postprocessing refines the bounding boxes,
removes duplicates, and re-scores them with other objects in the scene. As each component
of this complex pipeline must be trained separately, the entire process becomes slow
and difficult to optimize [13]. However, the YOLO model reframed the object detection
task as a single regression problem, with image pixels directly translated into bounding
box coordinates and class probabilities. In this method, objects are only seen once in
an image to predict where they are. This method is simple but effective. With a single
convolutional network, multiple bounding boxes can be predicted, along with their class
probabilities. YOLO optimizes performance directly by training on full images, improving
speed and accuracy [14]. There are different versions of YOLO, and the major incremental
improvements are YOLOv1, YOLOvV2, YOLOvV3, YOLOv4, and YOLOVS, tiny-YOLOV3, and
tiny-YOLOv4. The main focus of this paper was to compare the performance of YOLOv3
and YOLOV5 on an ADAS application.

3.2.1. YOLOv3

Darknet53, which acts as the backbone for YOLOvV3, combines a convolution layer
and a deep neural network. This convolution layer first extracts features from the image
and feeds them to the feature pyramid network (FPN) to fuse them. The FPN is used as the
neck. The neck plays an important role in extracting feature maps from different stages,
consisting of several bottom-up and top-down paths, and the head contains YOLO maps.
As part of a one-stage detector, the head calculates the final prediction based on bounding
box coordinates: width, height, class label, and probability of each class. Finally, the result
is derived from the YOLO layer [15].

3.2.2. YOLOv5

The next incremental version, YOLOV5, differs from its predecessors by using PyTorch
instead of the Darknet framework. The backbone is CSPDarknet53. CSPDarknet53 extracts
features from the image. Repetitive gradient information in large backbones is eliminated,
and gradient change is incorporated into feature mapping. These changes reduce inference
speed, improve accuracy, and reduce the model size by shrinking the parameters. To boost
information flow, PANet is used as the neck. The PANet improves localization in lower
layers, which increases the object’s localization accuracy. YOLOVS5 also uses the same head
as YOLOV3, generating three different output vectors and achieving multiscale prediction.
The results are generated using the final YOLO layer. YOLOv3 and YOLOVS5 architectures



Appl. Sci. 2022,12, 8927

50f17

differ mainly by using the Darknet53 backbone. CSPdarknet53 is used as the backbone
for YOLOvV5. YOLOVS introduced the Focus layer. In YOLOVS5, the Focus layer replaces
YOLOV3’s first three layers. The Focus layer reduces CUDA memory usage, reduces layers,
and increases forward propagation and also back-propagation [16].

4. Materials and Methods

The overview of the proposed architecture is illustrated in Figure 1 and every step is
explained in detail in this section.

OpenCV &
YOLOv3/YOLOV5
powered inference

Dashcam based
video feed

Driver Audio/Visual
bacedalate® ADAS subsystems

Assistance (ACC, AEBS etc)

Figure 1. The overview of the proposed methodology.

4.1. Dataset Generation

A Raspberry Pi 8 MP camera interfaced with a Raspberry Pi controller, Figure 2
setup, was installed on the vehicle’s dashboard. The streamed output is in the form of
640 x 480 pixel mpeg frames at a rate of 24 frames per second. The dataset was generated
by driving a car through various road conditions and generating a video of nighttime and
daytime driving in the city and highway. The video generated using the Raspberry Pi
camera is sampled at one frame per second to generate a dataset with 5945 images. This
dataset was uploaded to Kaggle and named as Traffic in Tamil Nadu Roads, Figure 3. The
images were manually annotated with seven different classes (4WD, 2WD, Pedestrians,
Stray Animals, Speed Bumps, Road Damage, and Barricades) using make sense.ai [17] to
suit the Yolo training and labelling format for each image. The generated set of annotations
for the dataset was downloaded as a zip folder containing individual text files for each
image. Each text file contained a row of five values (the label encoded value of the class
name, the X and Y coordinates of the center of the bounding box, and the bounding box’s
width and height) for each object in the image.

Figure 2. The Raspberry Pi camera setup.
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Figure 3. The sample dataset.

4.2. Model Training

This dataset was split into training and testing data (80:20), allocating 4482 images to
the training set and 1463 images to the test set. The images were resized to 416 x 416 pixels.
The batch size is chosen to be 16 and runs for 20 epochs. The learning rate is chosen as
0.0001 and SGD is the chosen optimizer. The dataset was trained using pretrained weights
(yolo5x.pt for YOLOv5 and YOLOV3.pt for YOLOv3) utilizing transfer learning techniques.

The architectural views of YOLOv3 and YOLOVS5 are illustrated in Figures 4 and 5. The
pretrained weights are cloned from the ultralytics GitHub repository. The same dataset was
also trained without pretrained weights where the weights were initialized randomly [18].
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Figure 4. The YOLOv3 architecture.
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Figure 5. The YOLOV5 architecture.
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4.3. Model Testing

After training the models, the best and the last weights of the neural network layers
are stored in the weights folder. We utilized the best weights with the best metrics for the
final detection of the objects with a confidence of 40% or more. Each model is applied
to 3 videos (rainy, daylight, and night). The sample of output from the YOLO models is
illustrated in Figures 6 and 7. The detection of four-wheelers, two-wheelers, and other
classes can be seen in Figures 6 and 7 with a bounding box around the vehicles along with
their respective labels.

i

i 0.

erson 0.43
Persdn &1 rVD \4vavaawo
| X

4WD 1.0
4WD 06

(b)

Figure 6. The test results of (a) YOLOv3 model without pretrained weights and (b) YOLOv3 model
with pretrained weights.

‘Person 0;6 -
Pearann N 74

reAn N Q 7
EEAWD 04w

Wi
St oE

Figure 7. The test results of (a) YOLOv5 model without pretrained weights and (b) YOLOv5 model
with pretrained weights.

Both the models were tested on a 1:24-long video, which tallied to about 2500 frames.
The overview of training the models on this dataset is presented in Figure 8. A comparative
study is presented in further sections.
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Figure 8. The flow diagram of the YOLO model.

4.4. Mobile Application

A mobile application was developed using Android Studio. The YOLO models were
compatible with this application since the model had virtually no latency. The application
was developed using Java. Classes were developed to access the camera and also to detect
activity on the road to draw the bounding box around the detected objects. The models
are saved in tflite (Tensor Flowlite) format and incorporated into the mobile application.
The app works well with optimal inference time on 640 x 480 frames. The app requests
permission to access the camera when it is installed for the first time. Figure 9 presents
screenshots of the developed prototype. Figure 9a is the initial, blank UI with just the
recording button. The application uses the phone’s in-built camera to capture the road. In
response to being tapped, a live feed of the road along with the prediction of the obstacles
is relayed. The image is passed to the YOLO model to determine the bounding box
and the class of the obstacle. We can observe in Figure 9b that the four-wheeler vehicle is
detected correctly. Because smartphones are common, a simple user interface in an Android
application that functions without latency makes this application very user-friendly.

; Rolds'!f.ﬁlﬂ.ll-ip

ADAS Application

(a) (b)
Figure 9. (a) The initial UI blank screen. (b) The road safety app running on the mobile phone.
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Precision

5. Performance Comparison

The accuracy of the model is evaluated using the F1 score, mean average precision
(mAP), and the Precision x Recall curve. It is essential to examine the outcomes of both the
classification (confusion matrix) and localization (using the IoU of bounding boxes in the
image) metrics of the model.

Intersection over Union (IoU) is employed while detecting objects. IoU computes an
intersection over the union of the two bounding boxes: the bounding box for the ground
truth and the predicted bounding box. When the IoU is 1, it implies that the bounding
boxes for predicted and ground truth overlap totally. A bounding box is rendered around
an object only if the IoU is greater than the set threshold value. In this application, a
threshold of IoU is set to be 0.4. As a result, when Iou > 0.4, the detection is considered true
positive (TP), whereas if IoU < 0.4, it is classified as false positive (FP). If the model fails to
detect the object in the image despite having ground truth, it is classified as false negative
(FN). An image’s true negative (TN) is any portion where no object can be predicted. It
does not help detect objects. Therefore, TN is ignored in Equation (1).

_Areao f Overlap

Toll = (Areao f Union) @

Precision, according to the definition, is the proportion of positive samples correctly
classified to all positive samples (whether correctly or incorrectly classified). It measures
how accurate a model is at classifying a sample as positive, as mentioned in Equation (2).
The comparison among the various precision curves is illustrated in Figures 10 and 11.

.. TP x 100
Precision = ﬁ 2)

— 4WD
200
— Person
— Spead _Bump
—— Poad_Damags
— EBamicade
Anirmials
= all classes 1.00 at 0.942

— 4WD
200
— Person
— Speed_Bump
— PRoad_Damage
— Bamicade
Animals
gl classes 100 8t 0.043

Pracision

0.z 0.4 0.6
Confidence

(a)

08 10 oo 02 04 06 08 10

(b)

Figure 10. Precision curve of (a) YOLOvV3 model without the pretrained weights, (b) YOLOv3 model
with the pretrained weights.
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0.4 0.6 0.8 10
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Figure 11. Precision curve of (a) YOLOv5 model without the pretrained weights; (b) YOLOv5 model

with the pretrained weights.

Recall is calculated by taking the ratio of the number of positive samples correctly
classified as positive to the total number of positive samples. This recall indicates how well
the model detects positive samples and is quoted in Equation (3). The comparison of recall
curves with respect to the ADAS application is pictured in Figures 12 and 13.
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Figure 12. Recall curve of (a) YOLOv3 model without the pretrained weights; (b) YOLOv3 model

with the pretrained weights.
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Figure 13. Recall curve of (a) YOLOv5 model without the pretrained weights; (b) YOLOv5 model

with the pretrained weights.

F1 score is calculated from the precision and recall of each observation. A score of
1 indicates maximum accuracy, which is depicted using Equation (4). The comparison
among various models for the ADAS application is presented in Figures 14 and 15.

— 4WD

WD
— Person
— Speed_Bump

— Pozd_Damage

— Bamcage
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02 04 06 0.8 Lo

Configence
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2 x (Recall x Precision)

(Re

4)

call + Precision)

— 4D
]
Parson
— Speed_Bump
— FRoad_Damage
— Bamicade
Animals
w3l clagses 0.76 3t 0.476

‘oo

a2 04 06 0.8 10
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Figure 14. F1-Score curve of (a) YOLOv3 model without the pretrained weights; (b) YOLOv3 model

with the pretrained weights.
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Figure 15. F1-Score urve of (a) YOLOv5 model without the pretrained weights; (b) YOLOv5 model
with the pretrained weights.

The mAP score is determined by comparing the ground truth bounding box to the
detected box. The higher the score, the better the model’s detection. This is mathematically
illustrated in Equation (5).

Y Q — AP(g)

_q=1
mAP = o)

PR-Curve Precision decreases as recall increases. When the number of positive sam-
ples increases (high recall), the accuracy of identifying the sample decreases (low precision).
It is possible to determine where precision and recall are high by looking at the precision—
recall curve. The main factor that contributes to picking the model with the right trade-off
between precision and recall is pictured in Figures 16 and 17. Here, TP denotes the number
of true positive cases, TN is the number of true negative cases, FP indicates the number of
false positive cases, FN is the number of false negative cases, and Q denotes the number of
queries [19].
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Figure 16. Precision-recall curve of (a) YOLOv3 model without the pretrained weights; (b) YOLOV3
model with the pretrained weights.
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Figure 17. Precision-recall curve of (a) YOLOv5 model without the pretrained weights; (b) YOLOV5
model with the pretrained weights.

From the above Table 1, it is evident that, in general, YOLOv3 models have performed
better than YOLOVS5 in terms of F1 Score and mAP. The performance difference between
the YOLOv3 model with and without pretrained weights is negligible. YOLOv3 with
pretrained weights performed slightly better than the YOLOv3 model without pretrained
weights in terms of F1 Score (0.76326); whereas the latter performed better in terms of mAP
(0.7626). In the case of YOLOV5, the model without pretrained weights performed poorly in
terms of both F1 score and mAP compared to the model with pretrained weights [F1-Score
(0.7378) and mAP (0.26588)]. The performance overview of all the models is presented in
Figures 18-21. Even with an NMS (nonmaximum suppression) ensemble of four models
trained using YOLOV5 of the DhakaAl dataset, the YOLOv5 managed to achieve an mAP
(@ 0.5) of only 0.458 as mentioned in Section 1. The performance of a single-fold trained
YOLOVS5 model on the DhakaAl dataset was low compared to our model.

Table 1. Comparison of the proposed work with the existing works.

Sno Citation F1-Score mAP (>0.5)
1 Benjdira et al., 2019 99.94% N/A

2 Al-ganess et al., 2021 N/A 88%

3 Nepal and Eslamiat 2022 65.5% 63.3%

4 Babayan et al., 2019 N/A 88.3%

5 Byeon and Kwak 2017 24.24% N/A

6 Rahman et al., 2022 N/A 45.8%

7 Proposed Work 76.32% 75.55%
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Figure 18. Comprehensive results of YOLOv3 model without the pretrained weights.
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Figure 19. Comprehensive results of YOLOv3 model with the pretrained weights.
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Figure 20. Comprehensive results of YOLOv5 model without the pretrained weights.
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Figure 21. Comprehensive results of YOLOv5 model with the pretrained weights.

6. Conclusions

The best models of YOLOv3 with/without pretrained weights with the highest F1
score pointed out a good trade-off between precision and recall. From the results obtained,
it is also evident that the YOLOv3 models, in general, are resilient to the initial weights,
perform well with just 20 epochs of training, and have negligible differences in terms of
performance with or without pretrained weights. In the case of YOLOv5 models, more
epochs are required to obtain a model with good performance when training without any
pretrained weights, which is evident from the drastic difference in performance between
models trained with and without pretrained weights for 20 epochs. Thus, we can conclude
that YOLOV3 architecture is suitable for applications where training resources for training
a new model on a new dataset for a customized application are limited, and no pretrained
weights are available. The custom dataset comprised a total of 5945 images, out of which
4482 images were used as the training set and 1463 images were used as a test set. With the
quantity of images in the dataset, a high degree of accuracy was obtained. This reflects the
high quality of the model proposed. The dataset used was generated firsthand, thereby
creating a custom dataset which covers all the aspects needed for training and testing
the model so proposed. In the future, a more extensive dataset can be generated by
exploiting more resources as per feasibility to obtain a more robust model. Compared
to training the dataset with the YOLOV5 architecture without any pretrained weights,
YOLOV3 provides better results for both F1 Score and mAP in this particular dataset
for the ADAS application. This was tested using a dataset that included various object
classes detected in the video feed, including four-wheel vehicles, two-wheel vehicles,
pedestrians, stray animals, road damage, unmarked speed bumps, and barricades. These
models were deployed into a mobile application on the target ADAS prototype hardware.
From the analysis of the various models, we can conclude that the models performed and
generalized reasonably well on the collected dataset. Di Ao et al. 2022 proposed a subjective
assessment for testing L2 and L2+ ADAS systems which, if used to compare the proposed
system with the vision-based features of existing ADAS systems, could further provide
better insights [20]. For automotive aftermarket ADAS designers and manufacturers that
use computer vision-based Al algorithms to accomplish some functionality, a significant
amount of their budget and time is spent on the development and testing of the model. To
improve the adoption of these systems, they must be affordable, and manufacturers can do
this by using transfer learning-based models (YOLO models with pretrained weights) to
suit their target application and reduce the model development time with a slight trade-off
in the form of accuracy. The models without pretrained weights have performed as well as
their counterparts using pretrained weights, but the trade-off is increased training time.
The ADAS system proposed in this module can alert the vehicle drivers of any obstacles.
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The alerting mechanism adopted in this system is a buzzer along with visual feedback in
the mobile application. This ADAS system can be a life saver in cases when there is a lapse
in concentration from the driver’s end. Such systems can help prevent road accidents on a
large scale and prevent loss of life as well as vehicle damage. Car manufacturers can also
think about adding the ADAS system as a feature in the infotainment systems of their cars.
This ADAS feature can prove to be a valuable addition to car manufacturers.

Author Contributions: Conceptualization, K.J.; Data curation, C.N.J., G.P.A., A].S. and K.S.; Formal
analysis, H.V. and K.J.; Investigation, C.N.J., A.].S., K.S. and K.J.; Methodology, G.P.A. and A.].S,;
Project administration, K.J.; Resources, H.V. and R.K.R.; Software, H.V., K.S. and R K.R.; Validation,
PR.; Writing—original draft, CN.J., G.PA.,, RK.R. and K.J.; Writing—review & editing, PR. All
authors have read and agreed to the published version of the manuscript.

Funding: The APC is funded by Vellore Institute of Technology, Vellore-632014, India.
Institutional Review Board Statement: Approved by the Institute.

Informed Consent Statement: Not applicable for our case.

Data Availability Statement: Ours is a own custom dataset created by ourselves.

Conflicts of Interest: Authors declare no conflict of interest.

References

1. Accidental Deaths and Suicides in India. Available online: https://ncrb.gov.in/en/accidental-deaths-suicides-in-india (accessed
on 20 December 2019).

2. Papis, M.; Dziewon’ski, T.; Matyjewski, M. Preliminary assessment of the advanced driver assistance systems efficiency from the
safety point of view. Autobusy Tech. Eksploat. Syst. Transp. 2017, 371, 37518.

3.  Khan, A,; Harper, C.D.; Hendrickson, C.T.; Samaras, C. Net-societal and net-private benefits of some existing vehicle crash
avoidance technologies. Accid. Anal. Prev. 2019, 125, 207-216. [CrossRef]

4. Spicer, R.; Vahabaghaie, A.; Bahouth, G.; Drees, L.; Martinez von Biilow, R.; Baur, P. Field effectiveness evaluation of advanced
driver assistance systems. Traffic Inj. Prev. 2018, 19, 591-595. [CrossRef] [PubMed]

5. Thompson, J.P.; Mackenzie, J.R.; Dutschke, ] K.; Baldock, M.R.; Raftery, S.J.; Wall, J. A trial of retrofitted advisory collision
avoidance technology in government fleet vehicles. Accid. Anal. Prev. 2018, 115, 34—40. [CrossRef] [PubMed]

6.  Oviedo-Trespalacios, O.; Tichon, J.; Briant, O. Is a flick-through enough? A content analysis of Advanced Driver Assistance
Systems (ADAS) user manuals. PLoS ONE 2021, 16, €0252688. [CrossRef] [PubMed]

7. Galvani, M. History and future of driver assistance. IEEE Instrum. Meas. Mag. 2019, 22, 11-16. [CrossRef]

8. Benjdira, B.; Khursheed, T.; Koubaa, A.; Ammar, A.; Ouni, K. Car detection using unmanned aerial vehicles: Comparison between
faster r-cnn and yolov3. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS),
Muscat, Oman, 5-7 February 2019; IEEE: Washington, DC, USA, 2019; pp. 1-6.

9. Al-ganess, M.A.; Abbasi, A.A.; Fan, H.; Ibrahim, R.A.; Alsamhi, S.H.; Hawbani, A. An improved YOLO-based road traffic
monitoring system. Computing 2021, 103, 211-230. [CrossRef]

10. Babayan, P.V.; Ershov, M.D.; Erokhin, D.Y. Neural network-based vehicle and pedestrian detection for video analysis system. In
Proceedings of the 2019 8th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10-14 June 2019;
IEEE: Washington, DC, USA, 2019; pp. 1-5.

11.  Byeon, Y.H.; Kwak, K.C. A performance comparison of pedestrian detection using faster RCNN and ACF. In Proceedings of the
2017 6th ITAI International Congress on Advanced Applied Informatics (ITAI-AAI), Hamamatsu, Japan, 9-13 July 2017; IEEE:
Washington, DC, USA, 2017; pp. 858-863.

12.  Rahman, R;; Bin Azad, Z.; Bakhtiar Hasan, M. Densely-Populated Traffic Detection Using YOLOv5 and Non-maximum Suppres-
sion Ensembling. In Proceedings of the International Conference on Big Data, IoT, and Machine Learning; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 567-578.

13.  Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOVS5 for Autonomous Landing Spot Detection in Faulty UAVs.
Sensors 2022, 22, 464. [CrossRef] [PubMed]

14. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 779-788.

15. Redmon, ]J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.

16. Zhu, X; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOV5 based on transformer prediction head for object detection
on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC,
Canada, 10-17 October 2021; pp. 2778-2788.

17.  Skalski, P. Make Sense. Available online: https:/ /github.com/SkalskiP /make-sense/ (accessed on 20 December 2019).


https://ncrb.gov.in/en/accidental-deaths-suicides-in-india
http://doi.org/10.1016/j.aap.2019.02.003
http://doi.org/10.1080/15389588.2018.1527030
http://www.ncbi.nlm.nih.gov/pubmed/30543454
http://doi.org/10.1016/j.aap.2018.02.026
http://www.ncbi.nlm.nih.gov/pubmed/29544135
http://doi.org/10.1371/journal.pone.0252688
http://www.ncbi.nlm.nih.gov/pubmed/34138889
http://doi.org/10.1109/MIM.2019.8633345
http://doi.org/10.1007/s00607-020-00869-8
http://doi.org/10.3390/s22020464
http://www.ncbi.nlm.nih.gov/pubmed/35062425
https://github.com/SkalskiP/make-sense/

Appl. Sci. 2022,12, 8927 17 of 17

18. Olivas, E.S.; Guerrero, ].D.M.; Martinez-Sober, M.; Magdalena-Benedito, J.R.; Serrano, L. (Eds.) Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA,
USA, 2009.

19. Padilla, R.; Netto, S.L.; Da Silva, E.A. A survey on performance metrics for object-detection algorithms. In Proceedings of the 2020
International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1-3 July 2020; IEEE: Washington,
DC, USA, 2020; pp. 237-242.

20. Ao, D,;Li,]. Subjective assessment for an advanced driver assistance system: A case study in China. J. Intell. Connect. Veh. 2022, 5,
112-122. [CrossRef]


http://doi.org/10.1108/JICV-11-2021-0017

	Introduction 
	Literature Review 
	Technical Overview 
	The Evolution of the ADAS System 
	Technical Overview of Artificial Intelligence 
	YOLOv3 
	YOLOv5 


	Materials and Methods 
	Dataset Generation 
	Model Training 
	Model Testing 
	Mobile Application 

	Performance Comparison 
	Conclusions 
	References

