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Abstract: Due to the different challenges in rock sampling and in measuring their thermal conductiv-
ity (TC) in the field and laboratory, the determination of the TC of rocks using non-invasive methods
is in demand in engineering projects. The relationship between TC and non-destructive tests has not
been well-established. An investigation of the most important variables affecting the TC values for
rocks was conducted in this study. Currently, the black-boxed models for TC prediction are being
replaced with artificial intelligence-based models, with mathematical equations to fill the gap caused
by the lack of a tangible model for future studies and developments. In this regard, two models
were developed based on which gene expression programming (GEP) algorithms and non-linear
multivariable regressions (NLMR) were utilized. When comparing the performances of the proposed
models to that of other previously published models, it was revealed that the GEP and NLMR models
were able to produce more accurate predictions than other models were. Moreover, the high value of
R-squared (equals 0.95) for the GEP model confirmed its superiority.

Keywords: thermal conductivity; geothermal systems; gene expression programming (GEP);
non-linear multivariable regression (NLMR); P-wave; porosity

1. Introduction

Due to the increase in energy prices and energy demand, energy conservation and
management play a significant role in human lives and governmental policies. Heat as
a form of energy is transferred more rapidly in solid mediums than in gas and liquid [1].
Therefore, knowing the ability of solid materials to transfer heat can aid in conserving
energy more efficiently. Three main indices were introduced for the evaluation of the
thermal behavior of solid materials [2,3] as the following:

• Thermal conductivity (TC, λ), which refers to the material’s heat conduction property;
• Thermal diffusivity (TD, κ), which refers to the material’s heat diffusion property;
• Specific heat capacity (Cp), which links TC and TD using density (ρ), i.e., Equation (1):

κ =
λ

ρ. Cp
(1)

The determination of rocks’ TC is of great importance in geothermal, environmental,
mining, and civil engineering applications [1]. This parameter is critical for the man-
agement of geothermal reservoirs, designing power-saving walls and powerhouses, CO2
sequestration, and underground waste disposal wells [2–6]. It can be measured using heat
input and the temperature gradient of the host rock [7].

The physical and mechanical properties of rocks have a direct relation with TC as
the mineral content [8–10], bulk density (ρ) [3,11], porosity (∅) [2,12], P-wave (pressure-
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wave) velocity (Vp) [2,4,13], uniaxial compression strength (UCS) [2,14], saturating fluid
characteristic [15], quality and geometry of the contact between the grains [16–18], disconti-
nuities [19], temperature [20–23], and atmospheric pressure [24].

In situ measurements of TC need specialized equipment, which is very expensive and
can be time-consuming [25]. However, due to the scale effect, even if the effects of the stress
level, pore fluid pressure, temperature, and permeability of rocks can be considered, the
laboratory values may substantially differ from those of the in situ measurements [24,26,27].
Therefore, in recent years, several researchers proposed methods to estimate the in situ TC by
measuring a rock’s effective properties (e.g., [2,28–31]). Measuring the uniaxial compressive
strength (UCS), density, porosity, and P-wave velocity of a rock is not as difficult as measuring
in situ TC. These properties can also be obtained by laboratory or indirect methods, such as
using the Schmidt hammer for the determination of the UCS [24]. In this case, the following
items can be found without performing TC core experiments at several depths [30]:

• Predicting and/or in-time monitoring of the heat flux;
• Extracting the temperature profile;
• Evaluating the saturation content of the formation.

Özkahraman, Selver, and Isık [2] conducted tests on rock samples that are mostly
used in building constructions. They investigated the relationship between TC and rock
properties, specifically for the P-wave velocity, UCS, density, and porosity. They proposed
equations for the prediction of the TC regarding each of the four above-mentioned parame-
ters, but not by simultaneously considering all parameters (multivariable equation). They
found that TC has a direct relation to P-wave, UCS, and density, whereas it has an inverse
relation to porosity. In another study, Yaşar, Erdoğan, and Güneyli [4] performed laboratory
tests on 12 different rock samples. They found that the type of a rock’s mineral composition
could also affect its TC to a high degree.

In recent years, modeling using machine learning (ML) methods to better fit with
actual measurements has become more popular with scientists than other modeling meth-
ods [32–37]. ML methods are applied to different issues in geotechnical engineering [38–41].
A methodology combining physical modeling and ML was proposed by Assouline et al. [42]
to estimate the apparent ground thermal diffusivity at the national scale. In this methodology,
a model is built with random forests (RF) using the output values from previous diffusivity
estimations, as well as geological, elevation, and temperature features. The model, which
exhibited an acceptable test error of 16.5%, is then used to estimate the apparent diffusivity
across Switzerland. Singh, Sinha, and Singh [3] applied two ML techniques, including arti-
ficial neural networks (ANNs) and adaptive neuro-fuzzy inference (ANFIS), to predict TC
by some series of datasets on rock properties (P-wave velocity, UCS, density, and porosity).
The proposed models had a strong correlation coefficient between the measured and the
predicted TC. Sargam et al. [43] used a multilayer perceptron (MLP) model to study con-
crete’s thermal conductivity. A high degree of prediction accuracy was achieved by MLP.
In this regard, Khandelwal [24] conducted an analysis using a feed-forward backpropaga-
tion neural network and found that the ANNs presented more accurate results than other
techniques did. To predict the TC of Jalore granite, Verma et al. [44] used artificial neural
networks (ANNs), linear regression, support vector regressors (SVRs), and decision tree
regressors (DTRs). According to their analysis, TC was strongly correlated with density,
S-wave velocity, and P-wave velocity. Moreover, it was validated by different AI tools that
thermal conductivity is highly sensitive to rock’s physical properties [44]. In the study done
by Wang et al. [45], TC was analyzed using a convolutional neural network (CNN) and
datasets of temperature fields from lattice Boltzmann method (LBM) simulations based on
three-dimensional sphere-packed porous media. CNN and LBM acquired relative errors for
the effective thermal conductivity of sphere-packed porous media (0.7–22.8%) and irregular
porous media (3.1–16.0%). According to them, CNN is promising for the prediction of the
heat transport properties of porous media with variable boundary conditions and different
morphologies. For predicting geothermal gradient, thermal conductivity, the heat productiv-
ity of rocks, and the crustal/mantle heat flow, He et al. [46] used generalized linear models
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(GLM), deep neural networks (DNN), and gradient-boosted regression trees (GBRT). Their
results showed that the DNN model, with a number of neurons multiplied by the features,
performed better than the other models. The average relative prediction errors for SVM
and DNN were 13.3 and 12.7%, respectively. In a hybrid SVM–DNN approach, the average
relative prediction error decreased to 12.2%. Hajihassani et al. [47] developed an ANFIS and
a linear multivariable regression (LMR) model using 44 datasets that were collected from the
literature. Kang et al. [48] measured the thermal conductivity of various rocks in the Songliao
Basin (China). The correlation between porosity, moisture content, density, P-wave velocity,
and thermal conductivity were investigated. Seven prediction models were developed using
extreme learning machine (ELM), support vector regression (SVR), and backpropagation
neural network (BPNN) algorithms. The results demonstrated that the ELM-based model
had better performance, speed, and accuracy for predicting rock thermal conductivity.

The above-developed computer-aided models (ANNs and ANFIS) are black-box
methods. Some pitfalls remained in these studies [49,50]:

• The relationship among the parameters was not determined, and the most critical
parameters could not be identified [51].

• These models are not usable for field uses or future studies [51].
• The possibility of over-training or over-fitting in the training stages of ANNs and

ANFIS is higher than it is when using white-box methods [51,52].

In order to overcome the disadvantages discussed above and bridge the gap be-
tween ANNs and conventional experimental models, we developed mathematical equa-
tions/models using computer programs that have high confidence compared with other
studies conducted in a similar field. Using multiple related inputs in this study, we devel-
oped functional relationships that can predict a specific output. Two models were proposed
using a gene expression programming (GEP) algorithm and a non-linear multivariable
regression (NLMR). As shown in the numerical experiments by Ferreira [53], the GEP
approach can be seen as an efficient alternative to traditional machine learning approaches.
The developed models were validated using statistical indices, and they were compared
with the results of previously developed models.

2. Establishment of Dataset

In rock mechanics, each test induces costs, and a long period is needed for each phase
of the experimental process. Therefore, it is crucial to reach the desired accuracy by testing
a minimum number of samples [54]. Yamaguchi [55] sought to analyze this problem
using a statistical technique called the “decision of the sample number”. He tested three
different kinds of igneous rocks to evaluate their compressive strength and found that
a 90% confidence level could be acquired by using only ten samples. This study showed
that, due to the high similarity in their physical properties, the mechanical properties of
each primary type of rock (i.e., sedimentary, metamorphic, and igneous) could be similar
to each other. Therefore, testing a small number of samples would be sufficient to obtain
results with a high confidence level [55].

In our study, 50 datasets, including TC, UCS, density, porosity, and P-wave velocity,
were taken from the literature [2–4,24]. The type of these samples was not reported, but
most of them were sedimentary rocks (i.e., by referring to their P-wave velocity and porosity
values). The basic descriptive statistics of the datasets are presented in Table 1.

Table 1. Descriptive statistical distribution of datasets.

Variable Max Min Mean Median St. Deviation

TC (W/m K) 3.01 0.186 1.395 1.2628 0.762
UCS (MPa) 116.9 3.43 61.32 63.258 24.151
P-wave (m/s) 6300 1800 4486.436 4457.5105 1096.66
Density (kg/m3) 2970 500 2508.30 2575.3305 422.851
Porosity (%) 84 0.83 5.91 2.354 12.755
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2.1. Input Parameters for Models

During the preliminary steps of the analysis, using polynomial and power functions,
a series of single-variable regressions were conducted to obtain more details about the
relationship between TC and the independent rock properties. Table 2 summarizes the
results of the single-variable regressions. As seen, the P-wave velocity and density had the
highest and the lowest effects on the TC, respectively.

Table 2. Correlation coefficients of the simple regression models between the TC and the indepen-
dent variables.

P-Wave Porosity Density UCS
Polynomial (1st order) 0.8249 −0.1717 0.3517 0.5463
Polynomial (2nd order) 0.8597 −0.2841 0.5058 0.5928

Power (one term) 0.8587 −0.5912 0.5113 0.5621
Power (two term) 0.8602 −0.614 0.5113 0.5942

To avoid redundancy in the future model generation, the relationships between the
independent variables were investigated. As shown in Table 3, there were no redundancies
between the independent parameters, and the relationships between porosity and density
as well as between UCS and P-wave velocity were significant.

Table 3. Correlation coefficients of the relationships between the independent variables.

P-Wave Porosity Density UCS
P-wave 1 −0.2441 +0.3876 +0.4911
Porosity 1 −0.8094 −0.2578
Density 1 +0.4295

UCS 1

2.1.1. P-Wave Velocity

Interpreting the relationship between P-wave velocity and TC requires considering
the parameters that influence P-wave velocity. Among the most-cited variables that affect
P-wave velocity, mineral composition, lithology, porosity, and confining stress are cited
as the main factors. Gegenhuber and Schoen [56] studied the relationship between TC
and the P-wave velocity for different rock types. They found that TC and P-wave velocity
had a positive and robust correlation coefficient. The mineral composition was the most
effective parameter influencing their relationship. Figure 1 shows the relationship between
TC and P-wave and the mineral composition of rocks. There was no information found
about the mineral composition of samples in the current study. As a result, the curve fitted
to TC versus P-wave velocity did not include this factor (Figure 2).The effect of lithology on
seismic wave velocity in rocks was well-established by Domenico [57]. According to him,
a higher seismic velocity can indicate higher quartz content, which can result in higher
UCS. In addition, more significant confining stress can close microcracks in samples and
improve P-wave transmission. As porosity decreases, P-wave and TC values increase.
Table 3 also demonstrates this phenomenon by showing that P-wave velocity has an inverse
relationship with porosity. As a result, P-wave velocity can inherently represent the most
influential parameter for TC as it has a direct relationship with TC.

Furthermore, according to Freund [58], the type of pore fluid influences P-waves in
porous rocks. In our study, the samples were completely dry. However, this method can be
used in future studies to evaluate TC in saturated conditions.
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Figure 1. The points show the measured values, and the curve shows the relationship between TC
and P-wave velocity. The grey arrow indicates the increase of the porosity.
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Figure 2. Measured values and relationship between TC and P-wave velocity.

2.1.2. Porosity of Rocks

As shown in Table 2, the porosity had an inverse and significant relationship with
TC, which represented the more effective parameter for the TC of sedimentary rocks [59].
The void ratio of sedimentary rocks (from 1% up to 80%) could be higher than that of the
volcanic and metamorphic ones (at most 1%). The wide range of substances that could
fill the void spaces, such as air, water, chemical sediments, or organic matters, was the
other parameter controlling TC. However, the reported datasets of the TC rocks, which
were used in our study, were obtained in the laboratory, considering dry conditions and
the ISRM standards.
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2.1.3. Density of Rocks

Birch [60] obtained a direct relationship between P-wave and density. Horai [61]
examined 166 rock-forming minerals to find an empirical equation for the TC prediction.
They found an analogous relationship between increasing TC and increasing the density,
as well as increasing the P-wave velocity. In our study, in addition to the results obtained
by Horai (1971), another important issue was observed. Figure 3 shows the TC–density
plot for silica minerals by Horai [61], whereas Figures 2 and 4 present the TC–density and
TC–P-wave plots obtained in this study. The trend line of these plots reached a density of
about 2500 kg/m3, showing that there was a low gradient, while it increased for greater
values of density. As observed in Figure 5, the density of rocks increased with the porosity
decrease, while both of them had an extreme effect on the TC and P-wave velocity.
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2.1.4. Uniaxial Compressive Strength

The strength of rocks is affected by their mineralogy, grain size, and porosity. Rocks
with larger grain sizes and considerable porosity have lower UCS than that of other dense
rocks [2]. Furthermore, an increase in quartz content will increase the strength of rocks as
well as the TC (Clauser and Huenges [59] and Figure 6). Hence, the greater the UCS is, the
larger the rocks’ TC is (Figure 7). Sargam, Wang, and Cho [43] found that concrete mixtures
with higher quartz content had higher TC and compressive strength.

Different groups of researchers (Pimienta et al. [62]; Esteban, Pimienta, Sarout, Delle,
Piane, Haffen, Geraud, and Timms [30]; and El Sayed and El Sayed [12]) proposed models
for TC prediction using only the P-wave velocity and porosity. Although their models had
an acceptable degree of accuracy, the discussions on the role of the rock properties in TC
prediction indicated that these properties were not enough. Other rock properties can also
be interesting and give accurate predictions of TC (rock type, TC, UCS, density, saturating
fluid characteristic, quality, and geometry of the contact between the grains).
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Figure 7. Measured values and relationship between TC and UCS.

3. Gene Expression Programming (GEP)

The genetic algorithm (GA) introduced by J. Holland [63] as a new stochastic opti-
mization technique was utilized in this study, in which Darwin’s theory of “survival of
the fittest” was also used. This algorithm attempts to use genetic operators and a fitness
function in each round of processing to optimize and classify the set of parameters that are
the best solutions for the problem. Whenever the output requirements (e.g., the required
proportion between measured and predicted values) are met, the algorithm is stopped [64].
A newer developed version of GA is genetic programming (GP). It was first introduced by
Koza [65]. GP finds a solution for problems using variable-length sets of parameters, includ-
ing mathematical functions, algebraic operators (function sets), and numbers (terminal sets).
Ferreira [53] introduced gene expression programming (GEP) as a newer version of GP in
which individuals are characterized as linear strings. The five central units that constitute
a GEP algorithm are terminal sets, function sets, fitness functions, operators, and stop
conditions [66]. Moreover, expression trees (ETs) were used to demonstrate fixed-length
solutions in tree shape structures.

The fixed-length chromosome is the most obvious difference between the GEP and
GP. The genomes or chromosomes are linear, symbolic strings of one or more genes with
a fixed length. The genes themselves are composed of primitives (mathematical functions
or variables), which are all fixed-length strings.

As shown in Figure 8, in the initial step, GEP randomly generated a series of chro-
mosome sets that were potential solutions for the problem. In the second step, a set of
chromosomes was expressed as ET. Meanwhile, ETs are interpretable as mathematical
equations. Afterward, a fitness function (which is responsible for calculating the errors in
predictions) evaluated the fitness of each set of parameters. If the expected results were not
met, the best solutions would be selected by a selector function, and the genetic operators
would combine them to generate a better set of parameters. In the following paragraphs,
we will describe the most common operators.

Mutation: Since it enables immediate changes to the program output, the mutation
operator is the most crucial one in the GEP algorithm. To put it another way, it changes
a terminal node into a functional node and vice versa. By choosing two distinct subtrees,
switching them, and then choosing another subtree, two distinct subtrees from different
chromosomes are swapped. Gene inversion: Using this operator, a specific set of genes
in the chromosome’s head is inverted. Transposition: With the help of this operator,
a chromosome’s chosen portion is moved to a different location. Among the different types
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of transposition operators, there are the (1) insertion sequence transposition (IS), (2) root
insertion sequence transposition (RIS), and (3) gene transposition.
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Finally, if the newly created set of parameters did not have the expected fitness, the
process would be repeated to reach the stopping conditions [67].

4. Results

Two empirical equations were developed in our study to predict TC using the physi-
comechanical properties of rocks (i.e., P-wave, porosity, density, and UCS). The first model
was developed using non-linear multivariable regression (NLMR), and another model
was developed using gene expression programming (GEP). To avoid overfitting during
the training stages, 65% of all datasets were randomly selected for training, and the rest
were used for testing the developed models. The testing results of the developed models
showed how much these models could be generalized for other datasets. Furthermore,
statistical indices (i.e., the coefficient of determination (R2) and the root mean square error
(RMSE)) were used to evaluate the robustness of the developed models for prediction.
The R-square (Equation (2)) showed how reliable a model was for future forecasts, and
the RMSE (Equation (3)) showed how much the standard deviation of the residuals was
(prediction errors).

R2 = 1−
∑
(

yact − ypre

)2

∑
(
yact − yact

)2 (2)

RMSE =

√√√√∑n
i=1

(
ypre − yact

)2

n
(3)

where ypre is the predicted value, yact is the measured (actual) value, and yact is the average
of the measured values.
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4.1. NLMR Model

Unlike linear regression, the NLMR model could use a wide variety of mathematical
functions to find the best fitting equation between the input and output parameters [54].
However, to avoid model complexity, only polynomial and power functions were used
for the model development. Based on Table 2, the NLMR functions were generated by
combining non-linear single variable equations for each parameter. An optimization
algorithm was used to optimize the NLMR function to achieve the best TC prediction
model. The NMLR model was developed and optimized by a genetic algorithm (GA) using
MATLAB software [68]. GA’s general procedures are similar to GEP’s, which generate
random coefficients for parameters, enhance them by their operators, and try to reach
a higher degree of accuracy. In order to determine the most suitable setting for the GA run,
a series of trial-and-error tests were conducted. As a result, with NLMR functions, the most
accurate TC prediction model was found to be Equation (4). Table 4 shows the performance
indices of this model.

λ = 0.122×Vp
−0.033 + 0.0013×Vp − 0.024× φ−0.18 − 0.0177× ρ−0.0213 − 0.1171×UCS0.13 + 0.02153 (4)

Table 4. Resulting performance indices’ values of the proposed NLMR model.

Model Data Status
R2 RMSE

Training Testing Training Testing

NLMR 65% of all for training
35% of all for testing 0.86 0.83 0.27 0.31

4.2. GEP Model

The GEP model was developed through the GenXPro Tools software. This soft-
ware extracts the significant features of datasets, including a high number of variables,
and finds relationships among them with high accuracy. Similar to the process used in
Section 4.1, the same training and testing subsets were used for the GEP model’s devel-
opment. To develop a model for TC prediction by GEP, a simple equation in the form of
TC = f (P-wave, porosity, UCS, density) was first proposed. To acquire the best setting
for the GEP model generation in the initial step, function sets and fitness functions were
then chosen from the study of Zare Naghadehi et al. [69]. Afterward, several trial-and-error
procedures were carried out to obtain the best settings. Having utilized these settings, the
GEP-developed models obtained minimal error percentages. Table 5 presents the GEP soft-
ware settings for the model generation during this study. The procedure of GEP modeling
was illustrated in Section 3.

Table 5. Parameters of the GEP model.

Parameter Value

Number of chromosomes 30
Head size 8

Number of genes 4
Linking function Addition
Fitness function RMSE
Mutation rate 0.044
Inversion rate 0.1

One-point recombination rate 0.3
Two-point recombination rate 0.3

Gene recombination rate 0.1
Insertion sequences transposition rate 0.1

Root insertion sequence transposition rate 0.1
Gene transposition rate 0.1

Function set +,−,×, ÷,
√

x, ex, sin, cos
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The prediction of the GEP performance models was evaluated by both R-square and
RMSE. Several models were developed to find a better model with the lowest RMSE and
highest R-square. Table 6 gives the prediction performance of the selected GEP model.

Table 6. Resulting performance indices’ values of the proposed GEP model.

Model Data Status
R2 RMSE

Training Testing Training Testing

GEP 65% of all for training
35% of all for testing 0.95 0.90 0.17 0.22

The developed models are presented in terms of expression trees (ETs) or as computer
codes. However, these presentations should be interpreted as a form of a mathematical
equation. The extraction of the mathematical equation from ETs is an easy task. The ETs are
read from left to right and bottom to the top. The ET of each gene of the GEP model is shown
in Figure 9a–d, and the mathematical equation of each gene is presented as Equations (5)–(8).
The genes’ equations were linked, and the GEP model was generated using Equation (9).

SubET1 = cos 3

√
φ× cos

(
ρ+ UCS−Vp

10.61− ρ

)2
(5)

SubET2 = (cos (cos(0.973−
Vp + UCS
ρ−φ

)))
2

(6)

SubET3 =
1

3
√

φ2
+

1
φ3 (7)

SubET4 = cos(cos(−1− 3
√

tan(2ρ)−UCS + 1.71)) (8)

λ = SubET1 + SubET2 + SubET3 + SubET4 (9)
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tree of each gene of the GEP model for TC prediction (Equation (7)). (d) Expression tree of each gene
of the GEP model for TC prediction (Equation (8)).
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A better illustration of the predicted values of TC by the GEP model against the
measured TC for training and testing subsets are shown in Figures 10 and 11, respectively.
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4.3. Verification and Discussion of the Results

To evaluate the prediction reliability of the developed models, the corresponding
performance indices were compared with those of previously published studies. For the
prediction of the TC using the same parameters and datasets as those used in our study,
two multivariable equations were developed by Khandelwal [24] (Equation (10)) and
Hajihassani, Marto, Khezri, and Kalatehjari [47] (Equation (11)); hence, these two models
were chosen for the verification of the newly developed models. It is noteworthy that there
are also some other efforts in the literature to predict TC by computer-aided methods using
the same datasets [3,24,70,71].

λ = −1.1864 + 0.006 UCS + 0.1493× ρ+ 0.0134 φ+ 0.0004 Vp (10)

λ = 0.00037 Vp − 0.01653 φ− 0.00058 ρ+ 0.02053 UCS− 0.06072 (11)
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These studies used some kinds of methods called black boxes, but these methods
did not have the practical potential to be utilized in applications. In the meantime, as is
evident from Equations (10) and (11), in the developed mathematical equations, only simple
functions are used, but to represent the effect of parameters on TC, complex non-linear
functions are needed. To avoid any confusion made by the selection of training and testing
subsets, the performance indicators of all models were calculated again by substituting
the input variables using all 50 datasets. Thus, the accuracy of the previous model could
be compared exactly to the proposed one in this study. The results of the performance
indicators of the proposed models for all 50 datasets are listed in Table 7.

Table 7. Performance indices and ranking of the new and the previous TC predictor models calculated
for all 50 datasets.

Model R2 RMSE Rank

New GEP model (Equation (9)) 0.92 0.21 1
New NLMR model (Equation (4)) 0.82 0.32 2

MVRA [47] (Equation (10)) 0.74 0.39 3
MVRA [24,71] (Equation (11)) 0.35 0.62 4

Comparing the performance indices of the proposed models and the previously pub-
lished model revealed that the GEP and NLMR models produced more accurate predictions
than the MVRA model did. The high value of R-square (equal to 0.95) and the low value of
RMSE (equal to 0.17) confirmed the higher accuracy of the proposed GEP model. The GEP
was more accurate since it used longer terms and a wider variety of mathematical functions
than the NLMR one did. The existing MVRAs in the literature [24,47,71] were developed
using simple non-linear variables that were regulated using commercial software. Based
on the low correlation coefficients of these models, we concluded that they could not
capture the complexity of the problem and the relationship between TC and the influential
parameters. The NLMR model and the GEP model developed in our study were developed
not only using non-linear mathematical terms to represent each parameter but also via an
extensive trial and error process; thus, a soft computing approach was used to enhance the
accuracy of predictions.

5. Conclusions

In our study, a literature survey was performed to the establishment of the dataset
for estimating the thermal conductivity of rock via several rock properties, including the
UCS, density, porosity, and P-wave velocity of rocks. Several simple variable regressions
were conducted among the rocks’ properties and TC. As a result of simple regressions,
we found that the P-wave velocity and density had the highest and the lowest effect
on the TC, respectively. Further, the relationships between porosity and density and
between UCS and P-wave velocity were then considered significant and meaningful. To
estimate TC via rock properties, two empirical equations were developed. First, a model
was developed using NLMR, and then a second model was developed by GEP. The two
statistical indices R2 and RMSE were utilized to evaluate the robustness of the developed
models in order to predict TC. While the GEP model had a higher value of the R2 (0.95) and
a lower value of RMSE (0.17), a low R2 (0.82) and RMSE (0.32) were obtained for NLMR.
A comparison of the performance indices of the proposed models and of the previously
published models revealed that the GEP and NLMR models were able to produce more
accurate predictions. As a result, the developed model can be used for estimating the TC
of rocks, since performing TC-related tests might be time-consuming and cost-restrictive.
Additionally, despite the fact that our study proposed methods and mathematical models
that significantly increased prediction accuracy, there are some associated limitations. As
mentioned in previous sections, a limited number of datasets were used in our study
because data collection in geosciences is challenging. As a result, we recommend that
future studies focus on rocks and parameter ranges that overlap only slightly with those
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of this study. Our study and similar studies have not quantified the texture of the rocks,
which is one of the most important parameters. The data collection and analysis stages of
future studies should incorporate this parameter.
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