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Abstract: The fly-ash dam is used to store the fly ash discharged from the thermal power plant. A
fly-ash dam is a special slope built with fly ash, and rainfall infiltration is an important reason to
induce the landslide of this kind of slope. In this paper, the laboratory tests of different slope ratios
and initial seepage fields under rainfall were carried out, aimed at studying the failure mechanism,
failure mode, triggering mechanism, and influence factors for the slope instability of the fly ash dam
slope under rainfall infiltration. The results show that: (I) Three failure mechanisms were found in
the tests: sliding failure, runoff erosion, and flow-slide failure. Due to the low density of fly ash,
runoff erosion is more likely to occur under rainfall. Differently from clay slope, flow slide is an
important failure mechanism of fly ash slope under rainfall. (II) Local erosion damages caused by
runoff erosion and flow slide are the important triggering factors of the fly-ash dam slope failure
under rainfall. (III) Three failure modes were observed in the test: the overall sliding failure of the
slope, the retrogressive landslide caused by multi-stage local sliding, and the gradual erosion failure
of the slope (caused by the combined action of runoff erosion and flow slide). (IV) The slope ratio has
an important influence on the failure mode. With the decrease in slope ratio, the failure mode evolves
from sliding failure to flow-slide failure and runoff erosion failure. The greater the slope ratio, the
more obvious the sliding failure characteristics; the lower the slope rate, the greater the runoff erosion
damage. The existence of an internal seepage field in the slope intensifies the occurrence of flow slide.

Keywords: slope instability; rainfall infiltration; triggering mechanism for slope instability; failure
mechanism; failure mode; fly-ash dam; tests

1. Introduction

Fly-ash dams are used to store fly ash discharged from thermal power plants. There
are more than 9000 fly-ash dams in the world [1]. A fly-ash dam is a special kind of slope
built with fly ash. In China, the storage form of the fly-ash dam is very similar to that of
the tailings dam. The harm from the failure of tailings dams and the relevant research
results have important references for the fly-ash dam. Therefore, it is essential to conduct a
review of the literature, not only on fly-ash dams but also on tailings dams. Fly-ash dam
and tailings dam failure accidents have occurred from time to time in the world [1–6]. They
have had a significant impact on the surrounding downstream environment [7–10], and
threatened the safety of life and property [6,11]. For instance, the catastrophic accident
of the fly-ash dam at the Kingston fossil power plant in Tennessee in 2008, as well as the
failure of Brumadinho tailings dam in Minas Gerais in 2019, caused significant casualties
and environmental disasters [12]. Kamrul [13] analyzed the impact of dam failure in the
past 100 years from a global perspective, and drew conclusions: the number of dam failures
is rising again, and the trajectory of dam failures has been transferred from developed
countries to developing countries.

Due to of the disastrous consequences of the failure of the tailings dam, research on the
failure causes and mechanisms of the tailings dam has been given attention. Nahyan [14]
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comprehensively analyzed the failure mechanism and inducing factors of the tailings dam
through 63 failure cases. Joaquín [15], Alonso [16], and Gens [17–19] studied the failure
mechanism and causes of the Aznalcóllar tailings dam. Roberto [20] summarized the flow
failure conditions of the tailings dam based on 67 Spanish tailings dams, and proposed
corresponding preventive measures. Luke Clarkson [21] analyzed the factors leading to the
failure of the tailings dam in detail, including foundation failure, internal erosion and pip-
ing, overtopping, seepage, seismic activity, and slope instability. Niekerk [22] investigated
the causes and consequences of the Merrispruit tailings dam failure, Fourier [23] studied
the flood overtopping failure process of the Merrispruit tailings dam, while Chandler [24]
explored the failure causes of the Stava Valley tailing dams and considered that the low
safety factor of the dam slope was the main reason. Vick [25] introduced the failure causes
and protective measures of the tailings dam at Omai in Guyana. Villavicencio [26] and Do-
bry [27] analyzed the failure mechanism and characteristics of a tailings dam in Chile under
earthquake. Harder [28] summarized the damage mechanism, damage characteristics, and
impact downstream of the Tapo Canyon tailings dam under earthquake. It is considered
that the liquefaction of seismic saturated tailing sand was an important reason for the
failure of the tailings dam. Glotov [29] analyzed the reason for the failure of the Karamken
tailing dam, and considered that synergic engineering, hydrogeology, and human factors
were the critical reasons for the failure of the tailings dam.

Test, theory, and numerical simulation are important methods to solve geotechnical
problems [30–34], and they are also applicable to study the failure of tailings dams and
fly-ash dams, including numerical simulation, experimental methods, and theoretical
methods [35–40]. In view of the complexity of the failure mechanism and the variety of
instability modes of tailings dams, a laboratory test is still an effective method to study
the failure mechanism and failure mode of the tailings dam. Yao [41] adopted the flood
overtopping tailings dam failure test to study the impact of the tailings size on the dam
break. The influence of particle size on the erosion pattern of the tailings dam’s surface
was analyzed. Wu [42] studied the piping process in the tailings dam by model test, and
proposed three stages of piping failure in the tailings dam. Sen [43] carried out a physical
model test of the dam break based on an iron tailings dam in Sichuan Province of China,
and studied the damage process of the dam during flood overtopping. Wu [44] established
the physical model test based on the Wadugou tailings dam, analyzed the overtopping-
dam-breaking process of the tailings dam under natural conditions and artificial dam
protection measures, and studied the impact of different dam surface conditions on the
failure of the tailings dam. Zhang [45] studied the failure process of the tailings dam under
high water level operation by model experiment and analyzed the failure process of the
tailings dam slope.

Quan [46] analyzed the causes and regional distribution patterns of the dam failures
of 342 tailings dams in the world from 1915 to 2021 using the statistics method. The results
showed that most tailings dam failures in Asia and Europe were closely related to rainfall.
Therefore, the research on the failure mode and failure mechanism of the tailings dam
under rainfall needs to be paid more attention. Lv [47] carried out the test on rainfall
erosion, and analyzed the erosion characteristics and influencing factors of an iron tailings
dam under six different slope conditions. Yang Sun [48] conducted the rainfall erosion
test, and considered that rainfall infiltration was the main factor in the hydraulic erosion
and deformation instability of the tailings dam slope. Furthermore, the environmental
protection measures were put forward for the tailings dam slope. Wang [49] analyzed the
change law of the seepage line of the tailings dam slope, as well as the dam break process of
flood overtopping induced by rainfall through the tests. Hu [50] explored the mechanisms
of damage and fluidization of the tailings dam by using the flume model test, and analyzed
the impact of rainfall on dam body safety.

At present, laboratory tests on failures of the tailings dam under rainfall mainly focuses
on specific failure mechanisms and influence factors, such as flood overtopping, erosion,
etc. Research is lacking on the influence of different test conditions on the failure mode
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and failure mechanism under rainfall, such as initial seepage field, slope ratio, and other
factors. In addition, the research object is a tailings dam, while the research on fly-ash dams
is less. Therefore, in order to close the gap, this paper has carried out the laboratory tests
considering the changes of initial seepage fields and slope ratios, aimed at studying the
failure modes, failure mechanisms, and landslide-triggering factors of fly ash dam slopes
under rainfall. Throughout the tests, three failure mechanisms and three failure modes
were found. Differently from the clay slope, flow slide is an important failure mechanism
of fly ash slopes under rainfall. Local erosion damage caused by runoff erosion and flow
slide are the important triggering factors of the fly ash dam slope failure under rainfall.
Furthermore, the influence of the initial seepage field and slope ratio on failure mode
and failure mechanism is analyzed, which provides a reference for slope protection of the
fly-ash dam.

2. Materials and Methods
2.1. Materials in the Test

In this test fly ash was selected from the Xiangyanggou fly-ash dam in Shijiazhuang
City, China, and gravel was used in the initial dam. Its physical and mechanical parameters
are shown in Table 1, and the particles grading curve of fly ash is shown in Figure 1.

Table 1. Physical and mechanical parameters of the fly ash and gravel.

Soil Type Dry Density
(g·cm−3)

Permeability
Coefficient

(m·s−1)

Cohesive
Strength

(kPa)

Angle of
Internal

Friction (◦)

fly ash 1.03 2.5 × 10−5 1.86 28
gravel 2.2 1.00 × 10−3 0 35
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Figure 1. Particles grading curve of fly ash.

2.2. Laboratory Test Facility

The laboratory tests were carried out in the model test box, which was 3 m long, 1 m
wide, and 1.5 m high, equipped with a plexiglass plate as its side wall and a rainfall system
on the top. The rainfall system mainly included the rainfall sprinkler, rainfall meter, rainfall
control system, water pump, and water supply pipeline. The rainfall control system was
developed by Nanjing Forestry University. The effective rainfall areas were 3 m2, and the
raindrops size was 0.5~2.8 mm, as shown in Figures 2 and 3.
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Figure 3. Pressure measuring pipes buried in the dam.

The measurement system in the laboratory tests included using a camera to record the
failure process of the dam slope, using a total station to measure the deformation of the
slope surface, drawing a grid on the side plexiglass to observe the shape change of the dam
body during the failure process, and laying white lines on the side of the soil layer every
10cm during the layered filling process of the dam slope. According to the deformation of
these white lines, the soil deformation of the fly ash dam slope can be analyzed, and the
position of the sliding surface can be determined by the disconnection of the marking lines.

2.3. Test Design

As shown in Table 2, the outer slope ratio of 1:2 can represent the slope ratio of the
general sub-dam of the fly-ash dam, and 1:3 can represent the slope ratio of a gentle sub-
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dam or a steep whole-dam. The rainfall intensity was set to 17 mm/h. Under the conditions
S1 and S2, a stable seepage field existed in the dam slope before rainfall. In order to make
the test comparable, the infiltration positions under S1 and S2 conditions should be the
same to maintain the same seepage field, so as to analyze the impact of different slope
ratios on failure characteristics. However, under conditions S3 and S4, there was no initial
seepage field in the fly-ash dam, which corresponded to the dry-stack ash dam or the
hydraulic-filling ash dam with a deep saturation line. Then, by comparison with conditions
S1/S2 and S3/S4, the influence of the initial seepage fields on failure characteristics of the
fly ash dam slope was reflected.

Table 2. Test conditions.

Condition’s
Name

Outer Slope
Ratio of the Dam

Slope

Total Height
of Dam Slope

(cm)

Initial Dam
Height

(cm)

Rainfall
Intensity
(mm·h−1)

Length of the
Dry Beach

(cm)
Test Conditions

S1 1:2 50 10 17 60
First, a stable seepage field was
formed in the fly-ash dam, and

then rainfall began.

S2 1:3 50 10 17 10
First, a stable seepage field was
formed in the fly-ash dam, and

then rainfall began.
S3 1:2 50 10 17 / Dry-stack, direct rainfall.
S4 1:3 50 10 17 / Dry-stack, direct rainfall.

3. Results and Discussion
3.1. Results of the Test under S1 and S2 Conditions
3.1.1. Tests on Formation of the Initial Seepage Field in the Dam Slopes of S1 and S2

Firstly, the dam slopes of S1 and S2 were subjected to the seepage tests under the
constant total head of 0.48 m. Both dam slopes had the same infiltration position. Five
pressure measuring pipes were arranged in the dam body (as shown in Figures 3 and 4),
and two settlement observation positions were set at the top and the middle of the dam-
slope surface. In the seepage tests, the water level of the pressure measuring pipe would
change with time. When the water level was stable in the pipes, it showed that the stable
seepage fields were formed in the dams, and then the seepage tests were over.
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Figure 4. Measuring points of saturation line and settlement in the dam; (a) slope ratio 1:2, 1~5 were
the pressure measuring pipes, D1-1 and D1-2 were the settlement observation positions; (b) slope
ratio 1:3, 1~5 were the pressure measuring pipes, D2-1 and D2-2 were the settlement observation
positions.
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The measurement results of the saturation lines during the tests are shown in Figure 5.
As seen in Figure 5, the saturation lines in the dams were basically stable after 11 h, and the
distribution of the final saturation lines in the two dams were basically the same.
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ratio 1:3.

The settlement measurement results at the top and middle of the dam-slope surface
during the seepage of the dams are shown in Figure 6. From Figure 6, the dam-slope
surface had a certain settlement during the seepage process. Comparing the dam slopes
with the slope ratio of 1:2 and 1:3, the vertical settlement of the latter was larger. According
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to the test results, the final average slope ratio of the dam slope, with the initial slope ratio
of 1:2 and 1:3, turned to 1:2.1 and 1:3.2, respectively, after seepage tests.
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3.1.2. Rainfall Test of S1

Before rainfall, the pressure measuring pipes were removed in order to avoid affecting
the failure process of the fly ash dam slope. After the rainfall lasted for 1 h 34 min, some
small gullies began to appear at the toe of the dam slope, and these small gullies gradually
developed upstream, as shown in Figure 7a. After 2 h 6 min, due to the scouring action of
rainwater, the gullies on the dam-slope surface developed rapidly, as shown in Figure 7b.
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Figure 7. Retrogressive landslide caused by multi-stage local-sliding. (a) Gullies appearance on
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after 2 h 33 min. (h) Fifth sliding failure after 2 h 35 min. (i) Final sliding failure (test termination
after 2 h 37 min).

After 2 h 12 min, due to the runoff erosion at the dam toe, a small-scale flow slide
occurred above the left side of dam-slope toe. This caused the upper soil to lose its support
and slide downward, and induced the transverse tension cracks 1 and 2 on the dam-slope
surface, as shown in Figure 7c.

After 2 h 23 min, with the development of flow sliding, crack 1 disappeared, and crack
2 gradually widened, where a new free surface was formed. With the development of
the free surface at crack 2, three new tensile cracks appeared successively above crack 2,
including a tensile crack 3, a transverse crack 4 with a length of 30 cm, and a small tensile
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crack 5. The formation of these tensile cracks indicated the occurrence of the retrogressive
landslide. The first local sliding failure occurred at crack 2, as shown in Figure 7d.

After 2 h 28 min, the first local sliding caused the soil above crack 2 to lose support,
and a new free surface was generated at crack 3. With further development of the free
surface, the sliding body formed, and the second local-sliding failure occurred at crack 3,
as shown in Figure 7e. At the same time, due to the traction of the lower soil mass, crack 4
gradually widened and expanded to the right side, forming a large new free surface at the
crack 4.

After 2 h 31 min, crack 5 propagated rapidly, and a sliding body was formed between
crack 4 and crack 5. With the slow sliding of the sliding body, the length and width of
crack 5 gradually increased, and a free surface with a width of 35 cm was formed in the
middle-upper part of the dam slope. Subsequently, a crack 6 with a length of approximately
20 cm appeared at the left side of the dam-slope crest, and the third local landslide occurred
at crack 4, as shown in Figure 7f.

After 2 h 33 min, crack 6 at the beach top rapidly developed and deflected towards
crack 5, finally leading to coalescence. At this time, the soil mass between the two cracks
gradually slid downward, and the fourth sliding failure occurred at crack 6, as shown in
Figure 7g.

After 2 h 35 min, due to the influence of the fourth sliding, the upper soil mass of the
dam-slope crest lost its support, and a transverse crack 7 penetrating the entire surface
of the dam slope appeared at the top. Several tensile cracks were rapidly generated on
the right side of the dam-slope surface below crack 7, and the dam slope suffered the fifth
sliding failure, as shown in Figure 7h.

After 2 h 37 min, when the crack development reached the dam-slope crest, the dam
slope had failed, the rainfall was stopped, and the test ended. Due to the multiple sliding
damages of the dam slope, the sediment of the whole dam body slid in the downstream
direction, and the total settlement of the dam-slope crest was 5 cm. According to the test
phenomena, the failure mode of S1 was: runoff erosion failure triggered soil flow slide at
the dam-slope toe, resulting in a multi-stage retrogressive landslide. After the landslides,
ash was rapidly liquefied under the action of rainfall and discharged from the dam slope in
the form of mud flow, as shown in Figure 7i.

3.1.3. Rainfall Test of S2

Before rainfall, the pressure measuring pipes were removed in order to avoid affecting
the failure process of the fly ash dam slope. After the rainfall lasted for 1 h 19 min, the
gullies were first formed at the dam-slope toe by runoff erosion, as shown in Figure 8a.
With time passing by, the gullies at the dam-slope toe continued to develop in the upstream
direction; at the same time, the number of gullies increased, and the depth increased as
well.

After 1 h 50 min, the gullies reached the middle position of the dam-slope surface. The
gullies were narrow and shallow in the upper part and wide and deep in the lower part.
The adjacent gullies gradually merged into larger gullies, which aggravated the erosion on
the dam-slope surface, as shown in Figure 8b.

After 2 h 32 min, the gullies continued to develop, becoming deeper and wider. The
gullies at the lower part of the dam slope eroded the dam-slope toe, and the flow-slide
failure began to appear on the right side of the dam-slope toe. The upper part of the
flow-slide body generated small multi-level cracks, and the first local flow-slide failure
occurred, as shown in Figure 8c.
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Figure 8. Progressive erosion failure mode by runoff erosion and flow-slide damage. (a) Gullies’
development after 1 h 19 min. (b) Gullies’ development after 1 h 50 min. (c) First flow-slide failure
after 2 h 32 min. (d) Second flow-slide failure after 2 h 35 min. (e) Third flow-slide failure after 2 h
42 min. (f) Transverse crack 3 on the top after 2 h 46 min. (g) Local sliding after 2 h 55 min. (h) Final
failure mode (test termination after 2 h 58 min).

After 2 h 35 min, runoff erosion damage and flow-slide damage occurred simultane-
ously and developed upstream of the dam slope. Small tensile cracks were generated in
the upper soil mass, and the dam-slope erosion was more serious, as shown in Figure 8d.

After 2 h 42 min, the third flow slide occurred on the left side of the dam slope. With
the loss of soil in the lower part of the dam slope, the slope ratio of the dam slope increased
significantly, and the upper dam body became unstable. At this time, transverse tensile
crack 1 appeared on the dam-slope crest, indicating possible local sliding, as shown in
Figure 8e.

After 2 h 46 min, the soil at the edge of transverse crack 3 on the dam-slope crest
was liquefied, and the sliding body divided by crack 3 began to slide slowly, as shown in
Figure 8f. After 2 h 55 min, the sliding body accelerated, and local-sliding damage was
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formed. Under the action of rainfall, the sliding body formed mud flow downstream, as
shown in Figure 8g. After 2 h 58 min, the dam-slope damage extended to the dam-slope
crest, and the rainfall was stopped. The final failure form of the dam slope is shown in
Figure 8h. The failure process of S2 was flow slide at the dam-slope toe caused by runoff
erosion, followed by several flow-slide failures. The failure position gradually developed
upstream, and finally led to a local-sliding failure.

3.2. Results of Test under S3 and S4 Conditions
3.2.1. Rainfall Test of S3

At the initial stage of rainfall, the rainfall intensity was less than the infiltration capacity
of the soil. Most of the rainwater infiltrated into the dam body, and there was no obvious
change on the dam-slope surface.

After 2 h 5 min, due to the influence of rainfall infiltration, settlement cracks occurred
in the dam-slope surface. Transverse crack 1 appeared on the left side of the dam-slope
surface and transverse crack 2 appeared near the dam-slope crest, as shown in Figure 9a.
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sliding occurs after 3 h 28 min (test termination). (e) Final sliding failure (from side view).

After 2 h 13 min, because the soil layer at the dam-slope toe was relatively thin, this
part was saturated first, then the gullies began to appear. The gullies were short and thin,
as shown in Figure 9b. After 2 h 40 min, the gullies on the dam-slope surface became
longer and wider, and developed upstream. With the progress of rainfall, the cracks on
the dam-slope surface accelerated the infiltration of rainwater, and crack 1 was soaked by
rainwater and gradually closed. After 2 h 55 min, the gullies on the dam-slope surface
developed upstream, but the erosion on the dam-slope surface was not serious for the
whole. At this time, transverse cracks appeared near the dam-slope crest, the dam-slope
toe was raised, and obvious settlement occurred in the middle and upper part of the dam
slope, indicating that the internal sliding surface of the dam body was forming, as shown
in Figure 9c.
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After 3 h 28 min, the dam body suddenly suffered from an overall sliding failure, as
shown in Figure 9d. From the deformation and disconnection of the horizontal white line
marked in the dam body, it can be seen that the failure was an overall sliding failure, and
the shape of the sliding surface was similar to an arc (as shown as Figure 9e). Therefore, it
can be judged that the failure was an overall shear-sliding failure. It can be seen from the
test that the overall sliding failure had the characteristics of a sudden and short duration,
which is often harmful in reality.

3.2.2. Rainfall Test of S4

After 1 h 55 min, the soil at the dam-slope toe was first saturated. A large number of
gullies began to appear at the dam-slope toe, as shown in Figure 10a; after 2 h 10 min, the
gullies on the dam-slope surface developed rapidly. The gullies at the dam-slope toe cut
the dam body, accompanied by a small-scale local flow slide, resulting in serious erosion
of the dam-slope toe. At the same time, a transverse crack appeared 20 cm away from the
dam-slope crest, as shown in Figure 10b. After 2 h 15 min, the transverse cracks in the
upper part of the dam-slope surface provided a channel for rainwater infiltration, and the
crack width increased rapidly. After 2 h 55 min, the runoff erosion of the lower part of the
dam slope was serious, the original slope toe basically disappeared, and the erosion failure
surface gradually developed upstream (dam-slope crest). The dam slope was seriously
damaged, then the test was over. The final erosion failure of the dam slope is shown
in Figure 10c. Overall, S4 had no sliding failure, and the dam-slope surface was mainly
eroded by runoff, accompanied by small-scale local flow-slide failure. Unlike S2, S4 had no
large-scale flow-slide or sliding failure.
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Figure 10. Progressive erosion failure mode mainly by runoff erosion. (a) Gullies appeared after 1 h
55 min. (b) Gullies’ development after 2 h 10 min. (c) Gullies’ development after 2 h 55 min (test
termination).

3.3. Analysis and Discussion on Failure Characteristics of Fly Ash Dam Slope under Rainfall
3.3.1. Failure Mechanism and Failure Mode Analysis of Fly Ash Dam-Slope under Rainfall

It can be seen from the test phenomena that the failure mechanisms of fly ash dam
slopes under rainfall can be divided into three categories: sliding failure, runoff erosion
failure, and flow-slide failure. The failure process of S1 was a multi-stage sliding failure.
There was obvious sliding surface at each stage, and the sliding developed gradually from
downstream to upstream, with progressive failure characteristics, which was similar to the
failure mode of an ordinary slope described in the literature [51,52]. In the failure process of
S2, there were flow-slide failures, local sliding failures, and runoff erosion. The three kinds
of failures occurred repeatedly, which together led to the erosion failure of the dam body;
among them, flow-slide failure played a major role. However, in S4, there was erosion
failure caused by flow-slide failure and runoff erosion, and runoff erosion played a major
role. In S3, the overall sliding failure occurred with an obvious arc-shaped sliding surface,
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which was the overall shear-sliding failure. The failure forms in the laboratory tests are
shown in statistical Table 3.

Table 3. Failure characteristics.

No. Failure Mode Is There a Sliding
Surface

Maximum Depth of the
Failure Surface (cm)

Characteristics of
Failure Surface

S1 Retrogressive landslide caused by
multi-stage local-sliding Yes 10 Shallow

S2 Progressive erosion failure mode by
runoff erosion and flow-slide damage NO - -

S3 Overall-sliding failure Yes(arc) 18 Deep

S4 Progressive erosion failure mode mainly
by runoff erosion NO - -

The failure process of S1 is divided into the following stages: (1) With the rainfall
infiltration, the water content of the dam body increased, and runoff erosion occurred at
the dam-slope toe, which made the upper soil lose its support and slide downward. This
caused the forming of transverse cracks on the surface of the dam slope, and thus, the first
local-sliding failure was formed, as shown in Figure 11a,b. (2) After sliding, the loose fly
ash was taken away by the rain, the upper dam body soil lost its support, another local
sliding occurred, and multiple transverse cracks were formed on the slope surface. (3) The
sliding surface continuously developed to the dam-slope crest, forming the retrogressive
landslide by multi-stage sliding failure, as shown in Figure 11c, and finally forming a
shallow failure area in the dam body.
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Figure 11. Backward failure caused by multilevel local-sliding damage; (a) the shallow sliding trend
forms; (b) the first shallow sliding; (c) subsequent shallow sliding.

In S2, there are three development stages of flow-slide damage caused by runoff
erosion: (1) Firstly, runoff erosion occurred at the dam-slope toe and developed upward,
which led to local steepening of the dam slope, as shown in Figure 12a. (2) Due to the
cut-ting of the dam body by the runoff, the local soil mass lost the lateral restraint. It
became loose and was liquefied under the effect of rainfall, triggering the local flow-slide
failure, as shown in Figure 12b. (3) Runoff erosion and flow-slide failure were repeated,
eventually leading to a larger-scale flow slide, forming the progressive erosion failure of
the dam body, as shown in Figure 12.
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Similarly, the erosion failure of S4 can be divided into three stages; the first two stages
were the same as S2, and the third stage was different from S2. There was hardly large-scale
flow-slide failure, but mainly runoff erosion damage.

S3’s sliding failure was mainly affected by two factors: (1) rainfall infiltration led to the
increase in soil saturation and the increase in sliding force, and caused the decrease in soil
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strength and the decrease in anti-sliding force; (2) the appearance of runoff erosion at the
dam-slope toe further weakened the stability of the dam-slope toe, as shown in Figure 13a.
These two factors triggered the overall shear-sliding failure of the dam slope, as shown in
Figure 13b.
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Figure 13. Overall sliding failure process; (a) runoff erosion; (b) overall sliding.
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3.3.2. Influencing Factors of the Failure Characteristics of Fly-Ash Dam Slopes
under Rainfall

With regard to dam-slope materials, the density of fly ash is low, and runoff erosion is
more likely to occur under rainfall. In the tests, erosion caused looseness of nearby soil,
which was easily liquefied under rainfall, causing flow-slide damage. This is different from
the general clay slope; the nearby clay after runoff erosion is more prone to collapse in a
clay slope [53]. Therefore, for the fly ash dam slope, in the early stages of rainfall, the local
erosion damage was often caused by runoff erosion and flow slide. With the progress of
rainfall, the local erosion will trigger a series of failures, including overall sliding failures,
multi-stage sliding failures, and further erosion. Therefore, the local erosion needs to be
paid attention to as an early warning of slope damage [54], and the surface of the fly ash
dam slope should be strictly protected.

With regard to slope ratio, with the decrease in slope ratio, the failure mode evolves
from a sliding failure to a flow-slide failure and a runoff erosion failure. The larger the
slope ratio, the more obvious the sliding failure characteristics; the smaller the slope rate,
the more obvious the runoff erosion damage. However, the above conclusion is different
from the erosion effect on the slope under rainstorm conditions [47,48]. In the tests, the
slope ratios of S1, S2, S3, and S4 before rainfall were 1:2.1, 1:3.2, 1:2, and 1:3, respectively.
As the slope ratios of S1 and S3 were large, sliding failure occurred under this condition.
The slope ratios of S2 and S4, which were small, hardly had sliding failures occur; instead,
flow-slide failures and runoff erosion failures occurred.

From the initial seepage field of the fly ash dam slope, the water content of dam-slope
soil is high due to the existence of the initial seepage field. In the tests, the saturated area
of the dam-slope surface appeared first at the dam-slope toe under rainfall, due to the
thinnest soil layer being at the dam-slope toe. Under the action of seepage and rainfall, the
soil in this area was prone to liquefaction [50], and rainfall runoff erosion was generated
at the dam-slope toe, causing local damage and erosion of the dam-slope toe. If the dam
slope ratio were relatively large, the local damage could cause a series of shallow sliding
failures (in S1); if the dam slope ratio were gentle and could not reach the sliding failure
condition, the existence of a local failure area would intensify runoff erosion. The runoff
cutting on the dam body would cause the local soil to lose its lateral constraint and become
loose. Affected by the initial seepage field, the soil had high water content, and the loose
soil was more likely to be liquefied by rainfall. This finally led to flow-slide failure, forming
a flow-slide failure mode (in S2). When there was no seepage field before rainfall, runoff
erosion still occurred first. The erosion damage and the increase in the soil moisture content
reduced the anti-slide force of the slope. When the slope gradient was large, sliding failure
more easily occurred (in S3). On the contrary, when the slope was gentle and there was no
sliding failure, the erosion developed upstream. Compared with S2, the water content of
the soil is low and it is difficult to form a large-scale flow slide. Therefore, only a small-scale
flow slide is observed in the test, and the main failure mode is runoff erosion (in S4).

4. Conclusions and Discussions

The laboratory test study has been carried out on the failure characteristics of fly ash
dam slope under rainfall. The conclusions are as follows:

(1) Based on the tests, three failure mechanisms of the fly ash dam slope under rainfall
are revealed: sliding failure, runoff erosion, and flow-slide failure. Due to the low density of
fly ash, runoff erosion is more likely to occur under rainfall. Runoff erosion causes looseness
of nearby fly ash, which is easily liquefied under rainfall, causing flow-slide damage. This
is different from the general clay slope, where the nearby clay after runoff erosion is more
prone to collapse. In the tests, flow slide was an important failure mechanism of the fly ash
slope, and played a key role in the failure process of the fly ash slope in tests S1 and S2.

(2) Local erosion damages caused by runoff erosion and flow slide are the important
triggering factors of the fly ash dam-slope failure under rainfall. For the fly ash dam slope,
in the early stage of rainfall, the local erosion damage was often caused by runoff erosion
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and flow slide. With the progress of rainfall, the local erosion will trigger a series of failures,
including overall sliding failures, retrogressive landslides, and further erosion.

(3) According to the test, three different failure modes of fly ash dam slopes under
rainfall are proposed: overall sliding failure, the retrogressive landslide caused by multi-
stage local sliding, and progressive erosion failure (caused by the combined action of runoff
erosion and flow slide). The overall sliding failure is sudden, but the latter two failure
modes occur gradually.

(4) The slope ratio has an important influence on the failure mode. With the decrease
in slope ratio, the failure mode evolves from sliding failure to flow-slide failure and
runoff erosion failure. The greater the slope ratio, the more obvious the sliding failure
characteristics; the lower the slope ratio, the greater the runoff erosion damage.

(5) The failure mode is related to the initial seepage field in the dam slope, and the
existence of an internal seepage field in the slope intensifies the occurrence of flow slide.
When there is a seepage field before rainfall, the flow-slide failure easily occurs in the
erosion process of the slope under rainfall. On the contrary, runoff erosion mainly occurs in
the erosion process of the slope under rainfall.

It can be seen from the above conclusions that local erosion damages are the important
triggering factors of the fly ash dam-slope failure under rainfall. Therefore, the protection
of the fly-ash dam slope should be strengthened, and the smaller dam slope ratio and the
lower buried depth of the phreatic line should be controlled in order to prevent rain erosion.
Considering that there are many factors affecting the failure law of fly ash dam slopes
under rainfall, and the three failure mechanisms may play different roles in the failure
processes of fly ash dam slopes under different conditions, which may have an impact on
the failure process. It is suggested that in future research, the erosion of fly-ash dam slopes
under the action of rainfall should be further studied. The impact of erosion laws and
shallow failure laws of fly-ash dam slopes under different rainfall intensity, different dam
density, and greater slope ratios should be considered. The next step is to further study the
relationship between the potential failure mode and the above influencing factors under
rainfall conditions by combining experiment and theory, as a way to provide a basis for the
stability analysis of fly ash dam slopes under rainfall.
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