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Abstract: Forecasting, commonly used in econometrics, meteorology, or energy consumption predic-
tion, is the field of study that deals with time series data to predict future trends. Former studies have
revealed that both traditional statistical models and recent deep learning-based approaches have
achieved good performance in forecasting. In particular, temporal convolutional networks (TCNs)
have proved their effectiveness in several time series benchmarks. However, presented TCN models
are too heavy to deploy on resource-constrained systems, such as edge devices. As a resolution,
this study proposes a stride–dilation mechanism for TCN that favors a lightweight model yet still
achieves on-pair accuracy with the heavy counterparts. We also present the Chonnam National
University (CNU) Electric Power Consumption dataset, the dataset of energy consumption measured
at CNU by smart meters every hour. The experimental results indicate that our best model reduces
the mean squared error by 32.7%, whereas the model size is only 1.6% compared to the baseline TCN.

Keywords: temporal convolutional networks; deep learning; time-series forecasting

1. Introduction

Research on energy usage management has a long tradition, especially about en-
ergy consumption. According to Enerdata (https://yearbook.enerdata.net/electricity/
electricity-domestic-consumption-data.html, accessed on 18 July 2022) record in 2021, elec-
tricity accounts for 10% of all types of global energy, mostly used by China (42%), the
United States (21%), and India (7%). Forecasting models are necessary to optimize an
energy consumption program to reduce energy loss efficiently. Many forecasting models,
both classical statistical methods and deep learning, are available.

The time-series forecasting problem is usually overcome by classical statistical meth-
ods, such as autoregressive (AR) [1] models and the Gaussian process [2], or methods using
deep learning, such as LSTM, GRU, and Transformers [3]. Although the above methods
operate well in specific circumstances [4], their potential in practice is limited due to heavy
computation.

In this paper, we propose the stride–dilated temporal convolutional networks (TCNs),
a family of lightweight models for predicting energy consumption. The proposed method is
based on the periodic patterns of time series that are usually visible in energy consumption
data. Given the capability of detecting periodic patterns, the proposed model is capable
of automatically focusing on learning the important parts of data to make predictions. To
predict a period in the future, we focus on extracting information from moments in the past.
We hypothesize that there are only a few important time points when forecasting, and most
of the history has a low correlation; therefore, we can ignore it to reduce the computational
burden. Moreover, we observe that different time series data have cyclic patterns that differ
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from others. Therefore, we suggest using a search algorithm to determine an optimized
TCN architecture with appropriate stride hyperparameters; thus, this paper adopted Bayes
optimization.

The aim of this work is two-fold:

- We propose a new TCN architecture with performance on par with state-of-the-art
models on several benchmarks, but the number of parameters is greatly reduced based
on the stride mechanism. We search for the best stride hyperparameter, representing
cyclic patterns on the data.

- We introduce a dataset of electrical energy consumption measured at Chonnam Na-
tional University (CNU), South Korea. Along with the dataset, we also present the
baseline benchmark.

The rest of the paper is organized as follows: Section 2 presents the background work.
Section 3 details the methodology, and Section 4 describes the experiments on the dataset.
Then, Section 5 discusses the work and presents a conclusion. Additionally, we publish the
source code and datasets used for the experiments (https://github.com/andrewlee1807/
tcns-with-nas).

2. Background

The staleness of the model, quality of data, and long prediction range are usually
ill-posed problems in the case of time-series forecasting [5]. Various methods have been
proposed to solve the above problems, not only with classical statistics but also with recent
deep-learning-based techniques.

As a representative of traditional methods, autoregressive integrated moving average
(ARIMA) [5] has been used for many years in the field of time series modeling. An ARIMA
model combines AR and the moving average to account for seasonality, long-term trends,
autoregression, and autocorrelation embedded in the data. However, long-term models are
inevitably prone to overfitting and high computational costs [3].

Moreover, deep learning techniques, such as CNNs and RNNs, are also introduced and
widely applied for time series forecasting. The advantage that can be gained using a deep
learning approach for time series forecasting is that it does not require manually dealing
with in-depth data beforehand because representative features are automatically extracted
through a training process. The various extensions of RNNs, such as long short-term
memory (LSTM) and gated recurrent units (GRU), are suited for time series forecasting [3].
However, these memory and gate-based models still suffer the problem of a long-time
dependency on time-series data. In particular, the number of parameters significantly
increases even when only a short additional time interval is considered [6].

The TCN [7] is proposed to consider the long-time dependency issue in time series data.
As far as we know, the TCN is currently a prominent model in time series forecasting due
to two significant modifications: dilation and causal one-dimensional (1D) convolutional
layers. The causal 1D convolutional layer offers a learnable kernel filter with proper
padding only on the past side to avoid overprediction. Moreover, dilation is the main
factor that grants the TCN the ability to enlarge the history coverage via stacking layers.
Therefore, the TCN is very effective in dealing with time-series problems and is easily
extensible. However, to ensure the range of history for forecasting, a TCN often stacks
many convolutional layers on top of each other, significantly increasing the number of
parameters and requiring a considerable time to train the model. With the principles of
TCN in mind, we develop a simplified architecture that uses correlation factors from a
dataset to achieve a compact model that is robust in terms of model lower complexity and
robust performance.

A large number of existing studies in the broader literature have examined TCN and
its variants for various tasks and types of datasets. Gan et al. employed TCN with an
interval width adjustment strategy for wind speed forecasting [8]. For the same task of wind
speed forecasting, Li et al. proposed a framework that combined patch transformation,
mode decomposition with adaptive noise, and TCN [9]. In mechanical systems, Cao
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et al. introduced TCN with a residual self-attention mechanism for remaining useful
life prediction [10]. For video segmentation, Dipika et al. proposed coarse to fine multi-
resolution encoder–decoder TCN to ensure smoothness and temporal coherency [11]. Ma
et al. presented densely connected TCN with a squeeze-and-excitation block and attention
mechanism to increase the receptive field’s size for solving the lip-reading problem in
videos [12].

3. Methodology

In this section, the time series forecasting problem is formulated first. In addition, the
TCN model is used as the method in the comparative evaluation. Finally, the stride-TCN is
introduced.

3.1. Time Series Forecasting Problem

First, we highlight the nature of the time-series forecasting task. Given an input
sequence X = {x0, . . . , xT}, where the task is to predict the outputs Y = ( ˆy0, . . . , ˆyP ) each
time, a key constraint is that, from an ordered number of T observed data points, P data
points must be immediately predicted chronologically. Formally, a modeling network is
any function f : X → Y that produces the mapping

Y = f (X) (1)

Building function f is the process of learning to find optimal parameters of network f

from a set of time series
{

x(i)0:T

}N

i=1
that denotes the future time series as

{
x(i)
(T+1):(T+P)

}N

i=1
,

where N is the number of series, T represents the length of the historical observations, and
P indicates the length of the forecasting horizon. The learning process is the process of
minimizing the error function L(Y, f (X)) between the actual output and predictions. Time-
series forecasting generally focuses on the prediction of real values, usually loss functions,
such as the mean squared error (MSE), mean absolute error (MAE), or its variants (mean
absolute percentage error, root mean square error, etc.). The MSE is greater for learning
the outliers in the dataset, whereas MAE is good for ignoring outliers. However, in some
cases, the data are less sensitive to outliers, and those points should not have high priority.
Therefore, the Huber loss combines the proposed MAE and MSE and solves this problem [6].
The mathematical form of the Huber loss is:

L(Y, f (X)) =

{
1
2 (Y− f (X))2 for |Y− f (X)| ≤ δ

δ|Y− f (X)| − 1
2 δ2 otherwise

(2)

where the δ parameter is sensitive to outliers. In this study, we used the Huber loss as the
error function to calculate the difference between the current and expected output where
the δ parameter is fine-tuned by the algorithm.

3.2. TCN Architecture

A reasonable volume of training data was available in this work; thus, we decided
to use deep learning models to predict hour-ahead energy consumption. The TCN is a
variation of the CNN for sequence modeling tasks by combining aspects of the RNN and
CNN architectures. The TCN achieves better performance than RNNs in many tasks while
avoiding the common drawbacks of recurrent models, such as the exploding/vanishing
gradient problem or lack of memory retention [7]. The original architecture of the TCN
(Figure 1) introduced includes two components: dilated and causal 1D convolutional
layers [13], which smooth the input time series. Thus, we do not need to add the rolling
mean or rolling standard deviation values in the input features.
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Dilated convolution can be applied in the long information dependency problem
of the sequence to determine the output Y at position t for a sequence input x ∈ Rn,
expressed as:

Y(t) = (x ∗ w)(t) =
K−1

∑
i=0

w(i)·xt−di (3)

where d represents the dilation factor, K indicates the 1D convolutional window size, and
t− di denotes the direction of the past with kernel w : {0, . . . , K− 1} → R . However,
to construct a deep model with the increased depth of the architecture to capture a more
extended history based on the TCN, using skip connections is recommended [7]. Accord-
ingly, the shortcut connections across layers were added to TCNs against the degradation
problem, and accuracy saturates as the network converges.

Stacking multiple dilated convolutions enables networks to have extensive receptive
fields and capture long-range temporal dependencies with a smaller number of layers [14].
Beside dl is increased consecutive layers within a block, calculated as dl = 2l for layer l in
the network. Therefore, each TCN block contains γ elements identified based on R f ieldmax,
the maximum supported R f ield:

γ =
[
log2

(
R f ieldmax − 1

)]
+ 1 (4)

As defined in Equation (4), we can consider γ a parameter to determine the number of
dilations of a TCN block. However, setting the TCN hyperparameters by hand requires
an empirical and time-consuming trial-and-error process and is not optimal [7]. In this
paper, we reduce this work by automatically searching the hyperparameters. Table 1 lists
the hyperparameters automatically searched for in the TCN using Bayesian optimization.

Table 1. Search space of the TCN using Bayesian optimization.

Hyperparameters Symbol Choices

1D convolutional window size K 1, 3, 5, 7, 9
Number of filters in each

convolution layer Ni 8, 16, 32, 64, 128, 256, 512

Number of TCN layers Nt ≥ 2
Dilation factor γ ≥ 1

Skip connection Yes, No
Batch Normalization Yes, No
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3.3. Stride-TCN

The study focused on energy consumption and was tested on three datasets related
to energy consumption. The data analysis found that the energy consumption data are
seasonal (Figure 2). If we break down the time series into small components based on
that period and compare them, we observe the similarity in the shape of the time series.
Therefore, the information in the same positions in the periods has a strong relationship
and supports making predictions for the next periods.
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The proposed architecture extracts and learns the information at the corresponding
locations of each related period, where the model is efficient and reduces the model
complexity. Similar to the TCN, the proposed architecture consists of two components:
dilated and causal 1D convolutional layers. However, the proposed model was adjusted in
the calculation of 1D convolution. The layer Ln is calculated directly based on the lower
layer Ln−1. Node XLn

i in layer Ln is determined by convolution through a kernel of size K
sliding over the layer Ln−1. Node XLn

i+1 in layer Ln is calculated in the same way as XLn
i ,

but the convolutional position on layer Ln−1 must be at a distance S from the position
of the calculated node XLn

i . This distance is considered the time dependence of the data
mentioned above.

The autocorrelation method is used to determine the time dependence S of the data
series [15]. We call the model built by this approach heuristic–stride–TCN. Although the
model parameters were reduced, the model error was still high compared to the TCN
method.

In another approach to determining the time dependence S of the data series, we
propose the stride–TCN architecture by applying Bayesian optimization to determine the
hyperparameters automatically. We reduced model parameters and errors. Table 2 lists the
hyperparameters automatically searched for in the stride-TCN.

Table 2. Search space of stride-TCN used by Bayesian optimization.

Hyperparameters Symbol Choices

Kernal size K 1, 3, 5, 7, 9
Number of filters Ni 8, 16, 32, 64, 128, 256, 512

Stride S 1, 2, 3, . . . 24
Dropout rate ρ 0, 0.1, . . . 0.5

An overview of stride–TCN architecture is illustrated in Figure 3.
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3.4. Bayesian Optimization

The Bayesian optimization technique probabilistic model p(θ |λ ) of the configuration
performs on an evaluation index θ (i.e., loss or accuracy of the test), given a set of hyperpa-
rameters λ [16]. Bayesian optimization uses a surrogate model to estimate the function to
be optimized, as demonstrated in Algorithm 1.

Algorithm 1 Bayesian Optimization (BO)

Input: Search space Λ, black-box function F, acquisition function S, maximal number of function
evaluations m
1. D0 = initialize(Λ)
2. for n = 1 to m− |D0| do
3. p(θ|λ, D) = fit predictive model on Dn−1;
4. select xn by optimizing
λn = arg max

λ∈Λ
S(λ; Dn−1, p(θ|λ, D)) ;

5. end for
6. Query θn := F(λn);
7. Add observation to data Dn = Dn−1 ∪ {〈λn, θn〉};
8. return Best λ∗

Bayesian optimization determines an optimized λ∗ of the function F : X → R to de-
note a black-box function. Bayesian optimization performs an iterative process to determine
the probabilistic p(θ|λ, D) based on the previous observation D = {(λ0, θ0), (λ1, θ1), . . . ,
(λn−1, θn−1)}, where it is assumed to only access noisy observations θ = F(λ) + ε with
ε ∼ N

(
0, σ2

noise
)
. To select the next λ, the acquisition function–expected improvement

S [17] is used to determine a point that maximizes it. Then, it evaluates F at λn, obtains θn,
updates the probabilistic model, and iterates [18].

3.5. Training Procedure

In this paper, the two models TCN and stride-TCN use Bayesian optimization to
determine hyperparameters before training the model. The training procedure for each
model is described in Algorithm 2, where W denotes model parameters that must be
learned, λ∗ represents the set of optimal adjustable hyperparameters, and loss (W) is
calculated using the Huber loss.
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Algorithm 2 Training procedure

Input: Search space Λ, epoch = 100;
1. λ∗ = Algorithm 1 (Λ)
2. Initialize W with λ∗

3. for n = 1 to epoch do
4. Update W based on Huber loss (W)
5. end for

4. Experiments

We evaluated the number of model parameters and predictive power of the stride-TCN
compared with the TCN architecture and RNNs, such as LSTMs and GRUs.

4.1. Setup
4.1.1. Datasets

We perform experiments on two public and one private dataset for empirical studies.
All datasets are available for online access. Because this research focuses on univariate
time-series forecasting, we only study time series with a single dimension for each dataset
above. Table 3 presents an overview of the corpus statistics.

Table 3. Dataset statistics.

Datasets Length of Time Series Total Number of Variables Attributions

Dataset 1 2,075,259 7

Global active power
Global reactive power

Voltage
Global intensity
Submetering 1
Submetering 2
Submetering 3

Dataset 2 8760 2
Energy consumption
Outside temperature

Dataset 3 11,232 1 Energy consumption

Individual household electric power consumption, Dataset 1 is available online (https:
//archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption,
accessed on 17 July 2022). It contains minute-by-minute electric power consumption in one
household in France for 47 months (December 2006 to November 2010). The time series
includes the total active power consumed, total reactive power consumed, average current
intensity, active energy for the kitchen, active energy for the laundry, and active energy
for climate control systems [19]. In total, we have 2,075,259 multivariable sequences. For
this dataset, 34,589 univariable sequences were used as the study value for the hour–global
active power data.

The energy consumption curves of 499 customers from Spain, Dataset 2 is available
online (https://fordatis.fraunhofer.de/handle/fordatis/215, accessed on 17 July 2022). The
dataset contains hourly energy consumption data, outside temperatures for the region, and
the metadata for 499 customers in Spain for about one year (1 January 1 to 31 December
2019). The entire dataset consists of 8760 data points. The energy consumption data was
used for this dataset as the study value.

The CNU energy consumption, Dataset 3 is available online (https://github.com/
andrewlee1807/tcns-with-nas/tree/main/Dataset/cnu-dataset, accessed on 5 August
2022). It contains a real-world dataset with energy consumption values of 90 locations at
CNU, collected continuously hourly for 1.3 years (from 1 January 2021 to 14 January 2022).
Each location has information for 11,232 data points. In this research, we focus on the total
electricity consumption of a particular location: Engineering-Building-07.monitor_02.

https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://fordatis.fraunhofer.de/handle/fordatis/215
https://github.com/andrewlee1807/tcns-with-nas/tree/main/Dataset/cnu-dataset
https://github.com/andrewlee1807/tcns-with-nas/tree/main/Dataset/cnu-dataset
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For each dataset, it is necessary to conduct preprocessing procedures before the
training process because the power values in the datasets are relatively high; for example,
in Dataset 3, mean = 130.48 and std = 46.97. Therefore, to avoid overflow, increased
computational cost, and dataset distortion, each dataset refers to the rescaling of the
features to a range of [0, 1] using the min–max normalization, calculated as follows (5):

zi =
xi −min(x)

max(x)−min(x)
(5)

where x = (x1, . . . , xn) and zi is the ith normalized data point.
We also evaluated the time series forecasting task on three datasets in this experiment.

More specifically, most models choose an input length of 168 h and output length of 1 to
84 h. Each dataset was split into a training set (80%), validation set (10%), and testing set
(10%) in chronological order.

4.1.2. Model variants

We conducted experiments on two model variants, the heuristic–stride–TCN and
stride-TCN. Depending on each dataset, the models have the appropriate configuration.
The heuristic–stride–TCN is built in two hidden layers relying on a pattern of individual
data to determine the value of the stride. Table 4 presents the configuration for the three
datasets.

Table 4. Configuration for the heuristic-stride-TCN for three datasets.

Hyperparameters Dataset 1 Dataset 2 Dataset 3

1D convolutional window size 3 3 3
Number of filters in each convolution layer 32 32 32

Stride 1 12 24 24
Stride 2 7 7 7

For each dataset, we experimented on three different stride–TCN models, with two
hidden layers, three hidden layers, and four hidden layers. The stride–TCN was built
relying on Bayesian optimization to determine the optimal hyperparameters in Table 2.

4.1.3. Evaluation Metrics

Two evaluation metrics, the MAE and MSE for univariate forecasting, are employed,
defined as follows:

MAE =
1
n

n

∑
i=1

∣∣∣Yreal
i −Ypredict

i

∣∣∣ (6)

MSE =
1
n

n

∑
i=1

(
Yreal

i −Ypredict
i

)2
(7)

The implementations of the proposed methods were built based on the Keras library
with a Tensorflow backend. All models were trained and tested on four Nvidia Quadro RTX
A5000 24 GB GPUs. The source code is available online (https://github.com/andrewlee1
807/tcns-with-nas).

4.2. Experimental Results and Comparison
4.2.1. Baselines and Configurations

The LSTM, GRU, and TCN models are included for an evaluation to build a baseline
test benchmark. The LSTM model is built with two hidden LSTM layers. The first LSTM
layer identifies 200 hidden nodes, and the second LSTM layer identifies 150 nodes. The
final layer is dense. The GRU model is built with two hidden GRU layers. The first GRU
layer identifies 103 hidden nodes, and the second GRU layer identifies 103 nodes. The

https://github.com/andrewlee1807/tcns-with-nas
https://github.com/andrewlee1807/tcns-with-nas
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final layer is dense with the rectified linear unit activation function. In both LSTM and
GRU models, the dropout is 25%, the optimizer is Adam, and the loss function is MSE to
train the model. The TCN model was built using Bayesian optimization to determine the
optimal hyperparameters in Table 1.

Both the TCN baseline model and our proposed stride-TCN are built with BO for the
optimal hyperparameters. To find an optimum robust model that is general to an arbitrary
training process, we keep the hyperparameters on the training phase unchanged and
only search for TCN architecture involving kernel size, dilation, and the number of layers
which are the most important hyperparameters. On the other hand, we further shrink the
search space of the Stride-TCN family where only stride, the number of layers, kernel size,
and whether using dropout is considered. Our purpose is to drive the search process to
focus more on finding the best stride hyperparameters yet not too much to suppress the
contribution of other important hyperparameters. The range for each hyperparameter of
the stride-TCN family is given in Table 2. Additional TCN and stride-TCN use Huber loss
during training, parameter δ is set to 1 for all cases.

As mentioned above, configurations of the training phase are kept unchanged for all
learning models. For details, we set the starting learning rate at 0.001 and reduce it by 1%
when there is no improvement in validation loss. We train the model for 100 epochs with
the Adam optimizer batch size of 32. In addition, we apply early stopping when there is no
improvement after 20 epochs.

4.2.2. Results and Analysis

The comparison was made using the MSE and MAE for forecast horizons set from
the first hour to the 84th hour. The forecast horizon is the length of time into the future
for which forecasts are to be prepared. To avoid abundant observations, we hence only
report a result at particular time steps, which are 1, 12, 24, 36, 48, 60, 72, and 84 h. In time
series forecasting, larger horizons make forecast prediction more challenging. Thus, the
experiments offer a detailed analysis of the results in this vast horizon. We compared the
results of the proposed method with other algorithms (LSTM, GRU, and TCN) to prove the
effectiveness of this approach. The best results (lower values are better) per method are
highlighted in red.

Table 5 reports the MSE and MAE values of predicted energy consumption on the CNU
dataset (dataset 1) over time steps from baselines LSTM, GRN, TCN, and our proposed
stride–TCNs. As clearly depicted in Table 5, our stride–TCNs steadily achieve the lowest
errors between 60 h and 84 h. Notably, the stride–TCN with two layers model reaches
the lowest prediction error of 84 h. Compared to the LSTM, GRU, heuristic–stride–TCN,
and TCN baseline, our auto–stride–2 layers are 2.07%, 7.19%, 30.05%, and 32.7% better in
terms of average relative errors, respectively. In the case of dataset 2, the TCN baseline
has demonstrated its superior when substantially better than other models for short-time
prediction, as in Table 6 However, the limitations become clear when experimenting on
dataset 1, when our proposed architecture could not overcome baseline models, as shown
in Table 7. This indicates the lack of complexity of the model to capture information well
in a large dataset, as well known as the underfitting phenomenon. Overall, our proposed
architecture achieved on-par results with other baseline models on time series forecasting,
considering the error is slightly higher or even lower than the baselines’ error in some
specific settings.

We obtain a significant reduction in model complexity with stride–TCNs, as seen
in Table 4. Remarkably, our heuristic–stride–TCN for long-time forecasting (84 h) has
approximately 6K parameters, which is only 1.6%, 5%, and 1% compared to the number of
parameters from the baseline LSTM, GRU, and TCN, respectively. We also note that the
model’s complexity depends on the length of both history and forecast horizontal, so each
model’s complexity on different datasets is variant. Details are given in Table 8 (dataset 2),
Table 9 (dataset 3) and Table 10 (dataset 1).
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Table 5. Performance (MSE and MAE) of all models on the CNU dataset.

Method

Time Prediction

1 h 12 h 24 h 36 h 48 h 60 h 72 h 84 h

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

LSTM 0.0020 0.0297 0.0109 0.0687 0.0097 0.0670 0.0113 0.0741 0.0140 0.0813 0.014 0.083 0.0140 0.0830 0.0145 0.0861
GRU 0.0022 0.0309 0.0109 0.0702 0.0128 0.0764 0.0145 0.0818 0.0157 0.0853 0.0156 0.0866 0.0156 0.0866 0.0153 0.0871
TCN 0.0020 0.0298 0.0113 0.0718 0.0084 0.0639 0.0107 0.0714 0.0157 0.0852 0.0168 0.0886 0.0179 0.0927 0.0203 0.0980

Heuristic–stride–TCN 0.0121 0.0799 0.0191 0.1012 0.0208 0.1049 0.0207 0.1044 0.0212 0.105 0.0213 0.1053 0.0213 0.1053 0.0211 0.1047

Stride–TCN

2 layers 0.0025 0.034 0.0115 0.0763 0.0136 0.0795 0.0129 0.0793 0.0148 0.0843 0.0137 0.0823 0.0133 0.0793 0.0142 0.0849
3 layers 0.0024 0.0331 0.012 0.0725 0.0109 0.071 0.0149 0.0837 0.0153 0.0841 0.0165 0.0865 0.0123 0.0771 0.016 0.0868
4 layers 0.0023 0.0322 0.0117 0.0765 0.0107 0.0727 0.0139 0.0833 0.0154 0.0828 0.0174 0.0922 0.0169 0.0888 0.016 0.0865

Table 6. Performance (MSE and MAE) of all models on the Spain dataset.

Method

Time Prediction

1 h 12 h 24 h 36 h 48 h 60 h 72 h 84 h

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

LSTM 0.0081 0.0677 0.0169 0.0971 0.0165 0.096 0.0169 0.0974 0.016 0.0949 0.0173 0.0982 0.0158 0.0949 0.0163 0.0957
GRU 0.0095 0.0723 0.0161 0.0937 0.0167 0.0955 0.0188 0.1015 0.0197 0.1037 0.02 0.1044 0.0198 0.104 0.0205 0.1061
TCN 0.008 0.0672 0.0149 0.0894 0.0156 0.0921 0.0166 0.096 0.0173 0.0981 0.0187 0.1015 0.0182 0.1 0.0182 0.1005

Heuristic–stride–TCN 0.0247 0.1166 0.0403 0.1562 0.0424 0.1607 0.0421 0.1604 0.0426 0.1615 0.0426 0.1613 0.0428 0.1621 0.0432 0.1626

Stride-TCN

2 layers 0.0116 0.0792 0.0175 0.0989 0.0209 0.1071 0.0192 0.1036 0.0215 0.1083 0.0199 0.106 0.02 0.1046 0.0202 0.107
3 layers 0.0179 0.0989 0.018 0.1004 0.0223 0.1104 0.0181 0.1006 0.0202 0.1079 0.0203 0.1047 0.0203 0.1047 0.0213 0.109
4 layers 0.0085 0.0717 0.0178 0.0998 0.0205 0.1089 0.0199 0.1043 0.0204 0.1102 0.02 0.1049 0.0202 0.1064 0.0184 0.1001
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Table 7. Performance (MSE and MAE) of all models on the Household dataset.

Method

Time Prediction

1 h 12 h 24 h 36 h 48 h 60 h 72 h 84 h

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

LSTM 0.0056 0.0517 0.0081 0.0656 0.0083 0.066 0.0085 0.0673 0.0086 0.0679 0.0091 0.0714 0.0089 0.0694 0.009 0.0711
GRU 0.0065 0.0569 0.0079 0.0657 0.0082 0.068 0.0083 0.0687 0.0085 0.0693 0.0085 0.0696 0.0086 0.0704 0.009 0.0732
TCN 0.0052 0.0496 0.0082 0.0658 0.0085 0.0671 0.0087 0.0689 0.0089 0.0693 0.0095 0.0724 0.0091 0.0712 0.009 0.0715

Heuristic–stride–TCN 0.0104 0.0798 0.0115 0.0863 0.0116 0.0871 0.0116 0.0873 0.0116 0.0874 0.0116 0.087 0.0116 0.0871 0.0117 0.0874

Stride-TCN

2 layers 0.0063 0.0598 0.0088 0.0687 0.0089 0.0725 0.0088 0.0707 0.009 0.0727 0.0093 0.0741 0.0093 0.0726 0.0093 0.0743
3 layers 0.0055 0.0503 0.0086 0.0707 0.0088 0.072 0.009 0.0736 0.009 0.0726 0.009 0.0732 0.0093 0.0757 0.0096 0.078
4 layers 0.0054 0.0508 0.0101 0.0808 0.0104 0.0789 0.0094 0.073 0.0096 0.0751 0.0093 0.0754 0.0101 0.0808 0.0097 0.0777

Table 8. Models’ complexity in the Household dataset (dataset 1), demonstrated by the number of parameters.

Model Time Prediction

1 h 12 h 24 h 36 h 48 h 60 h 72 h 84 h

LSTM 372,351 374,012 375,824 377,636 379,448 381,260 383,072 384,884
GRU 103,747 104,462 105,242 106,022 106,802 107,582 108,362 109,142
TCN 23,681 1,495,436 269,144 646,052 647,600 1,501,628 650,696 11,716

Heuristic–stride–TCN 3521 3884 4280 4676 5072 5468 5864 6260

Stride-TCN

2 layers 2081 30,540 31,320 32,100 32,880 9692 34,440 3492
3 layers 58,817 59,532 60,312 61,092 61,872 62,652 63,432 64,212
4 layers 87,809 1268 89,304 23,556 1992 91,644 1808 2316
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Table 9. Models’ complexity in CNU dataset (dataset 3), demonstrated by the number of parameters.

Model Time Prediction

1 h 12 h 24 h 36 h 48 h 60 h 72 h 84 h

LSTM 372,351 374,012 375,824 377,636 379,448 381,260 383,072 384,884
GRU 103,747 104,462 105,242 106,022 106,802 107,582 108,362 109,142
TCN 6433 88,652 1,037,720 580,004 353,968 355,516 587,720 589,268

Heuristic–stride–TCN 3521 3884 4280 4676 5072 5468 5864 6260

Stride-TCN

2 layers 593 8108 800 32,100 1016 33,660 34,440 10,484
3 layers 1081 59,532 60,312 61,092 16,624 62,652 63,432 64,212
4 layers 38,401 88,524 89,304 90,084 90,864 91,644 2208 68,500

Table 10. Models’ complexity in Spain dataset (dataset 2), demonstrated by the number of parameters.

Model Time Prediction

1 h 12 h 24 h 36 h 48 h 60 h 72 h 84 h

LSTM 372,351 374,012 375,824 377,636 379,448 381,260 383,072 384,884
GRU 103,747 104,462 105,242 106,022 106,802 107,582 108,362 109,142
TCN 345,857 374,988 260,824 319,076 188,528 52,700 814,280 1,504,724

Heuristic–stride–TCN 3521 3884 4280 4676 5072 5468 5864 6260

Stride-TCN

2 layers 7745 692 31,320 2676 9296 3084 34,440 10,484
3 layers 58,817 5,9532 60,312 4548 1504 62,652 1720 17,812
4 layers 22,401 6012 89,304 90,084 90,864 91,644 92,424 93,204
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Figure 4 illustrates the correlation between performance and complexity between
seven models on the CNU dataset, including the LSTM, GRU, and TCN baseline, together
with our proposed stride–TCN and heuristic–stride–TCN. In most cases, the baseline TCN
has the largest number of parameters, followed by the LSTM and GRU. On the contrary,
the heuristic–stride–TCN model constantly reaches the smallest number of parameters.
Besides, the family of the stride–TCN also has a relatively small number of parameters
compared to baseline models. Figure 4 also demonstrates that using BO usually leads to
a model with better performance but suffers the model’s complexity trade-off. Another
statement that can be drawn here is that the baseline models outperform stride-TCN only
in the task of short-term forecasting since the difference in MSE between baseline and the
proposed architecture is not trivial later. Generally, the results confirm that our proposed
TCN architecture yields a family of lightweight models capable of being implemented on
constrained resource devices. Last but not least, among models in the stride–TCN family,
the heuristic–stride–TCN does favor not only less complexity but also the fastest in terms
of training because the stride hyperparameter can be predefined by data’s pattern instead
of being searched by BO.
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is conducted on the CNU dataset. The x-axis depicts MSE error, and the y-axis depicts the forecast
horizontal at eight milestones (1, 12, 24, 36, 48, 60, 72, and 84 h). A circle represents a model whose
color represents its category, and the circle radius describes its complexity.

5. Conclusions

This paper presents three contributions. First, we propose a lightweight TCN family
with the stride mechanism; secondly, we introduce a new dataset about electrical energy
consumption along with its benchmark; and thirdly, we search for a robust model based
on Bayesian Optimization. The experiments have shown that our architecture achieves
comparable results on small and medium datasets while significantly reducing model
complexity compared to baselines. We argue that the performance on the large dataset
is not high as expected because we limit the number of dilation layers which makes our
model underfit. Importantly, our results provide evidence for the hypothesis that highly
correlated time points are crucial for the forecasting task. Furthermore, we suggest that the
stride factors should be trained alongside the model’s parameters to make it adaptable to
various datasets. This assumption might be addressed in future studies.
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