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Abstract: The collapse settlement of granular soil, which brings about considerable deformations, is
an important issue in geotechnical engineering. Several factors are involved in this phenomenon,
which makes it difficult to predict. The present study aimed to develop a model to predict the collapse
settlement and coefficient of stress release of sandy gravel soil through evolutionary polynomial
regression (EPR). To achieve this, a dataset containing 180 records obtained from a large-scale direct
shear test was used. In this study, five models were developed with the secant hyperbolic, tangent
hyperbolic, natural logarithm, exponential, and sinusoidal inner functions. Using sand content (SC),
normal stress (σn), shear stress level (SL), and relative density (Dr) values, the models can predict the
collapse settlement (∆H) and coefficient of stress release (CSR). The results indicated that the models
developed with the exponential functions were the best models. With these models, the values of
R2 for training, testing, and all data in the prediction of collapse settlement were 0.9759, 0.9759, and
0.9757, respectively, and the values of R2 in predicting the coefficient of stress release were 0.9833,
0.9820, and 0.9833, respectively. The sensitivity analysis also revealed that the sand content (SC) and
relative density (Dr) parameters had the highest and lowest degrees of importance in predicting
collapse settlement. In contrast, the Dr and SC parameters showed the highest and lowest degrees
of importance in predicting the coefficient of stress release. Finally, the conducted parametric study
showed that the developed models were in line with the results of previous studies.

Keywords: evolutionary polynomial regression; collapse settlement; coefficient of stress release;
sandy gravel soil; modelling

1. Introduction

Since the second half of the 19th century, considerable attention has been paid to the
use of coarse-grained soil in the construction of embankment dams. Then, improvements
in the density methods and the use of coarse-grained soil meant that engineers were able to
design and construct higher rockfill dams [1]. In order to control the functions of dams,
their behaviour must be examined at the time of construction, and considerable data need to
be gathered. Observations reveal that, with the first impoundment or heavy rain, not only
long-term deformation (creep) [2] but also sudden settlements occur [3]. Sudden settlement
during the first impoundment is a salient feature of central core clay dams with rockfill
shells. This sudden settlement, which is referred to as collapse settlement, is ascribed
to the impacts of floods in the upstream rockfill [4]. Collapse settlement is a dangerous
geotechnical phenomenon that can damage dams and their equipment. However, it is
hard to predict the collapses resulting from collapsible soil for various reasons, such as soil
deformability, the degree of saturation, and the variable loading conditions [5].
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Previous studies have indicated that most soils can be exposed to collapse [6–9]. In
other words, if poorly graded unsaturated soil is excessively saturated under the loading
process, it is likely to collapse. However, there must be poor binding between the grains for
it to be destroyed as a result of saturation and, consequently, the soil weakens [10]. Destruc-
tion of this binding reduces the shear strength of the soil and finally leads to significant
deformations. Studies have demonstrated that factors such as the size of particles, Atterberg
limits, and the moisture content of fine-grained particles affect the collapse failure [11].

In order to look into the reasons for collapse and the considerable deformations of
rockfill dams, many researchers conducted different experiments on soil in the 1960s and
1970s [2,12]. One of these experiments was the one-dimensional odometer test, which is
widely used to estimate the collapse potential of soils. It can also be used to calculate soil
collapse settlement [5,13,14]. The results of these experiments revealed that the fracture
of coarse grains under considerable stress leads to the rearrangement of soil grains and
collapse settlement. Comprehensive studies were undertaken in this regard by running
several three-dimensional and one-dimensional investigations [15]. The results of sieving
before and after the experiments indicated that soil grains were shattered during the
experiment. Thus, it was understood that wetting of soil reduces the strength of particles.
Various reasons, such as spreading of cracks in grains [16], suction reduction, and reduction
of the energy level of minerals [17], have been suggested to illuminate the fracturing of
grains [18]. In response to the reduction of matrix suction, collapsible soils undergo three
distinct phases: the pre-collapse phase, collapse phase, and post-collapse phase. In the
pre-collapse phase, collapsible soils may expand, maintain a constant volume, or collapse
slightly, and the soil structure is intact in this phase. In the post-collapse phase, soil may
collapse with the same intensity as in the collapse phase, slow down, or stop collapsing [19].

Previous studies have revealed that various parameters, such as moisture content, level
of normal and shear stresses, sand content, clay content, and relative density, can influence
the collapse phenomenon [10,20–22]. Collapse criteria have been developed based on two
parameters, dry density and saturation degree [5]. It is understood that, as dry density is
reduced in terms of fixed moisture content (fixed matrix suction), the collapse potential
of soils increases [5,14,23,24]. Further, as the moisture percentage increases in terms of the
fixed dry unit weight, collapse potential decreases [5,14,24,25]. However, higher collapse
potential has been observed for samples that have higher matrix suction, regardless of their
dry density and moisture percentage [24]. On the other hand, it has been observed that
collapse potential for different soils increases as the porosity rate increases [26]. Previous
studies have also showed that the primary percentage of moisture in soil has had the
strongest effect on collapse settlement, as reduction in the primary percentage of moisture
leads to collapse settlement.

In order to investigate the stress and strain paths during collapse settlement, the
use of collapse settlement (∆H) and coefficient of stress release (CSR) values has been
proposed. [20]. The CSR is typically defined as the ratio of shear stress in saturated
conditions (τc) to the shear stress in dry conditions (τt):

CSR =
τc

τt
(1)

Therefore, the shear stress of soil after collapse can be determined by multiplying the
CSR by the soil shear stress in dry conditions. Measuring ∆H and CSR requires complicated
laboratory tests and expensive equipment. Hence, it seems that developing predictive
models could be an alternative to deal with such a complicated problem.

Soft computing-based approaches have been effectively applied in order to model and
predict mechanical behaviour and material strength in the field of civil engineering [27–45].
Hasanzadehshooiili et al. [46] modelled the collapse settlement of sandy gravel via an
artificial neural network (ANN) [46]. To this end, 180 data points obtained from a large-
scale direct shear experiment were used as a dataset. Additionally, sand content, shear
stress level, normal stress, and relative density were considered as independent variables,
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and the collapse settlement of sandy gravel soil and coefficient of stress release were selected
as dependent parameters. The results of the study showed that the proposed model had
the capability of predicting the collapse settlement of the soil and the coefficient of stress
release with R2 values of 0.9828 and 0.9806, respectively. Soleimani et al. [47] offered a
model based on multi-gene genetic programming (MGGP) and multi-variable least square
regression (MLSR) to predict collapse settlement and the coefficient of stress release [47].
To develop the model, they used a dataset containing 180 experimental samples. The
developed models could be used to estimate the collapse settlement and coefficient of stress
release based on the sand content, shear stress level, normal stress, and relative density. The
MGGP model could predict the collapse settlement and coefficient of stress release with
R2 values of 0.958 and 0.982, respectively. This model, compared with the MLSR model
that predicted the collapse settlement and coefficient of stress release with R2 values of
0.857 and 0.942, showed higher accuracy. Najemalden et al. (2020) used the ANN method
to predict the collapse potential of gypsiferous sandy soils [48]. Sandy soils were taken
from four zones in Iraq to produce 180 samples with varying properties. This experimental
study included estimation of the collapse potential with an oedometer device. Seven
parameters of soil, including gypsum content, specific density, primary dry unit weight,
primary saturation degree, primary porosity ratio, primary moisture content, and the
passing percentage through a No. 200 sieve (0.074 mm), were regarded as input variables.
Moreover, the collapse potential of gypsiferous sandy soils was taken as the output. The
results revealed that the ANN method could desirably estimate the collapse potential.
Uysal (2020) presented a model to predict the collapse potential of soil via gene expression
programming (GEP) [49]. The dataset used in the study included uniformity coefficient,
primary moisture content, primary dry unit weight, and wetting pressure. Comparing the
prediction performance of GEP models with that utilizing empirical results and relations
based on regression showed that the GEP model had more precision in estimating the
collapse potential of soil. Zhang (2020) made use of the multivariate adaptive regression
spline (MARS) method to present models for predicting the collapse potential of dense
soils [50]. In this research study, a dataset containing 330 data points was utilized and the
parameters primary moisture content, primary dry unit weight, and wetting pressure were
taken as independent variables. Then, the performances of the MARS method and ANN
were compared in terms of prediction precision, calculation time, and model interpretation.
The results revealed that the MARS model, with R2 values of 0.948 and 0.926, had better
performance for training and testing sets, respectively. Mawlood (2021) modelled the
collapse potential of gypseous soils using linear and nonlinear regression methods [51]. In
this work, 220 collected data points from various studies were used to develop the model.
The developed models could predict the collapse potential in terms of gypsum content,
initial moisture content, void ratio, liquid limit, plasticity index, total unit weight, and
dry unit weight. The results showed that the developed models, based on the statistical
parameters of the regression coefficient (R2) and the root mean square error (RMSE), could
predict the collapse potential of gypseous soils well.

As the research background indicates, two intelligent models, ANN and MGGP,
have been developed to predict the collapse settlement and coefficient of stress release
based on sand content (SC), normal stress (σn), shear stress level (SL), and relative density
(Dr) variables as affecting parameters. The models developed based on the artificial
neural network method have several disadvantages, such as the “black box” nature of the
developed model, greater computational load, and over-fitting potential [52]. Furthermore,
in order to implement artificial neural network models and make predictions, matrix
calculations are needed to simulate the network, which cannot be undertaken with simple
manual calculations. GP uses an evolutionary approach to determine the mathematical
form of the model, but the values of the constant coefficients of the model are generated
randomly as non-tuneable constants. Therefore, the values obtained for the constant
coefficients are not necessarily the optimal values and the proper structures of the model
can be affected by these inaccurate coefficients. Bloating may also occur when modelling
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with GP. Bloating causes the model sentences to grow excessively without any significant
improvement in the overall performance. Therefore, bloating can hinder the progress of the
evolutionary process of GP [53,54]. Evolutionary polynomial regression (EPR) is a hybrid
machine-learning method that was developed to overcome some of the drawbacks of the
GP method. EPR requires a small number of constants to build the final model, which
helps reduce the potential for over-fitting, especially for small datasets. It uses the least
squares method to estimate the values of the coefficients, which makes it possible to obtain
a unique solution when the inverse problem is well-conditioned [53].

In this study, the EPR technique was used to obtain simple equations for predicting
the collapse settlement and coefficient of stress release for sandy gravel soil. The developed
equations have high accuracy and generalizability and, due to their simple form, they
can be easily implemented in manual calculations. After evaluating the precision of each
of the models, the optimal model in terms of precision and simplicity was selected, and
sensitivity analysis was performed to recognize the degree of importance of each of the
inputs in predicting the collapse settlement and coefficient of stress release. Furthermore,
a parametric study was also undertaken to identify the effects of changes in each input
parameter on the output parameters. Finally, the model was also compared with other
previously developed models.

2. Evolutionary Polynomial Regression (EPR)

EPR is a smart regression method that automatically searches for the best model for
the relationship among the input and output variables. The main advantage of EPR is that
it does not need to consider a nonlinear regression model. The basis of this algorithm is
that it combines the genetic algorithm (GA) and the regression analysis method [55].

EPR works based on the creation of several candidate relations between input and
output data using an evolutionary process that utilizes the GA. The developed relations
depend on the number of data points, the kind of relations among input and output
variables, the suggested limit for constant exponents, and the number of suggested terms
in the final relation. Equation (2) shows the general scheme of EPR [33]:

y =
m

∑
j=1

F(X, f (X), ai) + a0 (2)

where, y is the output vector, ai is a constant value, X is the input variables matrix, and m is
the number of the terms in suggested relation. Furthermore, F is a relation created by the
process and f (X) is a function defined by user.

To develop Equation (2), the GA is used. However, f (X) and m are determined by the
user based on their understanding of the intended physical phenomenon or a trial and
error method. The first step in finding the relation between the input and output data is
rewriting Equation (2) as a vector, as shown in Equation (3) [53]:

YN×1(θ, Z) =
[
IN×1 Zj

N×M

]
[a0 a1 . . . .. am]T = ZN×d × θT

d×1 (3)

where, YN×1(θ, Z) is a vector for the estimation of the least squares for N target values, and
θ1×d is a vector consisting of aj and a0. Finally, ZN×d is a matrix that is composed of the
identity matrix for a0 and m number of Zj variables. For a fixed value of j, Zj is the product
of vectors of independent variables [53]. Equation (4) presents the input data of X [53]:

X =

 x11 · · · x1k
...

. . .
...

xN1 · · · xNk

 = [X1 X2 X3 . . . Xk] (4)
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where the kth column of X represents the candidate variables for the jth term of Equation (3).
Thus, Zj

N×M in Equation (3) can be written as Equation (5) [56]:

Zj
N×1 =

⌊
(X1)

ES(j,1).(X2)
ES(j,2). . . . . (Xk)

ES(j,k)
⌋

(5)

where Zj is the vector of the jth column whose elements are a product of candidate inde-
pendent inputs, ES is a matrix of exponents, and k is the number of independent variables.

To develop the final equation, assuming that the vector of exponent constants defined
by the user is EX = [0.5, 1, 2], the number of terms specified by m (without bias) is 4, the
number of independent variables used in the analysis (k) is 3, the number of columns is 3,
and the number of the lines of the ES matrix is 4. The coefficients of the ES exponent, for
example, will be as follows:

ES =


0.5
0.5
1
1

1
2
2
1

2
2

0.5
0.5

 (6)

Applying the matrix presented in Equation (6) to Equation (5), the four mathematical
equations (Equations (7)–(10)) are:

Z1 = (X1)
0.5.(X2)

1.(X3)
2 = X0.5

1 .X2.X2
3 (7)

Z2 = (X1)
0.5.(X2)

2.(X3)
2 = X0.5

1 .X2
2.X2

3 (8)

Z3 = (X1)
1.(X2)

2.(X3)
0.5 = X 1.X2

2.X0.5
3 (9)

Z4 = (X1)
1.(X2)

1.(X3)
0.5 = X 1.X2.X0.5

3 (10)

Therefore, Equation (3) becomes:

Y = a0 + a1.Z1 + a2.Z2 + a3.Z3 + a4.Z4
= a0 + a1.X0.5

1 .X2.X2
3 + a2.X0.5

1 .X2
2.X2

3 + a3.X 1.X2
2.X0.5

3
+a4.X 1.X2.X0.5

3

(11)

In order to determine the constant coefficients of Equation (11), the least-squares
method is used [53]. Additionally, EPR utilizes the GA to find the best mathematical equa-
tion based on the suggested exponents [53]. The genetic algorithm (GA) is an evolutionary
optimization algorithm inspired by the process of natural selection. This method starts
by creating a random primary population from solutions. Each determined parameter
represents a person’s chromosome. The fit of each person is also determined based on their
performance in the environment. Then, the new population is developed from mutation
and crossover operations [57,58]. Figure 1 shows the EPR flowchart.
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Figure 1. EPR flowchart [59].

3. Evaluation of the Model Precision

To assess the precision of the models and compare the models with each other, five
statistical indexes were used: the regression coefficient (R2), root mean square error (RMSE),
coefficient of determination (CoD), sum of squares error (SSE), and mean errors (AVG).
These indexes can be specified via the following relations:

R2 =

[
1
N

∑N
i=1
(
Ti − T

)(
Oi −O

)
σT .σO

]2

(12)
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CoD = 1− ∑N
i=1 ∑Ns(Oi − Ti)

2

∑N
i=1
(
Ti − T

)2 (13)

SSE =
1
N

N

∑
i=1

(Ti −Oi)
2 (14)

RMSE =

√√√√ 1
N

.
N

∑
i=1

(Ti −Oi)
2 (15)

AVG =
∑N

i=1

√
(1− Ti/Oi)

2

N
(16)

where N is the number of data points, Ti is the vector of the measured values, Oi is the vector
of the predicted values, T is the mean of the measured values, O is the mean of the predicted
values, σT is the SD of the measured values, and σO is the SD of the predicted values.

4. Dataset
4.1. Description of Dataset

The dataset used in this study was taken from the experimental study by Oshtaghi and
Mahinroosta (2014) [20], which was extracted in turn from Hasanzadehshooiili et al. [46].
The aim of these experiments was to explore the collapse phenomenon in sandy gravel
soils and its influential factors. To this end, a large-scale direct shear test was used with
a 30× 30× 15 cm box. First, dry soil with specified relative density was sheared under
fixed normal stress until a pre-determined shear stress was achieved. Then, the materials
were saturated. After saturation, which was accompanied by collapse settlement, the shear
process continued until the rupture stage.

Numerous parameters affect the collapse settlement. Therefore, for a comprehensive
study of the collapse behaviour of materials, the effects of all parameters should be taken
into account. In line with this, all related parameters were here considered by reviewing
related studies. Then, the influential parameters were determined based on their kind.
These parameters included sand content (SC), normal stress (σn), shear stress level (SL),
and relative density (Dr). Additionally, collapse settlement (∆H) and coefficient of stress
release (CSR) were used as output parameters. It should also be noted that, in this study, the
clay content of materials did not considerably change. Furthermore, the primary moisture
content was also fixed. Finally, 180 data points were prepared by using a large-scale direct
shear test [20].

4.2. Statistical Parameters

For modelling, first, data were randomly divided into training and testing groups,
with 70% of data selected as the training set and 30% as the testing set. Tables 1 and 2
show the statistical parameters of the input and output parameters for the training and
testing sets, respectively. Figure 2 also presents the frequency and cumulative frequency
histograms of all input and output data.

Table 1. Statistical features of training data.

Statistical Index SC (%) σn (kg/cm2) SL (%) Dr (%) CSR ∆H (mm)

Min. 0 1 30 60 0.289 0.11
Max. 100 5 100 85 0.779 2.92
Mean 51.98 3.03 64.72 71.42 0.49 1.08

Median 50 3 62.5 70 0.5 0.94
Standard deviation 41.66 1.39 27.12 10.46 0.11 0.73
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Table 2. Statistical features of testing data.

Statistical Index SC (%) σn (kg/cm2) SL (%) Dr (%) CSR ∆H (mm)

Min. 0 1 30 60 0.297 0.12
Max. 100 5 100 85 0.769 2.85
Mean 45.37 2.92 61.48 71.22 0.51 1.18

Median 50 3 62.5 70 0.5 1.03
Standard deviation 39.17 1.47 24.66 9.98 0.1 0.77
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As can be seen, the SC varied in the range from 0 to 100%, σn varied in the range from
1 to 5 kg/cm2, SL varied in the range from 30 to 100%, and Dr varied in the range from 60
to 85%. Additionally, the measured collapse settlement varied in the range from 0.11 to
2.92 mm and the CSR varied in the range from 0.289 to 0.779. The wide range of input and
outputs parameters confirms the high variety in the samples.

5. Modelling Based on EPR Method
5.1. Developing Prediction Models for ∆H and CSR

The dataset described in Section 4 was employed to develop EPR models. The devel-
opment of the EPR models was undertaken by assuming the influence of the four variables
sand content (SC), normal stress (σn), shear stress level (SL), and relative density (Dr) on the
collapse settlement (∆H) and coefficient of stress release (CSR). Due to the small changes in
the percentage of clay content, this variable was not considered in the modelling, and the
initial moisture was also assumed to be constant. The overall procedure for developing the
predictive models for ∆H and CSR is depicted in Figure 3.
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Figure 3. Overall procedure for developing EPR models.

After normalization and partitioning of data, the modelling process was completed
using the EPR method. This process is based on inner functions, such as the exponential,
natural logarithm, sinusoidal, tangent hyperbolic, and secant hyperbolic. The EPR-MOGA
program, a MATLAB tool, was employed to develop the EPR models. The best model
for each of the functions and structures was selected based on the smallest error in the
modelling. The structure of EPR model for the prediction of the collapse settlement
was developed to be similar to Equation (17) in the secant hyperbolic and natural and
exponential logarithms, Equation (18) in the tangent hyperbolic, and Equation (19) in the
sinusoidal model. Furthermore, to predict the coefficient of stress release, the structure
of EPR model was assumed to be similar to Equation (17) in the secant hyperbolic and
exponential models, Equation (18) in tangent hyperbolic and natural logarithm models,
and Equation (19) in the sinusoidal model.

Y = sum(ai × X1 × X2 × f (X1)× f (X2)) + a0 (17)

Y = sum(ai × X1 × X2 × f (X1 × X2)) + a0 (18)

Y = sin(sum(ai × X1 × X2) + a0) (19)
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The other details related to the development of the EPR predictive models are shown
in Tables 3 and 4.

Table 3. Details of arranged parameters of EPR models for prediction of collapse settlement.

Parameter

Parameter Arrangement

Sinusoidal Exponential Natural
Logarithm

Tangent
Hyperbolic

Secant
Hyperbolic

Exponential range [−1, −0.5, 0, 0.5, 1] [−1, −0.5, 0, 0.5, 1] [−1, −0.5, 0, 0.5, 1] [−1, −0.5, 0, 0.5, 1] [−1, −0.5, 0, 0.5, 1]
Number of terms 5 5 5 5 5

Bias value −0.056354 −0.63544 −0.025247 2.6271 −4.6782
Parameter scale [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

Table 4. Details of arranged parameters of EPR models for prediction of coefficient of stress release.

Parameter

Parameter Arrangement

Sinusoidal Exponential Natural
Logarithm

Tangent
Hyperbolic

Secant
Hyperbolic

Exponential range [−1, −0.5, 0, 0.5, 1] [−1, −0.5, 0, 0.5, 1] [−1, −0.5, 0, 0.5, 1] [−1, −0.5, 0, 0.5, 1] [−1, −0.5, 0, 0.5, 1]
Number of terms 5 5 5 5 5

Bias value 1.0927 0.28029 0.83969 0.097054 1.2518
Parameter scale [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

The representative range shown in the tables determined the linearity or nonlinearity
of the model, as well as the direct or reverse dependence between the input variables and
output variable. The optimal models for the different functions for predicting collapse
settlement are presented in Equations (20)–(24), and those for predicting the coefficient of
stress release are shown in Equations (25)–(29).

Secant hyperbolic

∆H = 4.3437· 1
sech(SC)0.5 + 0.36122· 1

sech(σn).sech(SL) − 0.064019·Dr0.5. sech(SC)0.5.sech(Dr)
sech(SL)

−0.46804·SC. 1
sech(SC).sech(σn)

+ 0.68941·SC.σn.sech(σn)
0.5 − 4.6782

(20)

Tangent hyperbolic

∆H = −1.8072·tanh
(

1
SC

)
− 0.8547·tanh

(
1

SL

)
+ 0.34027·SL0.5.tanh

(
SC.σn
SL0.5

)
−0.1282·SL.tanh

(
SC0.5.Dr0.5

SL

)
+ 0.24921·σn.tanh

(
1

SC.σn .SL0.5

)
+ 2.6271

(21)

Natural logarithm

∆H = −2.9734·Ln(SC + 1) + 0.33875·SL.Ln(SL + 1) + 0.24728·σn.Ln(σn + 1)0.5

+0.26894·SC0.5.Ln(σn + 1)0.5 + 2.4068·SC− 0.025247
(22)

Exponential

∆H = +0.20777· exp(0.5·σn − SL) + 0.43164· exp(SC)− 0.028606·Dr0.5. exp(SL)+
0.12536·SL0.5. exp(0.5·σn + SL)− 0.37924·SC0.5. exp(−σn)− 0.63544

(23)

Sinusoidal

∆H = sin
(
+0.15549·SL + 0.2798·σn − 0.88635·SC0.5 + 1.3442·SC + 0.52595·SC.σn.SL− 0.056354

)
(24)
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Secant hyperbolic

CSR = −0.41461· sech(SC).sech(Dr)0.5

sech(SL) − 0.43654·SL0.5. sech(SL)0.5

sech(SC).sech(Dr)0.5

+0.05815·σn. sech(Dr)0.5

sech(SC).sech(SL) − 0.29208· SC0.5. 1
sech(SC)

+0.1766·SC0.5.SL0.5. sech(SC)0.5

sech(σn)
0.5.sech(Dr)

+ 1.2518

(25)

Tangent hyperbolic

CSR = 0.59952·tanh
(

1
SC

)
+ 0.19982·tanh

(
SL
SC

)
+ 0.070066·tanh

(
σn

0.5.SL.Dr0.5

SC

)
− 0.88554·SL0.5

+0.1074·σn.tanh
(
σn

0.5)+ 0.097054
(26)

Natural logarithm

CSR = 0.039507·Dr0.5 − 0.47·SL0.5 + 0.0019608·SL.Ln
(

SC.σn
0.5

SL0.5

)
+ 0.084114·σn − 0.33821·SC + 0.83969 (27)

Exponential

CSR = 0.52381· exp(−SC) + 0.034596· exp(SC + 0.5·σn + SL)− 0.38976·SL0.5. exp(−SC + 0.5·SL)+
0.17439·σn

0.5.Dr0.5. exp(−SC− SL− 0.5·Dr)− 0.18081·SC.SL0.5. exp(SC) + 0.28029
(28)

Sinusoidal

CSR = sin
(
−0.8422·SL0.5 + 0.12979·σn − 0.53025·SC0.5 + 0.93854·SC0.5.SL0.5 − 0.65962·SC.SL0.5 + 1.0927

)
(29)

In the above equations, we have:
SC: the normalized value of the sand content in percentage;
σn: the normalized value of the normal stress in kg/cm2;
SL: the normalized value of shear stress as a percentage;
Dr: the normalized value of the relative density as a percentage;
∆H: the normalized value of the collapse settlement in mm;
CSR: the normalized value of the coefficient of stress release.
The normalized value of each parameter was calculated as follows:

x′ =
x− xmin

xmax − xmin
(30)

in which:
x: the quantity value at the real scale;
x′: the normalized value of the quantity;
xmin: the smallest value of the quantity;
xmax: the greatest value of the quantity;
Table 1 shows the minimum and maximum values of the parameters.

5.2. Evaluating the Model Performance

In Tables 5–10, the performance parameters of the models for training, testing, and
total data are presented. The basis for calculating these parameters was the relations
mentioned in Section 3. As is evident, all the models performed desirably in predicting the
collapse settlement and coefficient of stress release.
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Table 5. Precision and performance of the models for ∆H prediction (training data).

Models COD AVG RMSE SSE R2

Secant hyperbolic 0.9784 0.125 0.01 0.011 0.9781
Tangent hyperbolic 0.9743 0.144 0.011 0.013 0.9744
Natural logarithm 0.9625 0.16 0.014 0.02 0.9626

Exponential 0.9759 0.116 0.01 0.012 0.9759
Sinusoidal 0.9568 0.182 0.013 0.023 0.9571

Table 6. Precision and performance of the models for ∆H prediction (testing data).

Models COD AVG RMSE SSE R2

Secant hyperbolic 0.9728 0.111 0.014 0.015 0.9732
Tangent hyperbolic 0.9733 0.142 0.016 0.021 0.9634
Natural logarithm 0.9667 0.134 0.02 0.019 0.9668

Exponential 0.9746 0.101 0.013 0.014 0.9759
Sinusoidal 0.9374 0.204 0.018 0.036 0.938

Table 7. Precision and performance of the models for ∆H prediction (all data).

Models COD AVG RMSE SSE R2

Secant hyperbolic 0.9785 0.125 0.015 0.012 0.9768
Tangent hyperbolic 0.9746 0.142 0.017 0.014 0.971
Natural logarithm 0.9615 0.16 0.019 0.021 0.9641

Exponential 0.9758 0.116 0.014 0.013 0.9757
Sinusoidal 0.9569 0.182 0.019 0.023 0.9512

Table 8. Precision and performance of models for CSR prediction (training data).

Models COD AVG RMSE SSE R2

Secant hyperbolic 0.9812 0.025 0.01 0.0002 0.9812
Tangent hyperbolic 0.9781 0.03 0.011 0.0002 0.9781
Natural logarithm 0.9706 0.036 0.014 0.0003 0.9706

Exponential 0.9833 0.012 0.01 0.0002 0.9833
Sinus 0.9687 0.015 0.013 0.0004 0.9694

Table 9. Precision and performance of models for CSR prediction (testing data).

Models COD AVG RMSE SSE R2

Secant hyperbolic 0.98 0.023 0.014 0.0002 0.9803
Tangent hyperbolic 0.9722 0.028 0.016 0.0002 0.9733
Natural logarithm 0.9593 0.035 0.02 0.0004 0.9607

Exponential 0.9817 0.022 0.013 0.0001 0.982
Sinus 0.9655 0.027 0.018 0.0003 0.9663

Table 10. Precision and performance of models for CSR prediction (all data).

Models COD AVG RMSE SSE R2

Secant hyperbolic 0.9812 0.025 0.015 0.0003 0.9811
Tangent hyperbolic 0.978 0.03 0.017 0.0003 0.9769
Natural logarithm 0.9709 0.036 0.019 0.0004 0.9682

Exponential 0.9832 0.025 0.014 0.0002 0.9833
Sinusoidal 0.9685 0.034 0.019 0.0004 0.9687

When comparing the models with one another to select the best one, as well as in com-
paring the performance parameters, simplicity is important. The simplicity and complexity
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of a model is typically determined based on the exponential coefficients, the number of
algebraic expressions, and direct or indirect relation between input and output parameters.

Figures 4–8 represent the ability of each developed model by comparing the measured
and predicted collapse settlement based on the training and testing sets. Additionally,
the error range of 20% is shown. Examining the exponential model, which was already
selected as the best model (Figure 7), it can be seen that the R2 values for training and
testing data were 0.9759 and 0.9759, respectively, and the RMSE values were 0.010 and
0.013, respectively, which in turn indicate the suitable precision of the model.
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Figures 9–13 show the ability of each of the developed models by comparing the
measured and predicted coefficients of stress release based on the training and testing data.
Similarly, the error range of 20% is shown. It can be clearly seen that the R2 values for
training and testing data were 0.9833 and 0.9820, respectively, and the RMSE values were
0.010 and 0.013, respectively, which in turn indicate the suitable precision of the model.
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5.3. Comparing the Developed Model with Other Models

In order to evaluate the ability of the EPR, the results obtained were compared and
contrasted with those of other models. To this end, the results of the ANN model developed
by Hasanzadehshooiili et al. [46] and those of the MGGP model developed by Soleimani
et al. [47] were used. Table 11 compares the R2 results from the EPR with those of the ANN
and MGGP.

Table 11. Comparing the R2 values of the EPR model with other models.

Models EPR ANN [46] MGGP [47]

Dataset Training Testing Training Testing Training Testing

∆H 0.9759 0.9759 0.9828 0.9830 0.9780 0.9580
CSR 0.9833 0.9820 0.9806 0.9810 0.9610 0.9820

As can be, the EPR model predicted the coefficient of stress release (CSR) with higher
precision compared to the ANN model, while the ANN model showed higher precision
compared to the EPR model in predicting the collapse settlement (∆H) of sandy gravel
soil. However, using the EPR model over the ANN model is preferred due to its simplicity
and transparency. In fact, EPR-based models can easily be implemented with manual
calculations. As shown in Table 11, the EPR model was more capable compared to the
MGGP model in predicting the ∆H and CSR of sandy gravel soil. Further, when predicting
∆H with the MGGP model, the R2 of the testing data was lower than that for the training
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data, which indicates the over-fitting of the MGGP model in this case. Further, regarding
the prediction of CSR using the MGGP model, the R2 of the training data was lower than
for the testing data, which could have been due to the improper partitioning of the data
or the under-fitting of the developed MGGP model. Compared to the MGGP model, the
EPR models presented in this research gave almost the same values for the coefficient
of determination (R2) for the training and the testing data, which indicates that the EPR
models did not over-fit.

6. Sensitivity Analysis

In this study, the cosine amplitude method (CAM) was used in a sensitivity analysis
to determine the degree of importance of the input parameters in influencing the collapse
settlement and coefficient of stress release parameters of sandy gravel soil. The degree of
importance can be estimated through Equation (31):

Ri =
∑n

j=1 xij.yj√
∑n

j=1 xij
2. ∑n

j=1 yj
2

(31)

where xij is the ith variable for jth data point, and yj is the dependent variable for the jth
data point. When Ri is closer to 1, it indicates higher importance for the input parameter in
estimating the output parameter, and if Ri is zero, there is no correlation.

Figures 14 and 15 present the importance degree of importance of the input variables
based on the measured and predicted values for the collapse settlement and coefficient
of stress release, respectively. As the figures show, SC and Dr were the most and least
important parameters for predicting collapse settlement. In contrast, Dr and Sc were
the most and least important parameters for predicting the coefficient of stress release.
Moreover, the differences in Ri based on the predicted and the measured values of collapse
settlement for the SC, σn, SL, and Dr variables were 0.57%, 0.05%, 0.05%, and 0.05%,
respectively. These values for the coefficient of stress release were 0.01%, 0.13%, 0.02%,
and 0.02%, respectively. The small percentages for these differences, in turn, indicate the
high precision of the EPR models in predicting the collapse settlement and coefficient of
stress release.
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7. Parametric Study

Cost and time restrictions, as well as limited access to applicable equipment, are
typically the main problems in laboratory studies. In most cases, examining the effects
of each input variable on the output variables requires preparing several samples, which
is costly and time consuming. One merit of modelling is that developed models can be
used for parametric studies and evaluation of the impact of each input variable on the
model output.

As was already noted, in this study, the input parameters were SC, σn, Dr, and SL.
This study made use of the optimal EPR model to examine the interation impact of SC
and Dr, Dr and σn, Dr and SL, and SL and σn on the collapse settlement and coefficient of
stress release. To this end, the desired variable altered between its minimum and maximum
values and other variables were considered equal to the mean value. Then, the collapse
settlement and coefficient of stress release were determined via EPR. The pertinent results
are shown in Figures 16 and 17.
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The interaction of σn and SL indicates that increasing SL led to an increase in the
collapse settlement and a reduction in the coefficient of stress release. Additionally, an
increase in σn led to an increase in both the collapse settlement and coefficient of stress
release. Furthermore, the interaction of SC and Dr indicated the high impact of SC in
increasing the collapse settlement and decreasing the coefficient of stress release. The
trivial effect of Dr in increasing the coefficient of stress release and decreasing the collapse
settlement is obvious. The interaction of Dr and σn also revealed that an increase in σn
resulted in increases in both the collapse settlement and the coefficient of stress release.
Increases in Dr also increased the coefficient of stress release and decreased collapse
settlement. The interaction of SL and Dr implied a remarkable effect of SL on increasing
the collapse settlement and coefficient of stress release. Finally, the changes related to Dr
implied that an increase in Dr resulted in increasing the coefficient of stress release and
decreasing the collapse settlement. Table 12 presents a comparison of the parametric study
results for the present study model and the models by Hasanzadehshooiili et al. [46] and
Soleimani et al. [47].

Table 12. Comparing the influence of input parameter changes on collapse settlement and coefficient
of stress release.

Input
Parameters

Input
Parameter
Changes

Collapse Settlement Changes Stress Release Changes

Hasanzadehshooiili
et al. [46]

Soleimani
et al. [47]

This
Study

Hasanzadehshooiili
et al. [46]

Soleimani
et al. [47]

This
Study

σn Increase Increase Increase Increase Increase Increase Increase
SC Increase Increase Increase Increase Decrease Decrease Decrease
SL Increase Increase Increase Increase Decrease Decrease Decrease
Dr Increase Decrease Decrease Decrease Increase Increase Increase

Table 12 reveals that the effects of the input variables on the collapse settlement
and coefficient of stress release in the EPR model had a similar trend to those of Hasan-
zadehshooiili et al. [46] and Soleimani et al. [47]. This, in fact, indicates the precision of the
developed model.

8. Conclusions

In this study, the collapse settlement and coefficient of stress release of sandy gravel
soil were examined. To develop the prediction model, a dataset consisting of 180 samples
from a large-scale direct shear test was employed. Using sand content (SC), normal stress
(σn), shear stress level (SL), and relative density (Dr) variables, the developed models could
predict the collapse settlement and the coefficient of stress release. The findings of the
present study can be summarized as follows:

(1) EPR models developed with an exponential function were selected as the optimal
models. According to the R2 coefficient, the levels of precision of the model in predicting
collapse settlement using training, testing, and all data were 0.9759, 0.9759, and 0.9759,
respectively, and the precision levels in predicting the coefficient of stress release were
0.9833, 0.9820, and 0.9833, respectively;

(2) The EPR models showed superior performance in predicting the collapse settlement
and coefficient of stress release compared to the MGGP model. Additionally, the ANN
model showed higher accuracy than the EPR model in predicting collapse settlement.
However, the EPR model could predict the coefficient of stress release more precisely
compared to the ANN model;

(3) The results of the sensitivity analysis revealed that the SC was the most important
and Dr the least important parameter in predicting the collapse settlement. Furthermore,
the Dr and SC were found to be the most and least important parameters, respectively, in
predicting the coefficient of stress release;

(4) The results of the parametric study confirmed that increases in the SL and SC
led to an increase in collapse settlement and a decrease in the coefficient of stress release.
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Additionally, increasing σn caused both collapse settlement and coefficient of stress release
to increase. Finally, increases in the Dr variable reduced the collapse settlement and
increased the coefficient of stress release;

(5) To continue this research and achieve higher accuracy in predicting the collapse
settlement and coefficient of stress release, other machine learning methods could be used.
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