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Abstract: Smart farming with precise greenhouse monitoring in various scenarios is vital for im-
proved agricultural growth management. The Internet of Things (IoT) leads to a modern age in
computer networking that is gaining traction. This paper used a regression-based supervised ma-
chine learning approach to demonstrate a precise control of sensing parameters, CO2, soil moisture,
temperature, humidity, and light intensity, in a smart greenhouse agricultural system. The proposed
scheme comprised four main components: cloud, fog, edge, and sensor. It was found that the
greenhouse could be remotely operated for the control of CO2, soil moisture, temperature, humidity,
and light, resulting in improved management. Overall implementation was remotely monitored
via the IoT using Message Query Telemetry Transport (MQTT), and sensor data were analysed for
their standard and anomalous behaviours. Then, for practical computation over the cloud layer, an
analytics and decision-making system was developed in the fog layer and constructed using super-
vised machine learning algorithms for precise management using regression modelling methods.
The proposed framework improved its presentation and allowed us to properly accomplish the goal
of the entire framework.

Keywords: Internet of Things (IoT); machine learning; precise greenhouse management; regression
modelling; smart farming

1. Introduction

Plant development has proven to be a novel test, because plant fields and strength
are becoming more crucial for commercial and food crops. The scarcity of agricultural
knowledge and information on new developments is one of the significant problems faced
by modern agriculture [1]. In the past, instead of applying a general marvel to all plants,
our ancestors avoided employing technological development for particular plant growth.
Now that plants may be raised in unusually typical natural settings and specialized plants
can be cultivated under certain circumstances, there are higher yield and less compost [2,3].
As a result of lower-cost technology that allows farmers to optimise production, precision
agriculture (PA) for plant growth in greenhouses is gaining popularity. The greenhouse is
a transparent house-like structure that regulates temperature, moisture, light infiltration,
and other factors for optimal plant growth. PA is a method for detecting, monitoring, and
responding to environmental changes. It is a method for detecting greenhouse climate,
after which the data are recognized and uploaded to the cloud, and the agriculturist takes
action based on the data. It may be seen in the most recent technological innovation, the
IoT, which is expertise that employs web-based methods to connect everything or any
device to the Internet. The exact agricultural framework is improving as a result of recent
advancements in Wireless Sensor Networks (WSNs), which are more advanced than the
Internet of Things. Precision agriculture is the most advanced cultivating technology with
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a vast framework that has lately emerged. In the case of a sudden shift in the greenhouse,
it entails identifying, estimating, and transmitting nursery data to farmers [4,5].

A greenhouse is a simple structure that maintains a microclimate favourable to solid
plant growth, such as water stream management, temperature control, and other factors. As
a result, it offers shielding from, e.g., too much light, extreme temperatures, infections, and
creepy crawlies. The four essential benefits of an intelligent greenhouse system, as indicated
in Figure 1, are maintaining perfect microclimate conditions, optimizing irrigation and
fertilization methods, controlling infection and avoiding disease outbreaks, and reducing
theft and enhancing security. By maintaining the proper environmental conditions, farmers
could cultivate any plant in all seasons. Greenhouse farming is significant, which illustrates
why it has become so popular. Because greenhouses hold moisture, they use far less
water than traditional horticulture. This reduces the time spent editing and expands the
sorts of harvests available. Temperature and humidity are carefully controlled to meet
the demands of the plants. Nurseries can also be used to develop slow-growing crops.
Pests may be readily dealt with. Harvests may be made under various environmental
conditions, making them incredibly versatile. The varying climatic conditions in the
greenhouse affect plant growth, resulting in a lower yield at the end of cultivation. As a
result, greenhouse gases, temperature, soil moisture, and light must all be managed and
monitored. This problem could be solved by implementing IoT innovations in precision
agriculture using machine learning, which involves the precise application of certain
greenhouse factors for optimal plant development, such as temperature management,
water flow control, and light radiation, among others. In precision agriculture, agricultural
inputs are utilised in precise amounts to obtain increased average yields, compared with
traditional cultivation techniques, resulting in an increase in agricultural productivity,
which prevents soil degradation; reduces the use of the chemical applications, fertilisers,
pesticides, and herbicides in crop production; and promotes the efficient use of water
resources. It is also helpful in the dissemination of modern farm practices to improve
quality and quantity and reduce the cost of production. In machine learning, regression-
based analyses help to understand how the value of the dependent variable changes
according to an independent variable when other independent variables are held fixed,
resulting in the precise control of agricultural output [6,7]. The main contributions of the
paper are as follows:

1. Design of a four-layer framework for an IoT-based intelligent farming system that can
support the deployment of a low-cost farming system with smart solutions;

2. Evaluation of the proposed precision analytics and decision-making model based on su-
pervised regression machine learning performance through different experimentations.
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The rest of the paper is organized as follows: In Section 2, related work regarding
intelligent models using various data analytics algorithms is discussed. The details of
the proposed smart farming framework are presented in Section 3. Section 4 describes
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an experimental evaluation along with the results. Section 5 finally presents conclusions
regarding the proposed scheme.

2. Literature Review

An intelligent agricultural system was developed with the help of several researchers.
Initially, most of the authors used a variety of sensors and actuators to meet their objectives
to obtain the most efficient management possible. Intelligent and precise control systems
based on the Internet of Things for smart agriculture are divided according to two imple-
mentation phases, with the first one being IoT-based monitoring systems and the second
one being artificial intelligence systems based on the IoT. Some authors performed their
research on either one or both systems, which are summarized below.

2.1. IoT-Based Monitoring Systems

For complete distribution nurseries employing tolerable saline water, a flexible system
was developed that could adjust to soilless culture conditions. Internet of Things (IoT)
technology was used to create a highly flexible perceptual framework for regulating and
monitoring nursery temperature. A reduced, personal, and resource-efficient IoT system
for SA based on Commercial Off-The-Shelf (COTS) gadgets accepting short- and long-range
communication media was also described. The improvement in vegetable nursery man-
agement through the selection, interpretation, and analysis of sensor data is recognized as
an important boundary of developing plants [8–10]. A suggested arrangement minimized
network idleness to some extent compared with current Internet of Things horticultural
and growing solutions [11–14]. An Autonomous Farming System [15,16] based on fog
processing vision and LoRa innovation was developed. The investigation revolved around
the structure and design of a web-enabled measuring cultivating framework that addressed
the need of people to fiercely tend to their developing crops [17–20]. RiceTalk recognizes
the rice effect using non-picture IoT devices. AgriTalk is a low-cost IoT system for pre-
cise soil development cultivation [21,22]; they conducted trials on turmeric development,
demonstrating that AgriTalk significantly improved the quality of turmeric. A connection
link quality oriented route (LQOR) protocol was suggested for adaptable IoT networks.
Karim et al. designed [23–25] and tested a Cloud IoT-based, late scourge choice emotionally
supportive network; they built a choice emotionally supportive network to reduce potato
blight. A planned structure [26–28] served as a screen for a greenhouse, a hen house, and
a fish tank; it made use of Raspberry Pi to track and regulate the weather. IoT sensors
and actuators are important for screening and responding to the climate [29–32]. The
development of a portable LoRaWAN passage device that could increase the profitability
and precision of nurseries was described [33]. The authors of [34,35] developed a power-
sensitive, able-to-adapt, IoT-based design for domestic farmers and rational objectives that
allowed them to evaluate the environmental effect on plant advancements by observing
dirt moisture [36–51].

2.2. Artificial Intelligence Systems Based on the IoT

The authors added to continuing IoT breakthroughs in horticulture and enhancements
in equipment and programming frameworks. An autonomous Fuzzy Logic Controller
(FLC) with Internet of Things capabilities was built for the analysis and the etymological
dynamic analysis of fertigation (manure + water) in a nursery. A new plan for agricultural
farmland prudence was devised. A Raspberry Pi device was used to identify any suspicious
activity or movement in a ranch area; PiCam was then triggered to take a photo of the scene.
A detecting organization collected field data for certain harvests; then, they used AI to
develop a notice message that presented both the data and the information. Another study
proposed a framework whose goal was to continually develop an image-processing-based
mechanical weed control system (WCS) for weed control in onion fields. A data collection
architecture based on Internet of Things technology and crisp picture recognition was
proposed. An innovative cultivating system based on the MQTT protocol could collect



Appl. Sci. 2022, 12, 9992 4 of 20

data in the passive mode for sustained examination, creating and distributing a superb
invention for the horticulture industry that improved natural and rural maintainability, crop
discernibility, and overall yield. Using a typical IoT system, a technique for enhancing farm
production by effectively planning water sources and preparations depending on harvest
flow needs, natural circumstances, and climatic data was developed. The use of IoT devices
to create a brilliant solar-powered agricultural observation system was demonstrated.
S. Sarangi et al. created a helpful edge IoT system that incorporated a flexible and adaptive
sensor hub and helped users to handle difficulties locally. P. Sureephong et al. examined
the integrative arranging of an Internet of Things-based Wetting Front Detector (IoT-WFD),
emphasizing how to improve the IoT-WFD plan for a sparkling-water system framework.

3. Methodology
3.1. Proposed Framework

The proposed intelligent farming system model for greenhouses is depicted in Figure 1.
The four essential architectural layers are the cloud, fog, edge, and sensor/device. The
sensor layer includes the various sensors and actuators related to the field environment. The
edge layer mainly consists of a controller unit with which multiple sensors and actuators are
interfaced for data acquisition and for sending data to the fog layer for further processing.
The main objective of the fog layer is to develop the analytics and decision-making model
based on data acquired from the edge layer and to provide the control signals to the edge
layer for controlling the actuators. Finally, a data representation of sensors and actuators is
displayed in the cloud layer in the form of a user interface (UI) dashboard. The suggested
system is notable for its ability to assist farmers by providing greenhouse management
using an IoT-based precision farming framework. The purpose is to supply agriculturists
with remotely controlled greenhouse agricultural elements, such as soil moisture, CO2,
light, and temperature, from afar, and depending on the soil moisture values; furthermore,
a command for the greenhouse doors or windows to roll up/down may be given using
this system. Agriculturists are unable to physically visit the fields as a result of this.

3.1.1. Sensor Layer

In this experiment, Gerbera and Broccoli were the crops that were considered in the
greenhouse, which is primarily a climate-sensitive environment. The sensors used to
monitor the factors in the greenhouse environment included a gas sensor, a dht11 sensor
for temperature and humidity, a light sensor, a gas sensor, and a moisture sensor. In
addition, actuators were chosen and deployed to control equipment such as fans and
pumps according to relaying parameters. Advantages of using a greenhouse management
system for crops include controlled RH, temperature, and light; protection from rain,
storms, and scorching sun; and pest and disease control.

3.1.2. Edge Layer

Sensors, referred to as nodes or edges, were put in the field at various locations and
connected to a low-power microcontroller designed for the IoT. We used Node MCU ESP
32 in our experiment, which could gather and analyse data from sensors before transferring
them to the edge layer’s base station. Sensors had to be calibrated and checked against an
expected value to collect data in analogue or digital form according to the requirements.
Data were collected for various climate variables, both healthy and unhealthy, to better
comprehend all possible environmental situations and to assure crop survival through
accurate crop management.

3.1.3. Fog Layer

This layer’s primary responsibility was to deal with decision making, to control the
activity of the edge layer, and to communicate related data to the cloud layer for use by
farmers. A machine learning algorithm created the decision-making system via many
processing phases, starting from the data generated by edge-layer sensors:
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• Data gathering by IoT devices, particularly sensors, which could collect data in real
time or in small batches (temperature, humidity, camera vision, light intensity, etc.);

• Data collection and aggregation in a target database;
• Filtration of stored data: Algorithms could be used to clean and correct the data in

this step;
• Data classification depended on its intended purpose;
• Computing: During this phase, calculations were performed on the classified data

(e.g., the amount of water to pump);
• Making decisions based on predictions and visualizing data in the form of reports or

dashboards.

3.1.4. Cloud Layer

Data from each node in the edge layer, which were subsequently processed and
controlled at the base station, were visualized in the cloud layer using an Adafruit IO
Cloud platform. Farmers could track crop cultivation progress using a graphical interface
(UI)-based application.

3.2. Experimental Model

A prototype experimental model was created using an embedded system device that
included several sensors and a microprocessor to test the proposed innovative greenhouse
system, as shown in Figure 2.
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The proposed model tracked greenhouse characteristics for two crops, Gerbera and
Broccoli, in different climates. A microcontroller, Node MCU ESP 32, was connected to all
the needed sensors for obtaining the greenhouse parameters, as depicted in Figure 3. A
personal computer was used to collect data serially with timestamp values of 1 h for the
data logging of various parameters. Temperature and humidity, which were taken using
the dht11 sensor, light intensity, which was taken using the LDR Sensor, CO2, which was
taken using the MQ2 sensor, and soil moisture, which was taken using Cu leads, were all
continually monitored for ten days on the Adafruit IO Cloud platform utilizing the MQTT
protocol under day and night conditions within specific time intervals. The operational
workflow of the proposed system and how the procedure operated are defined in Figure 4.
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Adafruit IO is a platform for visualizing, responding to, and interacting with sensor
data. With the support of MQTT, the data are also kept private and safe. MQTT (Message
Queue Telemetry Transport) is a TCP/IP-based lightweight publish–subscribe protocol.
MQTT employs a message broker to route messages between senders who send them
and receivers who are interested in receiving them. Notifications can be published and
subscribed to using the same client. Each letter is associated with a specific subject. The
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message routing information is the topic and is essentially a string with slash-separated
hierarchical levels. Clients subscribe to these topics, and the broker sends them all messages
with topics that match their subscriptions. Wildcards can also be used to easily subscribe
to several topics. For example, Figure 5 shows how temperature sensor data from a
greenhouse system are sent.
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3.3. Analytics and Decision-Making Model

The proposed methodology developed in the fog layer for the data analytics system
using machine learning algorithms, typically regression modelling, is shown in Figure 6
and is discussed in detail below.
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3.3.1. Dataset Creation and Access

In the machine learning approach, to train a model based on a dataset developed
from an experimental setup, the data are fragmented into training and test data, with
their equivalent output data labels. Here, in our case, there was a total number of 1024 of
sensor data samples for each sensing parameter, and the training-to-test ratio was split into
fragment data in a 70:30 ratio; i.e., 70% of data were used to train the model, while 30%
were used to test the model that was built on them.

3.3.2. Feature Engineering

The acquired dataset sample values were available in *.csv format; these raw data
were retrieved using the “Matlab” programming language. This process assists in grabbing
data and implementing regression techniques using machine learning. Feature extraction is
a mechanism of searching novel features by choosing or/and merging existing features to
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generate a reduced feature subset while precisely and entirely relating datasets deprived of
loss of information. Finally, feature selection is a procedure for choosing the dimensions of
the features of the dataset that makes use of machine learning techniques such as clustering,
classification, etc. It can be attained utilizing various methods, such as univariate analysis,
correlation analysis, etc. Univariate feature selection was used in our case, which works by
selecting the best features based on univariate statistical tests.

3.3.3. Predictive Model Development

After the feature extraction process, training and test features were obtained from the
training and test datasets, respectively. Then, to train the model, two supervised regression
machine learning algorithms were used: multi-layer perceptron neural network (MLP) and
support vector machine (SVM). So, effective parameters needed to be tuned or set for the
best regression result of the test dataset while training using hyperparameter tuning. The
selection of two regression-based algorithms was based on the advantages; SVM works
comparably well when there is an understandable margin of dissociation between classes,
and it is also more productive in high-dimensional spaces, while MLP has the ability to
solve complex nonlinear problems and also handles large amounts of input data well with
quick predictions after training.

Support vector machine (SVM) is a supervised classification and regression method.
SVM’s main idea is shifting nonlinear data to a new space in which the data may be linearly
separated by employing a hyper-plane that accurately separates the data by following two
crucial conditions; because distinct classes of vectors have various aspects, the distances
between the hyperplane and the vectors must be used. In Equation (1), assumption function
h has the following definition:

h(xi) =

{
+1 if w.x + b ≥ 0
−1 if w.x + b < 0

}
(1)

Class +1 is assigned to points above or on the hyperplane, whereas class−1 is assigned
to points below the hyperplane.

An artificial neural network (ANN) with one or more hidden layers is known as a
multi-layer perceptron neural network. A perceptron is a neural network consisting of just
one neural model. It simulates high nonlinear functions, which are the foundation of deep
learning neural networks. Equation (2) shows the degree of inaccuracy in an output node j
in the nth data point (training example), which can be represented by:

ej(n) = dj(n)− yj(n) (2)

where “d” is the goal value and “y” is the perceptron’s output value. The node weights can
then be modified depending on adjustments that reduce the overall output error, as shown
in Equation (3):

∈ (n) =
1
2 ∑

j
e2

j (n) (3)

The difficulty in selecting a set of ideal hyperparameters for a model learning algorithm
is known as hyperparameter tuning or optimization. A hyperparameter is the value of a
parameter that is used to influence the learning process. The grid search technique was
utilized, which is the most basic form of hyperparameter tuning. We generated a model for
each conceivable combination of all the hyperparameter values supplied, evaluated each
model, and chose the architecture that delivered the best results using this method. Below
is a description of the technique for hyperparameter-guided adjusting of the model:

Step 1: Define a machine learning model;
Step 2: For the selected approach, define the range of possible values for all hyperparameters;
Step 3: Define a sampling mechanism for hyperparameter values;
Step 4: Create a criterion for judging the model;
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Step 5: Develop a cross-validation technique for determining the system’s efficiency.

4. Model Deployment

In the deployment phase, data were tested based on a trained model and evaluated
using system performance parameters. The predicted output label generated was used to
control the data of the hydroponic model in the device layer from the fog layer (Algorithm 1).

Algorithm 1. Proposed Algorithms

INPUT
“Features Set”

• Input-(CO2 gas level (ppm), soil moisture (percent), light intensity (lux), humidity (percent),
temperature (Celsius))

• Output-(on/off time duration of the pump, ventilation fan, amount of light)

OUTPUT
Predicted output with label values (regression).
Step1: Collect input data.
Step2: Prepare the feature data and label data from raw dataset values from Datasets.
Step3: Apply feature engineering to each feature data.
Step4: Find the missing and unknown values, and replace the mean values.
Step5: Calculate the normalized value of all features sets.
Step6: Scale all feature data into a specific range.
Step7: Select the machine learning model for regression, SVM, and MLP.
Step8: Choose the range of possible values for hyperparameters of ML algorithms.
Step9: Optimize the values of the hyperparameters using the Grid Search CV Optimization
algorithm.
Step10: Evaluate and find the best score and estimator for the selected classifier.
Step11: Validate the model using K-Fold Validation Learning Method.
Step12: Set best-selected hyperparameters tuned for the ML training process.
Step13: Initialize the feature data and label data for the training dataset.
Step14: Train the model for respective ML algorithms.
Step15: Validate the model performance using the K-fold cross-validation method.
Step16: If validation is successful, then save/deploy the trained model, and if not, repeat steps 2 or
step 10.
Step17: Initialize the feature data for the testing dataset.
Step18: Load the trained model of ML algorithms.
Step19: Predict the results for its label values (regression).
Step20: Evaluate RMSE (Regression) to check system performance.

5. Experimental Result and Discussion

The proposed experimental plan was implemented on a prototype that was tested,
as shown in Figure 7, considering two crops under various conditions. The three primary
phases of experimentation were the creation of basic model-embedded systems for plant
growth and feeding, the construction of a sensor net for intelligent greenhouse monitoring,
and the automation of actuators. The proposed approach employed an embedded system
to analyse greenhouse execution parameters such as CO2, soil moisture, temperature,
and plant light, yielding accurate results. All the readings were observed under several
conditions and monitored on a personal computer using serial communication, as shown
in Figure 8. In addition, all these sensor data were monitored via the Internet on the
Adafruit IO Cloud dashboard by publishing data from the nodes to the broker of Adafruit.
Then, the user could subscribe to these data to access them in real-time, as defined in
Figures 9 and 10.
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The greenhouse doors/windows could also be rolled up/down depending on the soil
moisture conditions. The plant photosynthesis process requires higher CO2 concentration
and water level in the evenings than during the day; with these two sources of energy, the
photosynthesis method keeps the plant cool and encourages rapid growth. Because the
greenhouse absorbs CO2 from day to night, it maintains a maximum CO2 level at night;
this was confirmed after completing a CO2 concentration level experiment in a greenhouse,
as illustrated in Figure 11. As a result, as seen in Figure 11, the CO2 level decreased during
the day.

Because too much water can induce a fungal infection in the plant and too little water
can cause the plant to grow dry or even die, the amount of water in the soil is critical. As a
result, the amount of water required by the plant is crucial. Plants need more water with
CO2 during the night for photosynthesis. When the soil moisture sensor gave a negative
value, the plants were entirely covered in water, as shown in Figure 11. The greenhouse
windows/doors closed automatically using a DC motor. The positive value indicated that
the soil was dry and had to be re-wetted, as shown in Figure 11. Temperature is one of the
most critical parameters in a greenhouse; it should be kept as high as feasible. Blooming,
fruiting, photosynthesis, seed germination, and other processes are all aided by warmth.
Consequently, compared with the temperature and relative humidity range outside the
greenhouse, the humidity and temperature range within the greenhouse were preserved to
the greatest extent feasible. The numerous colours of sunshine enhance the photosynthetic
system, which is among the systems used by plants and is essential for plant development,
flowering, and shape.

Consequently, in contrast with the average light penetration outside the greenhouse,
a sustainable quantity of light penetration within the greenhouse was maintained. Fur-
thermore, based on the sensor utilized for research and the technology used to design
the system, our suggested model was far superior to those proposed in previous work
performed by various authors, as described in Table 1.
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Table 1. Comparative analysis table.

Parameters

References

Subahi et.al. [2] A. Carrasquilla-Batista
et al. [4]

Codeluppi
et al. [6] A. A. Araby et al. [8] Proposed Model

Sensors Used

Temperature X X X X X

Humidity X X X X X

Soil Moisture X X X

Light Intensity X

CO2 X X

Technology Used IoT X X X X X

ML X X

Precision
Agriculture X X

The classification of the analytics and decision-making model was conducted on a
laptop with a 2.30 GHz Intel (R) Core (TM) CPU, 8 GB RAM, and Windows 10 (64 bit)
operating system, with no other processes running in the background. MATLAB IDE
was used to program the intelligent model, statistics, and machine learning toolbox from
MATLAB. The RMSE performance metrics were evaluated to check the system’s efficacy.
The hyperparameters required to tune the regression modelling for both classifiers are
shown in Table 2, along with the final range selected for both classifiers in the last column.
The evaluation time with the hyperparameter-tuning phase is shown in Table 3, with a
graphical representation in Figure 12.

Table 2. Hyperparameter tuning for regression modelling.

Prediction
Algorithm

(Regression)
Model Parameter Range Searched Range Selected

SVM Regressor kernel rbf, poly, sigmoid poly
max_iter 10, 30, 50 10

MLP Regressor Hidden_layer_size 10, 50, 100 100
max_iter 100, 200, 300 200

Table 3. Evaluation time for training (including hyperparameter optimization) and testing.

Phase
Regression

SVMR MLPR

Training 315.78 446.27

Testing 72.95 75.21

Figures 13–15 show the graphs for the actual data and prediction data for pump, fan,
and light using support vector machine (SVM) algorithm, respectively.
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The regression performance of the RMSE parameters for both classifiers is depicted in
Table 4. It can be observed from Figure 19 that the MLP regressor had a minimum RMSE
value as compared with the SVM classifier for the pump, fan, and light control processes.

Table 4. RMSE for regression.

Regressor RMSE (avg)

SVM 0.11

MLP 0.08
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The comparative analysis of various existing models is shown in Table 5. It indicated
that the proposed model’s accuracy was better than existing techniques used to build
intelligent farming systems (Figure 20).

Table 5. Comparative analysis of various existing studies.

Ref. Techniques Used Shortfalls/Advantages Accuracy

[11] - Focuses on automation of
controlling pH only 90%

[36] Bayesian network
and machine learning

Fewer datasets for data
analysis 66%

[37] ANN and fuzzy logic Expensive system 89%

Proposed Work SVM and ANN Low-cost system 92%
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6. Conclusions

This study proposes an automated intelligent greenhouse system that can integrate
and deploy Internet of Things concepts and capabilities with an existing design. With
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real-time sensor data, a framework allows the user to control and monitor real-time data
between the device and the fog layer, and vice versa. Furthermore, data are stored in
the cloud and are accessible from anywhere. The Internet of Things concept is applied
to the system to make growing food easier by streamlining the growing and monitoring
processes using a secure cloud. Furthermore, using the Internet of Things addresses one of
the most pressing concerns in automation today, maintenance, by offering a platform for
monitoring the entire system from the cloud, lowering maintenance costs. As a result, the
proposed system uses the IoT to help farmers while simultaneously enhancing the yield by
maintaining accurate greenhouse factors such as soil moisture, CO2, temperature, and light.
The findings for greenhouse elements such as soil moisture, CO2, temperature, and light for
broccoli and gerbera plants are investigated using a graphical depiction based on real-world
data collected using the suggested model. On Adafruit IO, equipment is used to keep
track of greenhouse elements from afar, including soil moisture, CO2, temperature, and
light. Farmers may collect these data using an Adafruit IO Cloud account and an internet
connection. Finally, using regression-based supervised machine learning algorithms, the
performance of the innovative greenhouse system is evaluated for intelligent, precise
management. However, further work that may be conducted to improve the system
includes integrating data analytics or machine learning to develop algorithms to anticipate
outcomes; adding more sensor parameters, such as pH, EC, and other soil micronutrient
measurement sensors to obtain more accurate data; and assisting the artificial intelligence
system in predicting the outcome.
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