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Abstract: Non-dominated sorting genetic algorithm II is a classical multi-objective optimization
algorithm but it suffers from poor diversity and the tendency to fall into a local optimum. In this
paper, we propose an improved non-dominated sorting genetic algorithm, which aims to address
the issues of poor global optimization ability and poor convergence ability. The improved NSGA-II
algorithm not only uses Levy distribution for global search, which enables the algorithm to search
a wider range, but also improves the local search capability by using the relatively concentrated
search property of random walk. Moreover, an adaptive balance parameter is designed to adjust the
respective contributions of the exploration and exploitation abilities, which lead to a faster search
of the algorithm. It helps to expand the search area, which increases the diversity of the population
and avoids getting trapped in a local optimum. The superiority of the improved NSGA-II algorithm
is demonstrated through benchmark test functions and a practical application. It is shown that
the improved strategy provides an effective improvement in the convergence and diversity of the
traditional algorithm.

Keywords: non-dominated sorting genetic algorithm; multi-objective optimization; Levy distribution;
random walk; adaptive parameter

1. Introduction

The principle of multi-objective optimization [1] is that when multiple conflicting
objectives need to be achieved in a particular situation, the optimization of one objective
is often accompanied by degradation of the performance of other objectives, so it is nec-
essary to find a set of solutions [2] that balance multiple sub-objectives to obtain the best
optimization for each sub-objective.

Traditional mathematical methods cannot achieve more satisfactory results because
multi-objective optimization problems are computationally difficult. Evolutionary algo-
rithms [3] can be a good solution [4]. The most widely used evolutionary multi-objective
optimization algorithm for discovering Pareto optimal solutions is known as the non-
dominated sorting genetic algorithm II. In 1989, Goldberg proposed the concept of Pareto-
based optimal solutions and the calculation of the individual fitness method, where the
population evolves toward the Pareto optimal solution through non-inferior solutions and
the corresponding selection operations.

The NSGA algorithm, which was first proposed by Professors Srinivas and Deb in the
early 1990s, is based on classifying all individuals in a population at different levels. NSGA
uses a non-dominated sorting method that allows good individuals to have a greater chance
of being inherited by the next generation, and an adaptation sharing strategy that allows
individuals to be evenly distributed and maintains population diversity. Indian scientist
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Deb proposed a non-dominance ranking genetic algorithm based on the NSGA algorithm
in 2002 [5] and used an elite strategy by applying the Pareto dominance relationship and
crowding distance mechanism to update the population.

NSGA-II has better convergence and distribution [6] because of the use of fast non-
dominated sorting and crowded-distance-sorting mechanisms. However, NSGA-II has
a slow convergence speed due to the use of an inefficient simulated binary crossover
algorithm. It has poor convergence speed and optimization finding ability when solving
complex problems [7]. With the NSGA-II algorithm applied to a wider range, some
problems have gradually emerged. In the genetic operation, constant genetic parameters
lead to a smaller moving space and poorer search performance during the iteration of the
algorithm. Meanwhile, the NSGA-II algorithm shows the problem of falling into local
optimal solutions.

The principal contributions of this study are summarized as follows:

1. An improved non-dominated ranking genetic algorithm is proposed to enhance the
search ability by using Levy flight and random walk strategy, which can provide a
larger search range and better local search ability.

2. To improve the accuracy and speed of convergence, an adaptive parameter is designed,
which balances the exploration and development periods.

In the remainder of the paper, we first introduce some fundamental conceptions of
multi-objective optimization problems and discuss some existing works in Section 2. At
the beginning of Section 3, we present some background on NSGA-II, then introduce
Levy distribution and random walk-in detail, while designing an adaptive weight to
balance global exploration and local exploitation. After that, we propose the improved
NSGA-II algorithm. In Section 4, we submit the results on standard test functions and
a mathematical model for the parallel chillers. At the end of the article, we outline the
conclusions of the study.

2. Preliminaries
2.1. Multi-Objective Optimization

In engineering, we often encounter design and decision problems under multiple crite-
ria or multiple design objectives, which are often contradictory for finding the best design
solution to satisfy these objectives, which is the multi-objective optimization problem [8].
As an example of minimizing MOPs, define the relevant concepts of MOPs as follows:

Definition 1. Multi-objective optimization problem. For a MOP with n-dimensional decision
variables and m-dimensional objectives, the mathematical model is defined as

min F(x) = ( f1(x), f2(x), . . . , fm(x), )T

Mi(x) ≥ 0, i ∈ {1, 2, . . . , p}
Nj(x) = 0, j ∈ {1, 2, . . . , q}

(1)

where x = (x1, x2, . . . , xn) ∈ Ω is the decision variable, and Ω is the decision space. F(x) is an
objective function consisting of multiple mutually contradictory sub-functions, and M(x) and N(x)
are constraint functions with independent variable x.

Definition 2. Pareto optimal solutions [9]. In the context of multi-objective optimization, objective
functions conflict with each other or cannot be compared in a simple way. The solution of a problem
that is optimal in the first objective function may appear to be the worst solution in the second
objective function, so people refer to a series of solutions that cannot be simply compared in the
computation of multiple objective optimization problems as non-dominated solutions or Pareto
optimal solutions.
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Definition 3. Pareto dominate. Supposing that x1, x2εX are two decision variables in the objective
space that satisfy the constraints, the definition of the dominance between the two solutions can be
expressed as x1 dominating x2 if

{∀i ∈ {1, 2, . . . , m}, f1(x1) ≤ f1(x2)} ∩
{
∃j ∈ {1, 2, . . . , m}, f j(x1) < f j(x2)

}
. (2)

Therefore, a design x is said to be non-dominated [10] if no other feasible design dominates it.

2.2. NSGA-II Algorithm

Deb et al. proposed the fast non-dominated sorting genetic algorithm with elite
strategy (NSGA-II) [5] in 2000, which specifically shows its advantages from the following
three points: (1) It provides a hierarchy-based non-dominated sorting method to select the
optimal solution by hierarchical sorting. Compared with the original method, the operation
speed is significantly improved, unnecessary calculations are reduced, and the speed of
problem solving is greatly improved. (2) The parent population is fused with the offspring
population to retain the better individuals by selecting the optimal solution through an
elite strategy. (3) A crowding distance comparison operator is given to solve the original
problem that requires a specified shared radius, and makes the optimal solution evenly
distributed [9] in space.

In order to determine the degree of superiority of each solution at the identical ranking
level in the results of algorithm, a crowding distance is assigned to all solutions. The basic
idea is to spread out the already solved Pareto optimal solutions from the search domain
to the greatest extent possible, and this process is also a performance indicator to ensure
diversity among the solutions. The crowded distance comparison operator can be used
as a solution for each stage of the selection algorithm by ranking individuals in terms of
crowded distance comparison and taking the top N individuals to drive the Pareto optimal
front in an evenly distributed state.

The specific implementation process of NSGA-II algorithm is as follows:
Step 1. Population initialization. The population size is N, and the Gen = 1 is set as the

number of evolutionary generations;
Step 2. Based on the execution of selection, crossover and mutation operators, deter-

mine whether the first generation of offspring population has been formed. If it has been
generated, make the evolutionary generation Gen = 2. If not, perform the non-dominant
sorting operation on the initial population and continue to perform the selection, crossover,
and variation operations to produce a population of first-generation offspring with evolu-
tionary generation Gen = 2;

Step 3. Generate a new population by integrating parent and offspring populations;
Step 4. First determine whether a new parent population has been formed, and if not,

the objective function of individuals in the new population is calculated, and a new parent
population is generated by performing operations such as fast non-dominance sorting,
calculating crowding [11], and elite strategy. Otherwise, go to step 5;

Step 5. Generate the offspring population by performing selection, crossover, and
variation operators on the generated parent population;

Step 6. First determine whether Gen is equal to the maximum evolutionary generation;
if not, then make the evolutionary generation Gen = Gen + 1 and return to step 3. Otherwise,
the algorithm runs to the end.

3. Improved NSGA-II Algorithm
3.1. Levy Flight Strategy for Global Search

Levy flight [12] belongs to the Markov process. In optimization problems, Levy flight
covers a larger area with fewer distances and steps, which is useful to explore the unknown.
The levy flight strategy grows faster than the Brownian motion due to the stochastic nature
of the step size; therefore, it achieves better results than the Brownian random motion when
searching in a large unknown range.
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3.1.1. Levy Distribution

Levy flight belongs to random wandering, which means that its trajectory cannot be
accurately predicted. Both continuous Brownian motion and Poisson processes are Levy
processes, and the most essential characteristic of Levy processes is that they have smooth
independent increments.

The mathematical form of the Levy distribution is as follows:

fX(x; σ, µ) =
( σ

2π

)1/2 1
(x− µ)3/2 exp

{
− σ

2(x− µ)

}
µ < x < ∞ (3)

in which µ is the position parameter, which affects the left and right translation of the
distribution curve so that the distribution interval is (µ, ∞), and c is the scale parameter.

3.1.2. Levy Flight

Levy flight is a random walk between short-term search and occasional long-term
walk, which drives Levy flight to have an excellent capacity for overall search.

The position update function for Levy flight is as follows:

x
′
i(t) = xi(t) + l × Levy(λ) (4)

in which x denotes the current position and l denotes the parameter to adjust the step size.
The Levy distribution is often simulated by the man algorithm in many studies due to
its complexity:

s =
µ

|ν|1/γ
(5)

in which µ and ν follow a normal distribution and

σµ =

{
Γ(1 + γ) sin(πγ/2)

γ · Γ[(γ + 1)/2] · 2(γ−1)/2

}1/γ

(6)

σν = 1 (7)

where γ usually takes the value of 1.5.
The long and short hop features of the Levy flight strategy are used to randomly

update each position of the population to enhance the search ability of the global optimum,
which can increase the diversity of the population distribution and find the global optimum
solution more quickly.

3.2. Random Walk Strategy for Local Search

Random walk uses mixed variation and crossover to generate new solutions, which
can enhance the diversity of populations to some extent and prevent the attraction of
regional extremes, thus improving the capacity of local search of the algorithm. It can be
used to accelerate the speed of the search for optimal solutions.

The position update formula for the random walk is as follows:

x′i(t) = xi(t) + ε
(

xj(t)− xk(t)
)

(8)

where xj(t) and xk(t) are the two random solutions in the tth generation, and ε is the scaling
factor, εεU(0, 1).

3.3. Framework and Details of INSGA-II Algorithm

To overcome the disadvantages of slow convergence and falling into a local optimum [13]
in the NSGA-II algorithm, we use an adaptive weight [14] to balance the global search and
local search ability to accelerate the convergence speed, while using Levy flight and random
walk strategies to improve the global and local search ability of the algorithm, respectively.
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The search mechanism of an optimization algorithm usually consists of two steps,
which are the global exploration and the local exploitation. Exploration denotes the ten-
dency of an algorithm to behave in a highly randomized manner. Significant changes in
the solutions prompt further exploration of the variables space to discover their promising
positions. Exploitation is the discovery of promising areas followed by the reduction in
random behavior so that the algorithm can search around the promising areas.

Since Levy flight has a characteristic of walking between long and short, it can ef-
fectively improve the global search ability of the algorithm and make the population
individuals evenly distributed in the space. The random walk can focus the search on the
locations in the space, where the optimal solution is more likely to occur and make the
algorithm converge to the optimal solution.

In the early stage of optimization, individuals in the population should be distributed
extensively throughout the entire search space, with individuals converging to the global
optimum during the later stage of optimization. Therefore, we design an adaptive weight-
ing factor C in this study to balance the pre-global exploration and post-local exploitation
capability of the algorithm.

The value of C decreases from 1 to 0.02 during iterations. With the increase in iterations,
the algorithm gradually switches from global search into local exact search that aims to
enhance the overall convergence accuracy, which is calculated as

C = 1− It
(

0.98
MaxIt

)
(9)

where It is the current number of iterations and MaxIt is the maximum number of iterations.
The maximum number of iterations for the two-objective test function was set to 800, while
the maximum number of iterations for the three-objective test function was set to 1500.

The offspring population individuals in the iteration are generated with the formula
as follows:

X(t + 1) = C× (Xt + α⊗ Levy(β)) (10)

X(t + 1) = (1− C)× (Xt + α⊗Guass(β)) (11)

The adaptive weight factor C in this paper is considered a balanced treatment of the
speed and accuracy of convergence, which also ensures that the algorithm has some global
search capability at the late merit search iterations. The intuitive algorithmic flow is shown
in Figure 1.

The population distance D between population G and population F is calculated
as follows:

D = ∑
PGg∈Ωpos

G

sum

 ∑
PFf∈Qpos

F

min
(

ED
(

PFg, PFf

))/NCHG

where Ω is the set of solutions for a population G or F with a non-dominated ranking of 1.
G and F are solutions with non-dominated ranking of 1, respectively. NCHG is the number
of populations with a non-dominance ranking of 1. ED is the Euclidean distance.

The algorithm results begin to stabilize if the distance between the populations of
neighboring generations is less than the acceptable population distance. The INSGA-II
algorithm is converged if it satisfies one of the following conditions:

1. The population distances of neighboring generations are consecutively less than
the threshold.

2. The number of iterations reaches the maximum set value.

The INSGA-II algorithm is implemented as follows:

1. Initial population and set the evolutionary generation Gen = 1;
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2. Generate the first generation sub-population by the Levy flight strategy and random
wandering strategy and make the evolutionary generation Gen = 2;

3. Combine the parent population with the offspring population to form a new population.
4. Determine whether a new parent population has been generated; if not, calculate the

objective function of individuals in the new population, and perform operations, such
as fast non-dominated sorting, calculating crowding, and elite strategy, to generate a
new parent population. Otherwise, go to step 5;

5. Perform adaptive iteration operations on the generated parent population to generate
the child population;

6. Determine whether the termination condition is reached or whether Gen is equal
to the maximum evolutionary generation; if neither is satisfied, the evolutionary
generation Gen = Gen + 1 and return to step 3. Otherwise, run to the end.

Initialize  
population

Perform non-
dominated 

sorting

Generate offspring 
population

No

Gen=2

Population 
merging

Calculate adaptive 
weights C

Start

Output

No

calculate 
crowing distance

Select  and create 
a new population

Gen=Gen+1

Generate first 
population

Yes

Generated new 
population

Termination 
condition 
reached

Perform non-
dominated 

sorting

Generate offspring 
populations by levy flights 

and wander walk

Yes

Yes

No

Figure 1. INSGA-II algorithm flowchart.
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4. Case Studies

For the purpose of evaluating the performance of the proposed INSGA-II algorithm,
different two-objective ZDT and three-objective DTLZ test functions are used to verify the
optimization capability and to make a comparison with other common multi-objective
optimization algorithms.

4.1. Pareto Performance Evaluation Metrics

In contrast to single-objective optimization algorithms, it is not possible to evaluate
the performance of multi-objective optimization results in terms of only one metric for
each optimization algorithm. In this subsection, we choose two common evaluation
metrics [15], which are the inverted generational distance as well as hypervolume, as a way
to quantify the performance of the algorithms and to compare the performance of other
different methods:

1. Inverted generational distance
IGD [16] is an average minimum distance between the solution set obtained from the
search for the best and the true solution set. The decrease in the value of IGD means
that the algorithm converges more effectively and is more closely related to the real
Pareto front. The mathematical expression is as follows:

IGD =
∑x∈P∗ min dis(x, P)

|P∗| (12)

in which P∗ is the ideal Pareto front, P is the collection of optimized solutions acquired
from the algorithm, min dis(x, P) is the minimum Euclidean distance between the
solution x of true Pareto and the found Pareto solution P obtained by the algorithm,
and |P∗| is the number of solutions in the solution set P∗.

2. Hypervolume
The hypervolume [17] indicator refers to the volume of the area surrounded by the
optimal set of solutions obtained by the algorithm and the selected reference points
in the target space. With a larger value of HV, it means that the comprehensive
performance of the algorithm is better. The mathematical expression is as follows:

HV(X, P) =
X⋃

x∈X
v(x, P) (13)

The HV metric allows assessing the convergence and diversity of the dominant
solution set. In addition, the HV metric is obtained without real solution sets, so it
can be widely used for engineering problems with unknown results in the real world.

4.2. ZDT Test Functions

In order to prove the feasibility and validity of the improved NSGA-II algorithm
proposed, the ZDT series of test functions [18] is selected to study the efficiency of the
algorithm in solving multiple-objective optimization problems. These test functions are
different, with different characteristics such as convex or concave, and their Pareto optimal
frontier shapes are different, the specific descriptions and characteristics of the functions are
shown in Table 1. Therefore, researchers often use these functions when conducting multi-
objective optimization tests experiments. The simulation results are shown in Figure 2.

In this section, to demonstrate the capabilities of the improved NSGA-II, we perform
experiments on the test functions with the original NSGA-II and other methods, such as
MOEA/D [19], IBEA [20] and SPEA2 [21], as comparison algorithms.
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Table 1. ZDT test functions and characteristics.

Function Name Mathematical Formula Function Characteristic

ZDT1

f1(x) = x1

f2(x) = g(x)
[
1−

√
f1(x)/g(x)

]
where g(x) = 1 + 9 · (∑n

i=2 xi)/(n− 1)

0 ≤ xi ≤ 1, i = 1, 2, Ln

Convex, continuous

ZDT2

f1(x) = x1

f2(x) = g(x)
[
1− ( f1(x)/g(x))2

]
where g(x) = 1 + 9 · (∑n

i=2 xi)/(n− 1)

0 ≤ xi ≤ 1, i = 1, 2, Ln

Concave, continuous

ZDT3

f1(x) = x1

f2(x) = g(x)[1− ( f1(x)/g(x))− ( f1(x)/g(x)) sin(10πx1)]

where g(x) = 1 + 9 · (∑n
i=2 xi)/(n− 1)

0 ≤ xi ≤ 1, i = 1, 2, Ln

Concave, discontinuous

ZDT4

f1(x) = x1

f2(x) = g(x)
[√

1− f1(x)/g(x)
]

where g(x) = 1 + 10 · (n− 1) + ∑n
i=2
[
x2

i − 10 cos(4πxi)
]

0 ≤ x1 ≤ 1,−5 ≤ xi ≤ 5, i = 2, Ln

Convex, multi-modal

The average values of the experimental algorithms for IGD and HV are presented in
Tables 2 and 3, respectively. (Each result is the average of the two metrics calculated for 10
independent runs of the same algorithm over the same problem.)
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Figure 2. Solutions with INSGA-II on ZDT test function.
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It is shown in Tables 2 and 3 that the performance index of the INSGA-II algorithm
is superior to four comparison algorithms on test functions. It is obvious from the above
experiments that INSGA-II has better convergence accuracy and distribution performance.

Table 2. IGD metric results for ZDT function.

Test Function Comparison Algorithm

NSGA-II MOEA/D IBEA SPEA2 INSGA-II

ZDT1 0.0052 0.0271 0.0041 0.0042 0.0015
ZDT2 0.0027 0.0132 0.0025 0.0032 0.0016
ZDT3 0.0143 0.0471 0.0083 0.0091 0.0032
ZDT4 0.0072 0.0147 0.0065 0.0062 0.0023

Table 3. HV metric results for DTLZ function.

Test Function Comparison Algorithm

NSGA-II MOEA/D IBEA SPEA2 INSGA-II

ZDT1 0.7124 0.6951 0.7199 0.7191 0.9115
ZDT2 0.6074 0.5865 0.6175 0.6327 0.8592
ZDT3 0.7331 0.5753 0.7486 0.7362 0.9269
ZDT4 0.7083 0.6608 0.7168 0.7240 0.8866

4.3. DTLZ Test Functions

In order to verify the feasibility of the algorithm proposed in this chapter in the high-
dimensional multi-objective problem, the DTLZ standard test set function is selected for
simulation experiments. The simulation results are shown in Figure 3 and the specific
expressions are shown in Table 4.

Table 4. DTLZ Test functions and characteristics.

Function Name Mathematical Formula

DTLZ1

min f1(x) =
1
2

x1x2 · · · xM−1(1 + g(xM))

min f2(x) =
1
2

x1x2 · · · (1− xM−1)(1 + g(xM))

...

min fM−1(x) =
1
2

x1(1− x2)(1 + g(xM))

min fM(x) =
1
2
(1− x1)(1 + g(xM))

g(xM) = 100

(
|xM|+ ∑

xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

)

DTLZ2

min f1(x) = (1 + g(xM)) cos(x1π/2) · · · cos(xM−2π/2) cos(xM−1π/2)

min f2(x) = (1 + g(xM)) cos(x1π/2) · · · cos(xM−2π/2) sin(xM−1π/2)
...

min fM−1(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2)

min fM(x) = (1 + g(xM)) sin(x1π/2)

g(xM) = ∑
x1∈xM

(xi − 0.5)2
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Table 4. Cont.

Function Name Mathematical Formula

DTLZ3

min f1(x) = (1 + g(xM)) cos(x1π/2) · · · cos(xM−2π/2) cos(xM−1π/2)

min f2(x) = (1 + g(xM)) cos(x1π/2) · · · cos(xM−2π/2) sin(xM−1π/2)
...

min fM−1(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2)

min fM(x) = (1 + g(xM)) sin(x1π/2)

g(xM) = 100

(
|xM|+ ∑

xx∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

)

DTLZ4

min f1(x) = (1 + g(xM)) cos(xα
1 π/2) · · · cos

(
xα

M−2π/2
)

cos
(

xα
M−1π/2

)
min f2(x) = (1 + g(xM)) cos(xα

1 π/2) · · · cos
(

xα
M−2π/2

)
sin
(

xα
M−1π/2

)
...

min fM−1(x) = (1 + g(xM)) cos(xα
1 π/2) sin(xα

2 π/2)

min fM(x) = (1 + g(xM)) sin(xα
1 π/2)

g(xM) = ∑
xi∈xM

(xi − 0.5)2

DTLZ5

min f1(x) = (1 + g(xM)) cos(θ1π/2) · · · cos(θM−2π/2) cos(θM−1π/2)

min f2(x) = (1 + g(xM)) cos(θ1π/2) · · · cos(θM−2π/2) sin(θM−1π/2)
...

min fM−1(x) = (1 + g(xM)) cos(θ1π/2) sin(θ2π/2)

min fM(x) = (1 + g(xM)) sin(θ1π/2)

g(xM) = ∑
x1∈xM

x0.1
i

θi =
π

4(1 + g(xM))
(1 + 2g(xM)xi)

DTLZ6

min f1(x1) = x1

...

min fM−1(xM−1) = xM−1

min fM(x) = (1 + g(xM))h( f1, f2, . . . , fM−1, g)

g(xM) = 1 +
9
|xM| ∑

xi∈xM

xi

h = M−
M−1

∑
i=1

[
fi

1 + g
(1 + sin(3π fi))

]

To prove the capability of the improved NSGA-II, we conduct experiments on the test
function with the original NSGA-II and other methods, such as MOEA/D [19], IBEA [20]
and SPEA2 [21], as comparison algorithms.

The average values of the experimental algorithms for IGD are presented in Table 5,
respectively. (Each result is the average of the two metrics calculated for 10 independent
runs of the same algorithm over the same problem.)
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

(e) DTLZ5 (f) DTLZ6

Figure 3. Solutions with INSGA-II on DTLZ test function.

It can be seen from Table 5, the performance index of the INSGA-II algorithm is
better than those of the four compared algorithms in terms of test functions. From the
above experiments, it can be seen that INSGA-II also has better convergence accuracy and
distribution performance in high-dimensional multi-objective optimization problems.

Table 5. IGD metric results for DTLZ function.

Test Function Comparison Algorithm

NSGA-II MOEA/D IBEA SPEA2 INSGA-II

DTLZ1 0.131 0.236 0.097 0.089 0.085
DTLZ2 0.377 0.576 0.284 0.262 0.205
DTLZ3 1.741 2.464 1.074 1.191 0.807
DTLZ4 0.561 0.896 0.320 0.334 0.231
DTLZ5 0.142 0.264 0.092 0.089 0.053
DTLZ6 0.278 0.529 0.108 0.095 0.052
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4.4. Parallel Chiller System

The proposed algorithm is applied to the chiller load distribution problem for the sake
of verifying the effectiveness of the presented algorithm in practical project problems [22].
The cooling capacity required for the central air conditioning system is provided by the
chilled water system, which includes chilled water pumps and a chiller system, as shown in
Figure 4. Generally, the chiller system is operated jointly by multiple chillers with different
refrigeration performance to manufacture chilled water, and the different refrigeration
performance determines that the energy consumption of each chiller is also different. A
multi-chiller system is composed of two or more chillers connected by parallel or tandem
piping to a common distribution system. The chiller system can adjust its own load size so
that each chiller operates at the optimal operating point.

Figure 4. Chiller system diagram.

The chiller can adjust its own load size to meet the basic end load demand so that the
parallel chiller system can operate at optimal performance. In a refrigeration system, the
system performs best when the total power of the chiller system is minimal and the end
load demand is met. The problem of the load distribution of parallel chillers is to adjust the
load distribution of the parallel chillers to achieve energy savings. At a certain wet bulb
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temperature, the electrical power of a concentric chiller can be presented as an optimized
function of the partial load rate [23] as follows:

Pi = ai + bi × PLRi + ci × PLR2
i + di × PLR3

i (14)

where Pi is the power of the ith chiller, PLRi is the partial load rate of the ith chiller, and ai,
bi, and ci are the fitting coefficients of the energy consumption curve of the chiller.

An optimal distribution problem for parallel chillers is to achieve the lowest energy
consumption and the highest cooling capacity. The abstraction of the actual project into a
mathematical problem could be represented as the formula below:

min P =
n

∑
i=1

Pi (15)

max Q =
n

∑
i=1

PLRi ×Qi (16)

where P is the total power of multiple parallel chillers, and Q is the cooling capacity of
the chiller.

A chiller system with three chillers of 800 RT cooling capacity was selected for testing
in Case 1 so as to confirm that the improved NSGA-II algorithm could be implemented
to tackle the load distribution issues. To further verify the algorithm in solving the load
distribution problem of parallel chillers, a cooling system which consists of six chillers was
selected in Case 2, including four same chillers with a cooling capacity 1280 RT and 2 other
chillers of 1250 RT. The purpose was to test whether the improved NSGA-II algorithm can
search for optimal values in different multi-chiller systems. Through these two classical test
cases, we verified the feasibility of the INSGA-II algorithm for solving practical problems.
In the two test cases, the performance parameters of the chillers are shown in Table 6.

Table 6. Chiller parameters for test cases.

Test Case Chiller ai bi ci di Capacity

Case 1 1 100.95 818.61 −973.43 788.55 800
2 66.598 606.34 −380.58 275.95 800
3 130.09 304.58 14.377 99.80 800

Case 2 1 399.345 −122.12 770.46 - 1200
2 287.116 80.04 700.48 - 1280
3 −120.505 1525.99 −502.14 - 1280
4 −19.121 898.76 −98.15 - 1280
5 −95.029 1202.39 −352.16 - 1250
6 191.750 224.86 524.04 - 1250

We applied the proposed INSGA-II algorithm proposed in this paper to the parallel
chiller’s cooling capacity distribution problem. The improved NSGA-II algorithm was
compared with the original NSGA-II, and other methods such as MOEA/D, IBEA and
SPEA2 algorithms; the simulation and optimization results are shown as follows.

In Figure 5, each point represents the optimal solution that satisfies both Equations (15)
and (16).
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Figure 5. Solutions with INSGA-II on parallel chiller’s cooling capacity distribution problem.

In Tables 7 and 8, the results of the INSGA-II algorithm are compared with the results of
the NSGA-II, MOEA/D, IBEA and SPEA2 algorithms. Under the same load, the INSGA-II
algorithm is more effective in saving energy, which shows the effectiveness of the INSGA-II
algorithm in solving practical problems [24].

Table 7. Comparison of the optimization results of different algorithms in Case 1.

Load Requirements NSGA-II MOEA/D IBEA SPEA2 INSGA-II

2160 1589.4 1591.2 1574.9 1575.3 1565.3
1920 1419.4 1421.1 1413.4 1412.4 1406.5
1680 1250.6 1251.3 1247.9 1244.5 1242.5
1440 1007.4 1017.2 998.3 997.1 994.9
1200 923.1 945.8 862.2 854.6 842.7
960 742.8 781.4 715.3 712.0 697.8

Table 8. Comparison of the optimization results of different algorithms in Case 2.

Load Requirements NSGA-II MOEA/D IBEA SPEA2 INSGA-II

6850 4768.3 4819.5 4758.0 4754.6 4743.4
6470 4449.6 4453.4 4432.9 4431.1 4423.3
6090 4185.8 4189.9 4161.6 4152.4 4142.7
5710 3940.7 3951.0 3922.4 3918.2 3904.6
5330 3656.2 3682.5 3641.4 3638.3 3626.2

5. Conclusions

By analyzing the classical multi-objective evolutionary algorithm NSGA-II, it is found
that the balance of convergence and diversity of the algorithm mainly depends on the
strategy and method within the algorithm. We propose an improved NSGA-II algorithm
which balances the global search ability of the algorithm in the preliminary period and
the local exploitation ability in the later period by introducing adaptive parameters, and
INSGA-II is able to improve the convergence speed and accuracy. At the same time, we
adopt the Levy flight strategy to improve the global exploitation capability and a random
walk strategy to improve the local search capability so that it can solve the problems of
insufficient global search capability and the tendency to be trapped in a local optimum.
To evaluate the performance of the INSGA-II algorithm proposed in this paper, it is com-
pared with the algorithm before improvement and three other multi-objective evolutionary
algorithms in the two-objective ZDT test set and three-objective DTLZ test set functions,
as well as in practical engineering. The results show that the proposed algorithm has
better convergence and diversity. In the future, we will analyze the complex Pareto front
properties, design more efficient algorithms, and concentrate on the study of dynamic
multi-objective optimization problems.
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