
Citation: Tian, Y.; Jing, D. Towards an

Automatic Test Generation Method

for Systems of Systems Based on

Fault Injection and Model-Based

Systems Engineering. Appl. Sci. 2022,

12, 11863. https://doi.org/

10.3390/app122211863

Academic Editor: Dimitris Mourtzis

Received: 16 October 2022

Accepted: 18 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Towards an Automatic Test Generation Method for Systems of
Systems Based on Fault Injection and Model-Based
Systems Engineering
Yingchun Tian * and Delin Jing

School of Software, Changzhou University, Changzhou 213164, China
* Correspondence: yingchun.tian@gmail.com

Abstract: The emergence and development of systems of systems (SoSs) have expanded the com-
plexity and adaptability of systems engineering. Due to the heterogeneity of its constituent systems,
designing and analyzing an SoS faces enormous challenges. Therefore, the verification of an SoS is
important in its design phase. However, related methods and techniques are still in the preliminary
research state, mainly for requirements verification and system verification, and a lack of efforts in
design verification for SoSs. Aiming to provide the ability to detect hazardous states at the design
phase, we worked on a novel method for automatically generating test cases for model verification
in SoSs. Considering the characteristics of SoSs, the method adopts fault injection and model-based
system engineering as the foundations to extend the automated generation capability of test cases.
This paper proposes an automatic test generation (ATG) method for an SoS based on fault injection
and model-based systems engineering (MBSE). It is meant to generate test cases that can be used to
check the effectiveness of fault detection or identification in SoSs and for the effective testing of their
constituent systems (CSs). This paper discusses scenario generation and ATG in linear temporal logic
and designs an algorithm to generate traces as test suites, taking into account the constraints of the
models. By establishing a concept alignment example (CAE) as the experimental use case, three test
scenarios are generated automatically, showing that the use of the proposed ATG method provides a
reasonable hazardous detection capability for verification in SoS design. The main contributions of the
paper are (1) the description of the proposed two-phase ATG approach with fault-centric modeling
activities and generation-related activities; (2) the explanation of the designed ATG algorithm at both
high and low levels; and (3) the discussion of the experiment in an emergency response CAE with
three generated test scenarios.

Keywords: automatic test generation; systems of systems; model-based system engineering; model
verification

1. Introduction

With the rapid development of information techniques and the accelerated evolution
of industries, the cooperation and interoperation of remote systems are creating more
complex systems, which are called systems of systems (SoSs) [1,2]. Due to their complexity,
traditional system testing techniques are only efficient for constituent systems (CSs) but
are no longer sufficient to verify SoSs. Simulation-based verification is heavily used for
verifying complex systems and is widely employed for analyzing SoS models [3,4]. A
set of input traces has to be selected to exercise the executable model of the SoS properly.
The objective of test generation is to identify some input trajectories that can be used for
simulation-based verification, assisting in identifying corner cases that expose model errors,
thereby increasing the designer’s confidence in the model analysis. Several techniques
for automatically generating test cases have been defined in the literature, starting from
the implementation of a system or model by representing its requirements [5–7]. Related
methods and techniques for SoS verification are still in the preliminary research state,

Appl. Sci. 2022, 12, 11863. https://doi.org/10.3390/app122211863 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211863
https://doi.org/10.3390/app122211863
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122211863
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211863?type=check_update&version=2

Appl. Sci. 2022, 12, 11863 2 of 17

mainly for requirements verification and system verification. There is a lack of efforts
in design verification for SoSs; currently, the test cases for design verification are mainly
designed manually by SoS designers or architects. Aiming to provide the ability to detect
hazardous states at the design phase, we worked on a novel method of automatically
generating test cases for model verification in SoSs.

In this paper, we focus on model-based test generation, which uses a model-based
representation to compose the requirements or functions of a system and SoS and automat-
ically generate test cases for design verification. More precisely, we design an approach
and a specific algorithm to extend the application of model-based fault-injection test-case
generation to the case of an SoS. Fault-based test generation [8] aims to produce a set of test
cases that exercise the system under test to stress its fault tolerance. In the context of an SoS,
we aim to apply fault-based test generation to identify possible sequences of behaviors that
expose hazards at the SoS level. The obtained test cases represent the input for effectively
testing the SoS behavior. The main objectives of the paper are to (1) propose an automatic
test generation (ATG) approach adopting fault injection and model-based system engineer-
ing (MBSE); (2) design an ATG algorithm to support test cases generation; and (3) apply
the proposed ATG method in an experimental SoS. The proposed ATG method provides
the ability to detect hazardous states at the design phase, assisting design verification for
SoS engineering.

2. Background

ATG for complex systems is a challenging research topic and several solutions have
been proposed in the literature [9–11]. In the context of SoSs, test generation is still an
active research topic, and there are currently no standard methods and approaches that are
widely used or have developed into the norm.

The technique of fault-based test generation is well-known in the context of system
design. Some studies focused on improving accuracy and classification ability via fault
diagnosis [12,13]; others applied related techniques on complex systems in various domains,
such as agriculture [14] and mechanical engineering [15]. Fault-based test generation is
complementary to the structural test generation that generates tests aiming at maximizing
a coverage metric based on the syntactic structure of the model behavior specification. In
the following subsections, we provide a brief overview of the application of fault injection
techniques for verifying digital systems and service-oriented architecture (SOA).

2.1. Fault-Based Test Case Generation for Digital Systems

Digital systems were one of the early research areas studying and applying fault-based
test generation. In [16], the authors described a test generation method that combined
architectural and gate-level techniques to achieve tests with a high fault coverage. In [17],
the tests generated from high-level descriptions using software test generation techniques
were used as drivers for subsequent gate-level automatic test pattern generation processes
reducing the effort and testing time. Corno et al. [18] presented an automatic test-program
generation for the testing of system-on-a-chip cores based on evolutionary algorithms
aiming at obtaining a high fault coverage for design validation at the behavioral register-
transfer level. In [19], the authors described a method for generating tests starting from a
VHDL model and using behavioral descriptions to describe the failure model. In [20], a
two-phase approach was described for minimal diagnostic test set generation. In [21], Shi
et al. described a genetic-algorithm-based approach to diagnose test generation, aiming to
generate tests capable of diagnosing a single fault. In [22], the application of integer linear
programming techniques to select a representative set of test cases for diagnostic purposes
was described.

Satisfiability (SAT) solvers have been extensively used as backend engines for auto-
matic test pattern generation (ATPG) procedures. The papers [23] and [19] represented the
initial stage of research efforts on converting ATPG to SAT problems. Yang et al. [24] de-
scribed a formal engine based on SAT-solving techniques for generating a minimal test set.

Appl. Sci. 2022, 12, 11863 3 of 17

In [25], the authors provided an overview of recent advances in exploiting such techniques,
introducing an incremental satisfiability-based mechanism. In [26], a general overview of
the strength and weaknesses of this technique was summarized, which pointed out two
main challenges, including transformation overhead and efficiency. Among recent works,
new SAT-based APTG processes were designed to face challenges via preprocessing [27],
incremental workflow [28], and increased defect coverage [29].

2.2. Fault Injection Test Generation for Service-Oriented Architectures

SOA is a set of loosely coupled, independent components called services that expose
a well-defined interface and communicate exchanging messages [30,31]. In an SOA, the
computation and resource access are performed using network infrastructures and service
communications standards such as Web Services Description Language (WSDL) or Simple
Object Access Protocol (SOAP). Each invoked service may not be aware of the internal
status of other services, and it only exposes its interface, completely encapsulating the
implementation aspects of the service. A Web service is a specific embodiment of an SOA
service that uses the HTTP protocol and Web-related standards as backbone technologies
for its invocation.

SOAs and Web services are already extensively used in e-commerce and e-banking
applications and an even more pervasive adoption is envisioned in the future as a techno-
logical layer for the Internet of things [32,33]. Correctness, availability, and reliability are
desired characteristics of an SOA and many approaches have been developed to ensure that
a given set of services satisfy those requirements even in presence of faults [31,34]. Fault
injection mechanisms are extensively exploited to ensure a safe composition of Web services
even in the presence of failures. In [35], the authors proposed a fault injection method
for testing Web services based on data perturbation of the XML messages exchanged by
the services. The data of the message could be modified according to the XML schema
syntax, such as a data value perturbation, the modified message was sent to the Web service,
and the response was then validated by the test framework. Additionally, to support the
designed method, a tool named GenAutoWS was developed and implemented. In [36],
the authors described a fault injection framework for testing Web services’ fault-tolerance
based on the emulation of a WAN network and the injection of network and application
faults. Ghani et al. [37] provided an overview of testing methods for Web services covering
compile-time and run-time software fault injection mechanisms and tools and how to reuse
the techniques in the context of the dependability assessment of Web services.

Considering the wide application of model-based system engineering (MBSE), a
model-based test generation is beneficial to support constituent systems and to embed
verification into the SoS life cycle, especially for design verification. Therefore, among
the different existing ATG methods, the model-based fault injection test case generation
for systems was adopted as the foundation of this research, and it can be described as
follows steps: (i) an input model of the system under test is provided as input; (ii) the
input is processed either manually or automatically and an enriched model is produced,
identifying for each component a list of failure modes that affect it; (iii) a set of system-level
ATG constraints conditions are identified and formalized directly in the model or using
a tool-specific language; and (iv) the enhanced input model and the ATG constraints are
processed by the engine searching for test cases leading to the violation of system-level
hazards by the injection of faults. A set of test cases is produced as a result of the ATG
process. Each test case contains a sequence of input values and fault injections that leads to
the occurrence of a hazard condition. The test cases can be used to exercise a fault-tolerant
implementation of the model or to reason on the model since each test case may expose
possible flaws in the system design or specification.

The remainder of this paper is organized as follows. Section 3 presents the proposed
ATG method. Section 4 provides the setup of the experiment, which is the modeling of
a simplified emergency response SoS as the concept alignment example (CAE). Section 5
discusses the experimental results of our study. Section 6 summarizes our contributions.

Appl. Sci. 2022, 12, 11863 4 of 17

3. Proposed Methodology

This research focuses on proposing a model-based test case generation method for
the analysis of the effects of predictable faults on the SoS functionality at the design stage,
containing an algorithm to enhance the automation ability in the process. Therefore, our
primary objective was not to maximize a given coverage metric, but rather to identify the
minimum number of independent events that could cause a hazardous state in the SoS to
be reached.

In the context of an SoS, test case generation based on fault injection aims to increase
stakeholders’ confidence in the SoS robustness from a quality assurance perspective. The
generated test suites can be used to simulate the behavior of the SoS in the presence of a spe-
cific sequence of faults evaluating the correct capability of detecting and tolerating faults.

Evaluating the safety aspects of an SoS is of paramount importance due to the complex
emergent and unexpected evolutions it may expose. In particular, an unsafe behavior may
result as a consequence of the following SoS characteristics [38–40]:

1. Evolutionary development: an initial design that is considered safe in a first develop-
ment iteration can expose unsafe behaviors as a consequence of the addition of new
services or the modification of existing functions in successive design iterations.

2. Operational and managerial independence: the integration of systems that are reliable
and safe with respect to local hazard conditions can be unsafe from an SoS point of
view due to the inherent independence of the CSs from both an operational and a
managerial standpoint.

3. Emergent behavior: all potential unsafe behaviors should be detected and properly
evaluated by the SoS designers. For an industrial SoS, it is difficult to avoid unsafe
behaviors due to the loose coupling of the CSs and the evolutionary nature of their
design. Hence, the identification of hazardous chain of events is fundamental to
evaluating the safety of the entire SoS.

The SoS test generation methodology is summarized in Figure 1. During the first
phase, modeling, different models of the SoS are produced: (i) a first model of the SoS is
produced using the Unified Profile for DoDAF and MODAF (UPDM) standard; (ii) a model
of error behaviors is then specified (SoS error model), which contains a description of faults
that can affect the CSs and the effects of the faults on their behavior (failure modes), but
the detection and protection mechanisms are not modeled; and (iii) the error model is
further elaborated including the fault detection and isolation (FDI) mechanisms as well as
recovery procedures.

Appl. Sci. 2022, 12, 11863 4 of 18

The remainder of this paper is organized as follows. Section 3 presents the proposed

ATG method. Section 4 provides the setup of the experiment, which is the modeling of a

simplified emergency response SoS as the concept alignment example (CAE). Section 5

discusses the experimental results of our study. Section 6 summarizes our contributions.

3. Proposed Methodology

This research focuses on proposing a model‐based test case generation method for

the analysis of the effects of predictable faults on the SoS functionality at the design stage,

containing an algorithm to enhance the automation ability in the process. Therefore, our

primary objective was not to maximize a given coverage metric, but rather to identify the

minimum number of independent events that could cause a hazardous state in the SoS to

be reached.

In the context of an SoS, test case generation based on fault injection aims to increase

stakeholders’ confidence in the SoS robustness from a quality assurance perspective. The

generated test suites can be used to simulate the behavior of the SoS in the presence of a

specific sequence of faults evaluating the correct capability of detecting and tolerating

faults.

Evaluating the safety aspects of an SoS is of paramount importance due to the com‐

plex emergent and unexpected evolutions it may expose. In particular, an unsafe behavior

may result as a consequence of the following SoS characteristics [38–40]:

1. Evolutionary development: an initial design that is considered safe in a first devel‐

opment iteration can expose unsafe behaviors as a consequence of the addition of

new services or the modification of existing functions in successive design iterations.

2. Operational and managerial independence: the integration of systems that are relia‐

ble and safe with respect to local hazard conditions can be unsafe from an SoS point

of view due to the inherent independence of the CSs from both an operational and a

managerial standpoint.

3. Emergent behavior: all potential unsafe behaviors should be detected and properly

evaluated by the SoS designers. For an industrial SoS, it is difficult to avoid unsafe

behaviors due to the loose coupling of the CSs and the evolutionary nature of their

design. Hence, the identification of hazardous chain of events is fundamental to eval‐

uating the safety of the entire SoS.

The SoS test generation methodology is summarized in Figure 1. During the first phase,

modeling, different models of the SoS are produced: (i) a first model of the SoS is produced

using the Unified Profile for DoDAF and MODAF (UPDM) standard; (ii) a model of error

behaviors is then specified (SoS error model), which contains a description of faults that can

affect the CSs and the effects of the faults on their behavior (failure modes), but the detection

and protection mechanisms are not modeled; and (iii) the error model is further elaborated

including the fault detection and isolation (FDI) mechanisms as well as recovery procedures.

Figure 1. SoS test case generation methodology designed with two phases, modeling and generation. Figure 1. SoS test case generation methodology designed with two phases, modeling and generation.

In the second phase, generation, three test generation scenarios are envisioned: (i) the
error model is elaborated by a scenario generation that identifies how the SoS can evolve to
a hazardous state specified as an external predicate by the user; (ii) the scenarios generated
at the previous step are exploited to produce fault-injection-based test cases that can be

Appl. Sci. 2022, 12, 11863 5 of 17

used to exercise a fault-tolerant model of the SoS or as a driver for the effective robustness
test of a new CS under development; and (iii) for each fault detection mechanism modeled
as a monitor component, a specific fault injection test suite is produced automatically
deriving the fault injections that enable the FDI process. The generation steps we designed
are detailed in the following subsections.

3.1. Scenario Generation

The objective of the analysis is to generate acceptable executions that can reveal the
evolution of the SoS from a safe to a hazardous state. These executions represent corner case
scenarios that expose a possible hazardous evolution of the system that the designers should
evaluate to compute the effective probability of occurrence of the generated hazardous
event chain and design the safety control architecture of the SoS.

Formally, an SoS is modeled as a state transition system. A state transition system is a
tuple M = (S, Init, Trans) where S is a set of states (possibly infinite), Init is a subset of S
(initial states), and Trans is the state transition relation that maps a state to a set of target
states. A run of the transition system is a sequence of states π = s0s1 . . . sn . . . starting from
an initial state s0 s.t. Init(s0) and ∀k ≥ 0 Trans(sk, sk+1) hold.

The hazardous states are modeled as a linear temporal logic (LTL) formula ∅ =
G[¬H(s)] where H(s) is a Boolean formula that encodes the hazardous states.

The scenario generation process produces a set of finite traces Γ = [π1, π2, . . . , πN].
Each generated trace πk =

〈
s0, s1, . . . , sM〉

satisfy the hazard LTL formula πk �M ∅ follow-
ing the common semantics of the �M operator in the context of LTL logic.

Each generated trace reveals an executable scenario that leads to a hazard condition,
which can be used further to diagnose the design flaws in the SoS models and operational
hierarchy. The design flaws can be classified into three categories: (i) single design fault of
an individual CS model or the interaction of multiple CSs; (ii) combination of design faults
in CSs; (iii) unsafe SoS emergent behavior after CSs’ integration.

It is the responsibility of the ATG tool to generate a meaningful set of scenarios to
identify such unsafe emergent behavior, enabling designers to reason about the SoS and
how individual CSs impact the safety of other systems.

3.2. Automatic Test Generation

The ATG aims at identifying a set of traces each containing a sequence of SoS un-
controllable and fault events that can be used to assess the fault tolerance of the SoS fault
control model or a CS. The ATG can be performed using two complementary approaches,
namely, the ATG for FDI or the ATG from generated scenarios.

The objective of the analysis is to produce a test suite that exercises the SoS fault
detection mechanisms. The generated tests can be used to check the effectiveness of the FDI
and for effective testing of CSs. The formalization of the problem is similar to the scenario
generation and is summarized as follows.

The SoS model, containing both the nominal and the failure mode behaviors, is
modeled as a state transition system M = (S, Init, Trans). The FDI mechanism is modeled
as a monitor component formally represented by a Boolean function over the state of the
model FDI(s) that holds if the injected fault is detected. Similar to the scenario generation
case, the ATG process efficiently enumerates all the runs π of the transition systems s. t.
π �M G[¬FDI(s)].

Each generated trace identifies how it is possible to enable the detection of the FDI
mechanism and it can be used to evaluate the effectiveness and correctness of the model as
well as a driver for the testing of the CS.

The SoS unsafe emergent behaviors can be processed by the ATG, producing a set
of test cases in which each stresses a subset of the fault identified in the scenario. More
precisely, the generated scenario can be elaborated by producing a representation of the
minimal cut set (MCS) considering the unsafe behavior as the top-level event. From an
engineering perspective, a failure of any component in the MCS means the failure of

Appl. Sci. 2022, 12, 11863 6 of 17

the whole system. Hence, the MCS is then processed by generating a campaign of fault
injections that can be then used to i) stress a fault-tolerant model of the SoS and ii) identify
test scenarios for a CS that has to be integrated into the flow.

3.3. Automatic Test Generation Algorithm

In this section, we provide a description of our designed ATG algorithm at both high
and low levels. In the high abstraction level, the inputs of the algorithm are as follows.

1. Model of the SoS formally capturing: (i) the SoS architecture (CSs, interfaces, data
exchanged with their types, services exposed/required and related events, etc.); (ii)
the behavior of each CS in terms of state machines; (iii) the events identifying external
accidents or modeled faults for each CS; (iv) the ATG predicate over the formal
elements of the model (events exchanged, states entered in state machines, etc.) that
models the target of the ATG; and (v) additional assumptions on the CS or on the
occurrences of the fault/accident events.

2. Automatic test generation algorithm’s parameter settings: (i) test case maximum
length bound—the maximum admissible length for the test case; and (ii) test cases
maximum number—the maximum number of test cases produced by the ATG.

The outputs of the ATG algorithms are:

1. A test report summarizing the results of the ATG process (number of generated test
cases and for each test case, its length, and the number of faults injected).

2. A test suite collecting the test cases as an XML file reporting for each case the sequence
of occurrences of the accidental and fault events leading to the satisfaction of the
hazard predicate.

The detailed design of the low-abstraction-level algorithm is shown in Figure 2. The
time complexity of this algorithm is O(n). The details of this algorithm can be summarized
as the following steps:

Appl. Sci. 2022, 12, 11863 7 of 18

Figure 2. Flowchart of ATG algorithm supporting the test case generation.

Exit: If the maximum number of desired test cases is reached, exit.

At the end of the ATG execution, if the hazardous condition can be verified within

the maximum length bound, a test suite is generated that takes into account the constraints

of the model.

4. The Concept Alignment Example Setup and Modeling

The emergency response (ER) SoS is a frequently investigated scenario in the SoS

context. Therefore, we established a simplified ER SoS as the concept alignment example

(CAE) to ensure all parties in this research were working under the same concept. In this

paper, we used this CAE as the experimental environment to illustrate the use of our pro‐

posed ATG method. This section describes the CAE design model, which covers the mod‐

eling in detail as well as the setup and provides an overview of the algorithmic aspect of

the ATG process.

4.1. Experimental Setup

Figure 3 represents an overview of the test generation activities flow, which can be

summarized as follows:

1. The SoS was captured as a UPDM model including the description of the CSs, their

interfaces, and the connections between them. For each interface/connection the rel‐

evant events exchanged were identified.

2. For each system, the model was detailed with the possible faults that could occur,

and how the occurrence of a fault affected its functionality was also formalized.

3. A set of SoS hazard conditions was then identified and modeled. The hazard condi‐

tions represented unsafe behaviors that the SoS should not expose and were used by

the ATG tool to identify interesting test cases.

Figure 2. Flowchart of ATG algorithm supporting the test case generation.

Appl. Sci. 2022, 12, 11863 7 of 17

Step 1: During the initialization phase, the input model is processed, and auxiliary
variables and constraints are synthesized to enable the successive test generation phase.

Loop: It iterates through step 2 to step 5 until the exit condition is met.
Step 2: Add permanently to the search problem the constraints imposed by the model

for the current bound.
Step 3: Check for the satisfaction of the hazard predicate considering the input model

and the additional constraints.
Step 4: In case the search has been successful, extract the found test cases and

store them.
Step 5: If the maximum number of desired test cases is not reached, compute additional

constraints to efficiently exclude the generated test cases for the successive searches.
Exit: If the maximum number of desired test cases is reached, exit.
At the end of the ATG execution, if the hazardous condition can be verified within the

maximum length bound, a test suite is generated that takes into account the constraints of
the model.

4. The Concept Alignment Example Setup and Modeling

The emergency response (ER) SoS is a frequently investigated scenario in the SoS
context. Therefore, we established a simplified ER SoS as the concept alignment example
(CAE) to ensure all parties in this research were working under the same concept. In
this paper, we used this CAE as the experimental environment to illustrate the use of our
proposed ATG method. This section describes the CAE design model, which covers the
modeling in detail as well as the setup and provides an overview of the algorithmic aspect
of the ATG process.

4.1. Experimental Setup

Figure 3 represents an overview of the test generation activities flow, which can be
summarized as follows:

1. The SoS was captured as a UPDM model including the description of the CSs, their
interfaces, and the connections between them. For each interface/connection the
relevant events exchanged were identified.

2. For each system, the model was detailed with the possible faults that could occur, and
how the occurrence of a fault affected its functionality was also formalized.

3. A set of SoS hazard conditions was then identified and modeled. The hazard condi-
tions represented unsafe behaviors that the SoS should not expose and were used by
the ATG tool to identify interesting test cases.

4. The enhanced UPDM model was then processed by the ATG tool and a set of test
suites was produced.

Appl. Sci. 2022, 12, 11863 8 of 18

4. The enhanced UPDM model was then processed by the ATG tool and a set of test

suites was produced.

Figure 3. Fault injection‐based ATG abstraction level workflow for model‐based SoS engineering.

The CAE was an emergency response (ER) SoS and the CAE model allowed the ex‐

ploration of different approaches to the modeling of the different aspects of an ER SoS. In

this section, we outline a simplified CAE model to show the limitations and concrete ap‐

plicability of the ATG process, which we use as a running example in the next section.

The CAE model for ATG (CAE‐ATG) was developed as a UPDM model in IBM Ra‐

tional Rhapsody, and Figure 4 provides a top‐level view of the system, representing the

system’s interface description (SV‐1) view.

Figure 4. CAE‐ATG top‐level SV‐1 system interface description diagram.

Figure 3. Fault injection-based ATG abstraction level workflow for model-based SoS engineering.

Appl. Sci. 2022, 12, 11863 8 of 17

The CAE was an emergency response (ER) SoS and the CAE model allowed the
exploration of different approaches to the modeling of the different aspects of an ER SoS.
In this section, we outline a simplified CAE model to show the limitations and concrete
applicability of the ATG process, which we use as a running example in the next section.

The CAE model for ATG (CAE-ATG) was developed as a UPDM model in IBM
Rational Rhapsody, and Figure 4 provides a top-level view of the system, representing the
system’s interface description (SV-1) view.

Appl. Sci. 2022, 12, 11863 8 of 18

4. The enhanced UPDM model was then processed by the ATG tool and a set of test

suites was produced.

Figure 3. Fault injection‐based ATG abstraction level workflow for model‐based SoS engineering.

The CAE was an emergency response (ER) SoS and the CAE model allowed the ex‐

ploration of different approaches to the modeling of the different aspects of an ER SoS. In

this section, we outline a simplified CAE model to show the limitations and concrete ap‐

plicability of the ATG process, which we use as a running example in the next section.

The CAE model for ATG (CAE‐ATG) was developed as a UPDM model in IBM Ra‐

tional Rhapsody, and Figure 4 provides a top‐level view of the system, representing the

system’s interface description (SV‐1) view.

Figure 4. CAE‐ATG top‐level SV‐1 system interface description diagram.
Figure 4. CAE-ATG top-level SV-1 system interface description diagram.

The CAE-ATG was composed of three CSs, namely the district, the fire station, and
the firefighting machine. Each CS was modeled as a SystemNode that communicated with
the others using Services that exchanged events. Each event may represent:

• An accidental hazardous condition that the SoS should control to avoid losses such as
the occurrence of a fire in the district (event heOnFire of the district block);

• A communication/action between blocks in order to safely control the hazardous
event (events evOnFire of fire station or evEst of district);

• The occurrence of a fault that degrades the capability of a CS to properly handle or
control hazardous events such as evCarFailure of the firefighting machine block.

For each block, the set of ports and the events exchanged by each port were defined as
well as the connection to other blocks. The objective of the SoS control was to avoid the
occurrence of hazardous conditions as a consequence of CS misbehavior or unexpected
interactions. For the CAE-ATG, it was possible to define several hazards, and for the
simplified case in the analysis used for this experiment, we focused only on one specific
hazard, which was expressed as “every time the district is on fire, the fire is not extinguished
in a finite amount of time”. This condition identified a set of undesirable SoS behaviors for
which the safety control loop could not react to the detection of a district fire. The following

Appl. Sci. 2022, 12, 11863 9 of 17

is a brief description of each CS, focusing on the system requirements for controlling
fire events.

District: It represents an urban area under the control of a fire station and subject to
the occurrence of a fire accident. In case of fire, it is expected that the fire is signaled from
the district to the corresponding fire station, and it is considered extinguished if at least
one firefighting machine is dispatched to the district and successfully executes its task.

Fire station: it has the responsibility of collecting the alarm signals from the district
and dispatching as soon as possible a firefighting machine to extinguish the fire. It is the
responsibility of the district to keep track of the dispatched machines.

Firefighting machine: it has the responsibility of receiving a command from the
fire station, to move to the district, and to extinguish the fire. Once the fire has been
extinguished, the machine returns to the fire station and can receive another command. If
the machine is in “operative” mode (i.e., it has been dispatched to the district), it cannot
receive other commands.

4.2. SoS Modeling for ATG

The modeling of the SoS for the fault-based ATG was similar to the one defined for
the simulation analysis. In order to allow the tool to automatically search for test cases, the
SoS model should be set up to include elements capturing some analysis-specific concepts
such as the fault or accident events. Figure 5 summarizes the main modeling activities and
artifacts required for the successful execution of the ATG process. The modeling flow was
as follows:

1. Control architecture identification: The SoS architecture was modeled in terms of CSs
and messages exchanged. For each system, an internal decomposition could be per-
formed to better identify the responsibilities of safety control at lower hierarchical levels.

2. Control events and interconnection definition: For each system, the subset of received
and sent events relevant to the safety of the SoS was identified. These events repre-
sented the messages and control actions that were needed to coordinate the CS in
order to mitigate the effects of a dangerous event.

3. System’s behavior: The nominal behavior of each system was modeled by describing
how it reacted to hazardous events or other systems interactions. The modeled
behavior represented an abstraction of the behavior of the CS. For each system, the
possible faults were identified and the behavior of the system in their presence was
captured (error model). The system’s behavior may contain or not a description of the
fault detection, identification, and recovery mechanisms.

4. Unsafe state or fault detection monitors: The hazard conditions representing unsafe
states that may lead to accidents and losses were identified in case a scenario-based
generation (or scenario-based ATG) had to be performed. In case a fault injection for
fault detection had to be performed, the detection mechanisms were modeled.

Appl. Sci. 2022, 12, 11863 10 of 18

4. Unsafe state or fault detection monitors: The hazard conditions representing unsafe

states that may lead to accidents and losses were identified in case a scenario‐based

generation (or scenario‐based ATG) had to be performed. In case a fault injection for

fault detection had to be performed, the detection mechanisms were modeled.

Figure 5. Modeling activities flows for ATG and its relationships to the analysis tool.

4.3. CAE‐ATG Control Events and Interconnection Model

The CAE‐ATG SoS architecture is omitted due to the page limit. In this subsection,

we detail the events that each block can send and receive and the modeled interconnec‐

tions between blocks.

4.3.1. District CS Block

The district communicates with the fire station to signal the presence of a fire and

with the firefighting machines. The CS communicates using two interaction points. Port

pFS allows the interaction with the fire station block; port ffm allows events to be received

from the firefighting machines. The details of the exchanged events are summarized in

Table 1.

Table 1. Events list of the district CS block with event name, direction (send/received), description,

and its destination/source block.

District Block

Event
Destination/Source Block

Name Send/Received Description

heOnFire Received Notification of the presence of fire. None

evEst Received Notification of ceased fire alarm. Firefighting machine

evOnFire Sent

Alarm signal emitted in case of fire presence

(heOnFire event). The event represents the re‐

quest of a firefighting machine from the district

to the fire station.

Fire station

The presence of a fire was modeled using a specific event (heOnFire) modeling both

the presence of a fire and the occurrence of an accident causing it. From a modeling point

of view, it is an “external” event, and it is not associated with any source block (it repre‐

sents the “random” occurrence of the emergency accident, and it can be seen as an “un‐

controlled input” of the CS). The other events (evOnFire and evEst) are exchanged as part

of the control algorithm of the fire event: once the fire has been detected, the district sends

Figure 5. Modeling activities flows for ATG and its relationships to the analysis tool.

Appl. Sci. 2022, 12, 11863 10 of 17

4.3. CAE-ATG Control Events and Interconnection Model

The CAE-ATG SoS architecture is omitted due to the page limit. In this subsection, we
detail the events that each block can send and receive and the modeled interconnections
between blocks.

4.3.1. District CS Block

The district communicates with the fire station to signal the presence of a fire and with
the firefighting machines. The CS communicates using two interaction points. Port pFS
allows the interaction with the fire station block; port ffm allows events to be received from
the firefighting machines. The details of the exchanged events are summarized in Table 1.

Table 1. Events list of the district CS block with event name, direction (send/received), description,
and its destination/source block.

District Block

Event
Destination/Source Block

Name Send/Received Description

heOnFire Received Notification of the presence of fire. None

evEst Received Notification of ceased fire alarm. Firefighting machine

evOnFire Sent
Alarm signal emitted in case of fire presence (heOnFire event).

The event represents the request of a firefighting machine from
the district to the fire station.

Fire station

The presence of a fire was modeled using a specific event (heOnFire) modeling both
the presence of a fire and the occurrence of an accident causing it. From a modeling point of
view, it is an “external” event, and it is not associated with any source block (it represents
the “random” occurrence of the emergency accident, and it can be seen as an “uncontrolled
input” of the CS). The other events (evOnFire and evEst) are exchanged as part of the control
algorithm of the fire event: once the fire has been detected, the district sends evOnFire to
the fire station to signal it and if the SoS control is effective, it receives an evEst event in a
finite amount of time.

4.3.2. Fire Station CS block

The fire station communicates with the environment with two ports. Port pDistrict en-
capsulates the interactions with the district; port ffm with multiplicity 3 allows the dispatch
of the commands from the district to the three firefighting machines. The exchanged events
are summarized in Table 2.

Table 2. Events list of the fire station CS block with event name, direction (send/received), description,
and its destination/source block.

Fire Station Block

Event
Destination/Source Block

Name Send/Received Description

evOnFire Received The event models the notification of the presence of the fire in the district. District

evGo Sent The event models the dispatch command sent to the first available
machine when a fire event has been notified.

Firefighting machine 1
Firefighting machine 2
Firefighting machine 3

evCarReturned Received The event is received when a firefighting machine returns after a fire
has been extinguished.

Firefighting machine 1
Firefighting machine 2
Firefighting machine 3

faComm Received The event models a possible fault in the communication infrastructure
of the fire station. None

restoreComm Received The event models a restore event following a fault of the
communication infrastructure. None

Appl. Sci. 2022, 12, 11863 11 of 17

Events evOnFire, evGo, and evCarReturned model the messages exchanged by the fire
station as part of the control loop. Events faComm and restoreComm model the presence of
faults. The failure of communication (faComm) is a “random” transient fault that affects the
capability of the fire station to effectively respond to an alarm: when present, the system
moves to a “degraded” mode in which all the communications are disabled. The fire station
returns to the normal state when the restore event (restoreComm) happens.

4.3.3. Fire Fighting Machine CS block

The CAE-ATG model contains three firefighting machines per district. Each machine
receives a dispatch command from the district (evGo) and if the fire is extinguished (evEst),
returns back to the fire station (evCarReturned). Each machine is subject to a fault that
completely inhibits its usage in case of fire (evCarFailure) until the car is restored (evCarFail-
ureRestore). The details of the exchanged events are summarized in Table 3.

Table 3. Events list of the firefighting machine CS block with event name, direction (send/received),
description, and its destination/source block.

Firefighting Machine Block

Event
Destination/Source Block

Name Send/Received Description

evGo Received Dispatch command from the fire station Fire station

evEst Sent Communication of ceased fire alarm (fire extinguished) District

evCarReturned Sent Operation completion notification District

evCarFailure Received
Machine fault occurrence. When a machine is in failure

and under maintenance, it cannot be dispatched to
the district.

None

evCarFailureRestore Received Machine restoration after an evCarFailure None

4.4. CAE-ATG Systems Behavior Specification

For each system of the CAE-ATG, the behavior was specified in terms of a state
machine using the SV10b (systems state transition description UPDM diagram). Each state
machine formalized the nominal behavior of the system in presence of events (hazardous,
request/send, fault, and recovery). The transitions of the state machines were triggered
by events and may be guarded by conditions on the system resources (modeled as integer
attributes of the SystemPart UPDM block). The actions consisted of the emission of events
or elaboration of the attributes. The following sections are detailed descriptions of each
CS’s behaviors.

4.4.1. District CS Behavior

As Figure 6a shows, the behavior of the district modelled the requests of a firefighting
machine (evOnFire) as soon as a fire hazardous event (heOnFire) occurred. The system
switched back to a normal state of operation (state NOMINAL) as soon as a fire extinguish-
ing event (evEst) was received.

4.4.2. Firefighting Machine CS Behavior

The firefighting machine’s modal behavior is depicted in Figure 6b. The car starts
in an IDLE state and when an evGo event occurs, it moves first to a MOVING state and
then to a WORKING state. After the fire has been successfully extinguished (transition
from WORKING to REPORTING state) it moves back to the fire station and reports its
presence to the district. Each firefighting machine is subject to a fault event (evCarFailure)
that inhibits the normal operative mode of the car until a corresponding restore event
(evCarFailureRestore) happens.

Appl. Sci. 2022, 12, 11863 12 of 17

Appl. Sci. 2022, 12, 11863 12 of 18

evCarFailure Received

Machine fault occurrence. When a machine is

in failure and under maintenance, it cannot be

dispatched to the district.

None

evCarFailureRestore Received Machine restoration after an evCarFailure None

4.4. CAE‐ATG Systems Behavior Specification

For each system of the CAE‐ATG, the behavior was specified in terms of a state ma‐

chine using the SV10b (systems state transition description UPDM diagram). Each state

machine formalized the nominal behavior of the system in presence of events (hazardous,

request/send, fault, and recovery). The transitions of the state machines were triggered by

events and may be guarded by conditions on the system resources (modeled as integer

attributes of the SystemPart UPDM block). The actions consisted of the emission of events

or elaboration of the attributes. The following sections are detailed descriptions of each

CS’s behaviors.

4.4.1. District CS Behavior

As Figure 6a shows, the behavior of the district modelled the requests of a firefighting

machine (evOnFire) as soon as a fire hazardous event (heOnFire) occurred. The system

switched back to a normal state of operation (state NOMINAL) as soon as a fire extin‐

guishing event (evEst) was received.

(a) (b)

Figure 6. Behavior specification modeled in state machines using an SV‐10b diagram for (a) district

CS and (b) firefighting machine CS.

4.4.2. Firefighting Machine CS Behavior

The firefighting machine’s modal behavior is depicted in Figure 6b. The car starts in

an IDLE state and when an evGo event occurs, it moves first to a MOVING state and then

to a WORKING state. After the fire has been successfully extinguished (transition from

WORKING to REPORTING state) it moves back to the fire station and reports its presence

to the district. Each firefighting machine is subject to a fault event (evCarFailure) that in‐

hibits the normal operative mode of the car until a corresponding restore event

(evCarFailureRestore) happens.

4.4.3. Fire Station CS Behavior

In normal mode, the fire station system dispatches a firefighting machine to the dis‐

trict every time it is requested (evOnFire received) and there is at least one car available.

In case a communication failure (event faComm) is present, the system transitions to the

COMM_FAILURE state, in which it does not react to external requests and cannot

Figure 6. Behavior specification modeled in state machines using an SV-10b diagram for (a) district
CS and (b) firefighting machine CS.

4.4.3. Fire Station CS Behavior

In normal mode, the fire station system dispatches a firefighting machine to the district
every time it is requested (evOnFire received) and there is at least one car available. In
case a communication failure (event faComm) is present, the system transitions to the
COMM_FAILURE state, in which it does not react to external requests and cannot dispatch
machines until a restore event happens (restoreComm). Figure 7 is the SV-10b diagram for
fire station.

Appl. Sci. 2022, 12, 11863 13 of 18

dispatch machines until a restore event happens (restoreComm). Figure 7 is the SV‐10b di‐

agram for fire station.

Figure 7. Behavior specification modeled in state machines using an SV‐10b diagram for the fire

station CS.

4.5. CAE‐ATG SoS Hazard Conditions

For experimental purposes, a hazardous condition regarding the ability to respond

to fire events was set for the CAE SoS. In order to enable the ATG process, a proper for‐

malization of the condition using the GCSL was needed, which is presented below.

Whenever [evOnFire] occurs, [evEst] does not occur within [range].

It is a derivation of the existing pattern “Whenever [p1] occurs [p2] does not occur

during following [a, b]”.

The property models a specific bound in terms of the number of steps within the SoS

that must react to a fire event. This bound is considered “sufficiently” large to impose a

correct safety constraint on the SoS: in case a reaction of the system does not occur within

the specified bound, the fire is considered to cause severe damage to the district. The tool

imposes some constraints on the possible formalization of the SoS hazards that can be only

a safety property. More precisely, a hazard should be modeled as a Boolean function that

is FALSE if the hazard does not occur and TRUE if the hazard occurs.

5. Experimental Results

The ATG execution process is responsible for identifying the hazardous chains of

events leading to the verification of an ATG condition that might be the reachability of an

unsafe state or the enabling of a fault detection mechanism. Each event chain represents a

test case that can be used to reason on the model. The whole process implemented from a

technical point of view in the experiment to enable the ATG can be summarized as fol‐

lows.

1. The designer produces the UPDM model of the SoS following the guidelines in Sec‐

tion 4.

2. The model is checked by a model validation component. Only a subset of the UPDM

language is supported by the ATG engine and the main purpose of the validation is

to verify the compliance of the input model with the supported features. This is to

avoid the execution of time‐consuming successive steps by catching unsupported

Figure 7. Behavior specification modeled in state machines using an SV-10b diagram for the fire
station CS.

4.5. CAE-ATG SoS Hazard Conditions

For experimental purposes, a hazardous condition regarding the ability to respond
to fire events was set for the CAE SoS. In order to enable the ATG process, a proper
formalization of the condition using the GCSL was needed, which is presented below.

Whenever [evOnFire] occurs, [evEst] does not occur within [range].
It is a derivation of the existing pattern “Whenever [p1] occurs [p2] does not occur

during following [a, b]”.

Appl. Sci. 2022, 12, 11863 13 of 17

The property models a specific bound in terms of the number of steps within the SoS
that must react to a fire event. This bound is considered “sufficiently” large to impose a
correct safety constraint on the SoS: in case a reaction of the system does not occur within
the specified bound, the fire is considered to cause severe damage to the district. The tool
imposes some constraints on the possible formalization of the SoS hazards that can be only
a safety property. More precisely, a hazard should be modeled as a Boolean function that is
FALSE if the hazard does not occur and TRUE if the hazard occurs.

5. Experimental Results

The ATG execution process is responsible for identifying the hazardous chains of
events leading to the verification of an ATG condition that might be the reachability of an
unsafe state or the enabling of a fault detection mechanism. Each event chain represents a
test case that can be used to reason on the model. The whole process implemented from a
technical point of view in the experiment to enable the ATG can be summarized as follows.

1. The designer produces the UPDM model of the SoS following the guidelines in
Section 4.

2. The model is checked by a model validation component. Only a subset of the UPDM
language is supported by the ATG engine and the main purpose of the validation is to
verify the compliance of the input model with the supported features. This is to avoid
the execution of time-consuming successive steps by catching unsupported elements
as soon as possible. In case the validation fails, an error report is produced, and the
translation is aborted.

3. When the model is compliant with the ATG restrictions, the simulation is invoked to
generate the test cases. In particular, the following steps are performed: (i) the model
is processed using a model-to-model transformation that produces a semantically
equivalent model; (ii) the generated model is processed as a formal problem for the
verification to enable the ATG execution; and (iii) the ATG execution is effectively
performed, and a set of test cases is produced as well as a test generation report.

As an example, we simulated the application of the scenario generation analysis to the
CAE-ATG model. The ATG process intuitively looked for possible fault events injections
that led to the verification of the hazard, which in this case was the absence of the evEst
event within five model execution steps after the occurrence of a fire event. For each
generation loop in the algorithm, a MCS was produced according to input models as
the minimal operations and states for the top-level events. Then, the MSC was used in
conjunction with error constraints in the system-level design to inject faults for a test case.

In this experiment, multiple scenarios were generated as test cases under different
settings of the ATG algorithm parameters. Some generated scenarios are represented in
Table 4. For conciseness, only the relevant events are represented in the table and only the
change of value is marked after the ATG.

The three test cases identified different evolutions of the SoS leading to the hazard
condition. The three scenarios were representative of three distinct “families” of unsafe
behaviors exposed by this simplified CAE SoS.

Scenario SC-01 identified the presence of a car failure event evCarFailure as a cause
of hazard due to the design of the fire district control mechanism that did not take into
account the possibility that a car fails during the dispatching and could send a dispatch
event to a car without any check on its availability. The state-machine description of the
fire station reacted to the alarm dispatching the car; however, as captured by the test case,
if at the same time the car was in a failure state it could not receive the dispatch command;
hence, it was not capable of extinguishing the fire. This test case exposed a problem related
to the fire district design. This may be due to the simplified abstraction or to a design error.

Scenario SC-02 showed how the occurrence of a communication fault event in the
fire district led to the verification of the accident. This scenario exposed a possible fault
tolerance issue with the SoS, i.e., all the communications were handled by the fire district.
In this case, a redundant communication mechanism inside the fire district was needed

Appl. Sci. 2022, 12, 11863 14 of 17

to handle possible communication errors properly, without affecting the safety of the
entire SoS.

Table 4. Part of the scenarios automatically generated by the proposed ATG methodology as the test
cases for the CAE.

Test Case ID Step No.
Events Sequence

heOnFire evCarFailure evGo evOnFire faComm

SC-01 0 Present Absent Absent Absent Absent
1 Absent Present
2 Present Present

SC-02 0 Present Absent Absent Absent Absent
1 Absent Present Present

SC-03 0 Present Absent Absent Absent Absent
1 Present Present
2 Present Present Present
3 Present Present Present
4 Present Present
5 Absent

Scenario SC-03 identified a test case where, due to the limited number of vehicles, the
SoS was not capable of successfully tackling a fire event if more than three fire events were
previously detected. This test case exposed an inherent structural limitation of the SoS due
to the limited number of resources available, which was an unsafe behavior emerging after
the CSs were integrated to the SoS.

Many other cases are possible due to the asynchronous communication of the different
systems within the SoS. As already mentioned in previous sections, it is fundamental to
impose constraints on the admissible occurrences of failure and hazard events in order to
focus only on meaningful scenarios.

6. Conclusions

To enhance the capability of SoS model verification and improve the robustness of SoS
architecture design, we proposed an ATG method for an SoS with fault injection and model-
based systems engineering as the foundations. An SoS was modeled as a UPDM artifact
that contained formal models of accident events, fault occurrences, and hazardous states.
The hazardous behaviors could be caused by three types of issues, including single design
flaws within a single CS model or interactions between CSs, combinations of multiple
flaws within a CS model, and the emergence of dangerous behaviors after the CSs were
integrated into the SoS. It is the responsibility of the ATG to generate a set of meaningful
test cases identifying such unsafe emergent behaviors and it is fundamental to impose
assumptions on the occurrence of the events in order to derive meaningful test cases.

The proposed ATG method involved both modeling and analysis activities, consist-
ing of a two-phase ATG approach and a test generation algorithm. The first phase of
the designed ATG approach was modeling, which produced UPDM models with faults’
description, behaviors’ effects, and FDI mechanisms. The second phase of the designed
ATG approach was generation, which covered three envisioned generation scenarios, and
an algorithm supported the test generation activity by deriving the fault injections that
enabled the FDI process. This method was dedicated to automatically identify some input
trajectories as test cases for design verification; specifically, the test cases were used to
detect hazardous behaviors in CSs and SoS models.

In order to show the applicability of the proposed method, a specific embodiment of
the CAE use case, a simplified ER SoS, was described. By generating three scenarios as the
test cases exposing different hazardous behaviors in this CAE SoS model, we demonstrated
the feasibility of the ATG method proposed in this paper. Compared with a manual test case

Appl. Sci. 2022, 12, 11863 15 of 17

analysis and design, the proposed method improved the work efficiency. More importantly,
our ATG method provided the ability to detect hazardous states in SoS design verification.

More work is still required to refine the method to support constraints’ adjustment
for complex SoS models. In the current process, FDI mechanisms and SoS constraints
are manually specified in the relevant models through the modeling phase. Our further
research work will mainly focus on designing fault injection constraints as parameters
and upgrading the designed ATG algorithm and approach to support tuning constraints’
parameters. In addition, specific ATG methods and applications for different categories of
SoS and modified ATG for more system languages are follow-up research directions that
need more effort.

Author Contributions: Conceptualization, methodology, and software, Y.T.; validation, Y.T. and
D.J.; formal analysis, investigation, and resources, Y.T.; data curation, Y.T.; writing—original draft
preparation, Y.T.; writing—review and editing, D.J.; project administration and funding acquisition,
Y.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of the Jiangsu Higher Educa-
tion Institutions of China, grant number 20KJB520025 and the Changzhou Science and Technology
project, grant number CJ20200084.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
SoS system of systems
ATG automatic test generation
CS constituent system
CAE concept alignment example
SOA service-oriented architecture
SAT satisfiability
ATPG automatic test pattern generation
WSDL Web Services Description Language
SOAP Simple Object Access Protocol
MBSE model-based system engineering
UPDM Unified Profile for DoDAF and MODAF
FDI fault detection and isolation
LTL linear temporal logic
MCS minimal cut set
ER emergency response
CAE-ATG CAE model for ATG
SV-1 systems interface description
SV10b systems state transition description UPDM diagram

References
1. Silva, R.D.A.; Braga, R.T.V. Simulating Systems-of-Systems with Agent-Based Modeling: A Systematic Literature Review. IEEE

Syst. J. 2020, 14, 3609–3617. [CrossRef]
2. Shaked, A.; Reich, Y. Designing Development Processes Related to System of Systems Using A Modeling Framework. Syst. Eng.

2019, 22, 561–575. [CrossRef]
3. Bicaku, A.; Zsilak, M.; Theiler, P.; Tauber, M.; Delsing, J. Security Standard Compliance Verification in System of Systems. IEEE

Syst. J. 2022, 16, 2195–2205. [CrossRef]
4. Grogan, P.T. Modeling Challenges for Earth Observing Systems of Systems. In Proceedings of the IGARSS 2019 IEEE, Yokohama,

Japan, 20–23 July 2019; pp. 5289–5292. [CrossRef]

http://doi.org/10.1109/JSYST.2020.2980896
http://doi.org/10.1002/sys.21512
http://doi.org/10.1109/JSYST.2021.3064196
http://doi.org/10.1109/igarss.2019.8898636

Appl. Sci. 2022, 12, 11863 16 of 17

5. Yousaf, N.; Azam, F.; Butt, W.H.; Anwar, M.W.; Rashid, M. Automated Model-Based Test Case Generation for Web User Interfaces
(WUI) From Interaction Flow Modeling Language (IFML) Models. IEEE Access 2019, 7, 67331–67354. [CrossRef]

6. Lin, Y.D.; Lai, Y.K.; Tsou, Y.L.; Lai, Y.C.; Liou, E.C.; Chiang, Y. Generic Validation Criteria and Methodologies for SDN Applications.
IEEE Syst. J. 2019, 13, 3909–3920. [CrossRef]

7. Kabir, S.; Papadopoulos, Y. Computational Intelligence for Safety Assurance of Cooperative Systems of Systems. Computer 2020,
53, 24–34. [CrossRef]

8. Wright, A. Contemporary Approaches to Fault Tolerance. Commun. ACM 2009, 52, 13–15. [CrossRef]
9. Liu, S.; Nakajima, S. Automatic Test Case and Test Oracle Generation Based on Functional Scenarios in Formal Specifications for

Conformance Testing. IEEE Trans. Softw. Eng. 2022, 48, 691–712. [CrossRef]
10. Jhala, R.; Majumdar, R. Software Model Checking. ACM Comput. Surv. 2009, 41, 1–54. [CrossRef]
11. Javvaji, P.K.; Tragoudas, S. Test Pattern Generation and Critical Path Selection in the Presence of Statistical Delays. IEEE Trans.

Very Large Scale Integr. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 163–173. [CrossRef]
12. Chen, H.; Miao, F.; Chen, Y.; Xiong, Y.; Chen, T. A Hyperspectral Image Classification Method Using Multifeature Vectors and

Optimized KELM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2781–2795. [CrossRef]
13. Zhao, H.; Liu, J.; Chen, H.; Chen, J.; Li, Y.; Xu, J.; Deng, W. Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss

Convolutional Deep Belief Network. IEEE Trans. Reliab. 2022, 2022, 1–11. [CrossRef]
14. Wu, D.; Wu, C. Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products

with Multiple Time Windows. Agriculture 2022, 12, 793. [CrossRef]
15. Ren, Z.; Han, X.; Yu, X.; Skjetne, R.; Leira, B.J.; Sævik, S.; Zhu, M. Data-Driven Simultaneous Identification of the 6DOF Dynamic

Model and Wave Load for A Ship in Waves. Mech. Syst. Signal Process. 2023, 184, 109422. [CrossRef]
16. Oberg, J.; Meiklejohn, S.; Sherwood, T.; Kastner, R. Leveraging Gate-Level Properties to Identify Hardware Timing Channels.

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2014, 33, 1288–1301. [CrossRef]
17. Tracey, N.; Clark, J.; Mander, K.; McDermid, J. An Automated Framework for Structural Test-Data Generation. In Proceedings of

the ICASE’98 IEEE, Honolulu, HI, USA, 12–15 May 1998; pp. 285–288. [CrossRef]
18. Corno, F.; Sanchez, E.; Reorda, M.S.; Squillero, G. Automatic Test Program Generation: A Case Study. IEEE Des. Test Comput.

2004, 21, 102–109. [CrossRef]
19. Hobeika, C.; Thibeault, C.; Boland, J.F. Functional Constraint Extraction from Register Transfer Level for ATPG. IEEE Trans. Very

Large Scale Integr. (VLSI) Syst. 2015, 23, 407–412. [CrossRef]
20. Shukoor, M.A.; Agrawal, V.D. A Two Phase Approach for Minimal Diagnostic Test Set Generation. In Proceedings of the IETS’09,

Sevilla, Spain, 20–23 May 2009; pp. 115–120. [CrossRef]
21. Shi, Z.; Ma, H.; Zhang, Q.; Liu, Y.; Zhao, Y.; He, J. Test Generation for Hardware Trojan Detection Using Correlation Analysis and

Genetic Algorithm. ACM Trans. Embed. Comput. Syst. 2021, 20, 1–20. [CrossRef]
22. Lin, J.; Cai, S.; Luo, C.; Lin, Q.; Zhang, H. Towards More Efficient Meta-Heuristic Algorithms for Combinatorial Test Generation.

In Proceedings of the EFEC/FSE’19 ACM, Tallinn, Estonia, 12–14 August 2019; pp. 212–222. [CrossRef]
23. Lingappan, L.; Ravi, S.; Jha, N.K. Satisfiability-Based Test Generation for Nonseparable RTL Controller-Datapath Circuits. IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 2006, 25, 544–557. [CrossRef]
24. Yang, L.; Yan, J.; Zhang, J. Generating Minimal Test Set Satisfying MC/DC Criterion via SAT Based Approach. In Proceedings of

the SAC’18 ACM, Pau, France, 9–11 April 2018; pp. 1899–1906. [CrossRef]
25. Alizadeh, B.; Sharafinejad, S.R. Incremental SAT-Based Accurate Auto-Correction of Sequential Circuits Through Automatic Test

Pattern Generation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2019, 38, 245–252. [CrossRef]
26. Eggersglus, S.; Milewski, S.; Rajski, J.; Tyszer, J. On Reduction of Deterministic Test Pattern Sets. In Proceedings of the ITC’21

IEEE, Anaheim, CA, USA, 10–13 October 2021; pp. 260–267. [CrossRef]
27. Huang, J.; Zhen, H.-L.; Wang, N.; Yuan, M.; Mao, H.; Huang, Y.; Tao, J. Accelerate SAT-based ATPG via Preprocessing and New

Conflict Management Heuristics. In Proceedings of the ASP-DAC’22 IEEE, Taipei, Taiwan, 17–18 January 2022; pp. 365–370.
[CrossRef]

28. Wang, P.; Gharehbaghi, A.M.; Fujita, M. An Automatic Test Pattern Generation Method for Multiple Stuck-At Faults by
Incrementally Extending the Test Patterns. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 2990–2999. [CrossRef]

29. Pandey, S.; Liao, Z.; Nandi, S.; Gupta, S.; Natarajan, S.; Sinha, A.; Singh, A.; Chatterjee, A. SAT-ATPG Generated Multi-Pattern
Scan Tests for Cell Internal Defects: Coverage Analysis for Resistive Opens and Shorts. In Proceedings of the ITC’20 IEEE,
Washington, DC, USA, 1–4 November 2020; pp. 1–10. [CrossRef]

30. Papazoglou, M.P.; Heuvel, W.-J.V.D. Service Oriented Architectures: Approaches, Technologies and Research Issues. VLDB J.
2007, 16, 389–415. [CrossRef]

31. Niknejad, N.; Ismail, W.; Ghani, I.; Nazari, B.; Bahari, M.; Hussin, A.R.B.C. Understanding Service-Oriented Architecture (SOA):
A Systematic Literature Review and Directions for Further Investigation. Inf. Syst. 2020, 91, 101491. [CrossRef]

32. Guinard, D.; Trifa, V.; Karnouskos, S.; Spiess, P.; Savio, D. Interacting with the SOA-Based Internet of Things: Discovery, Query,
Selection, and On-Demand Provisioning of Web Services. IEEE Trans. Serv. Comput. 2010, 3, 223–235. [CrossRef]

33. Costa, B.; Pires, P.F.; Delicato, F.C. Towards the Adoption of OMG Standards in the Development of SOA-Based IoT Systems.
J. Syst. Softw. 2020, 169, 110720. [CrossRef]

34. Joukhadar, G.; Rabhi, F. SOA in Practice—A Study of Governance Aspects. Inf. Syst. Front. 2016, 18, 499–510. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2917674
http://doi.org/10.1109/JSYST.2019.2921599
http://doi.org/10.1109/MC.2020.3014604
http://doi.org/10.1145/1538788.1538794
http://doi.org/10.1109/TSE.2020.2999884
http://doi.org/10.1145/1592434.1592438
http://doi.org/10.1109/TVLSI.2019.2941426
http://doi.org/10.1109/JSTARS.2021.3059451
http://doi.org/10.1109/TR.2022.3180273
http://doi.org/10.3390/agriculture12060793
http://doi.org/10.1016/j.ymssp.2022.109422
http://doi.org/10.1109/TCAD.2014.2331332
http://doi.org/10.1109/ase.1998.732680
http://doi.org/10.1109/MDT.2004.1277902
http://doi.org/10.1109/TVLSI.2014.2309439
http://doi.org/10.1109/ets.2009.33
http://doi.org/10.1145/3446837
http://doi.org/10.1145/3338906.3338914
http://doi.org/10.1109/TCAD.2005.853700
http://doi.org/10.1145/3167132.3167335
http://doi.org/10.1109/TCAD.2018.2812123
http://doi.org/10.1109/itc50571.2021.00035
http://doi.org/10.1109/asp-dac52403.2022.9712573
http://doi.org/10.1109/TCAD.2019.2957364
http://doi.org/10.1109/itc44778.2020.9325240
http://doi.org/10.1007/s00778-007-0044-3
http://doi.org/10.1016/j.is.2020.101491
http://doi.org/10.1109/TSC.2010.3
http://doi.org/10.1016/j.jss.2020.110720
http://doi.org/10.1007/s10796-015-9607-9

Appl. Sci. 2022, 12, 11863 17 of 17

35. de Melo, A.C.V.; Silveira, P. Improving Data Perturbation Testing Techniques for Web Services. Inf. Sci. 2011, 181, 600–619.
[CrossRef]

36. Petrova-Antonova, D.; Ilieva, S.; Manova, D. TASSA: Testing Framework for Web Service Orchestrations. In Proceedings of the
AST’15 IEEE, Florence, Italy, 15–18 May 2015; pp. 8–12. [CrossRef]

37. Ghani, I.; Wan-Kadir, W.M.; Mustafa, A. Web Service Testing Techniques: A Systematic Literature Review. Int. J. Adv. Comput. Sci.
Appl. 2019, 10, 443–458. [CrossRef]

38. Maier, M.W. Architecting Principles for Systems-of-Systems. INCOSE Int. Symp. 1996, 6, 565–573. [CrossRef]
39. Nielsen, C.B.; Larsen, P.G.; Fitzgerald, J.; Woodcock, J.; Peleska, J. Systems of Systems Engineering: Basic Concepts, Model-Based

Techniques, and Research Directions. ACM Comput. Surv. 2015, 48, 1–41. [CrossRef]
40. Firesmith, D. Profiling Systems Using the Defining Characteristics of Systems of Systems (SoS); Software Engineering Institute, Carnegie

Mellon University: Pittsburgh, PA, USA, 2010. Available online: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=
9269 (accessed on 20 July 2022). [CrossRef]

http://doi.org/10.1016/j.ins.2010.09.030
http://doi.org/10.1109/ast.2015.9
http://doi.org/10.14569/IJACSA.2019.0100858
http://doi.org/10.1002/j.2334-5837.1996.tb02054.x
http://doi.org/10.1145/2794381
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9269
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9269
http://doi.org/10.1184/R1/6582545.V1

	Introduction
	Background
	Fault-Based Test Case Generation for Digital Systems
	Fault Injection Test Generation for Service-Oriented Architectures

	Proposed Methodology
	Scenario Generation
	Automatic Test Generation
	Automatic Test Generation Algorithm

	The Concept Alignment Example Setup and Modeling
	Experimental Setup
	SoS Modeling for ATG
	CAE-ATG Control Events and Interconnection Model
	District CS Block
	Fire Station CS block
	Fire Fighting Machine CS block

	CAE-ATG Systems Behavior Specification
	District CS Behavior
	Firefighting Machine CS Behavior
	Fire Station CS Behavior

	CAE-ATG SoS Hazard Conditions

	Experimental Results
	Conclusions
	References

