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Abstract: Digital images are very popular and commonly used for hiding crucial data. In a few
instances, image steganography is misused for communicating with improper data. In this paper, a ro-
bust deep neural network is proposed for the identification of content-adaptive image steganography
schemes. Multiple novel strategies are applied to improve detection performance. Two non-trainable
convolutional layers is used to guide the proposed CNN with fixed kernels. Thirty-one kernels
are used in both non-trainable layers, of which thirty are high-pass kernels and one is the neutral
kernel. The layer-specific learning rate is applied for each layer. ReLU with customized thresholding
is applied to achieve better performance. In the proposed method, image down-sampling is not
performed; only the global average pooling layer is considered in the last part of the network. The ex-
perimental results are verified on BOWS2 and BOSSBase image sets. Content-adaptive steganography
schemes, such as HILL, Mi-POD, S-UNIWARD, and WOW), are considered for generating the stego
images with different payloads. In experimental analysis, the proposed scheme is compared with
some of the latest schemes, where the proposed scheme outperforms other state-of-the-art techniques
in the most cases.

Keywords: image steganalysis; image steganography; convolutional neural network; deep neural
network; content-adaptive steganography

1. Introduction

Image steganography schemes are applied to hide secret data/information that can-
not be noticed by the naked eye. In most content-adaptive steganography schemes,
syndrome-trellis code (STC) is considered to make the schemes less vulnerable. In this
paper, four notable content-adaptive steganography schemes, such as HILL [1], Mi-POD [2],
S-UNIWARD [3], and WOW [4], are analyzed. In steganography, there is only one unit
value (addition or subtraction) in some image pixels, which is in accordance with the
steganography scheme and message. STC ensures that there is no visible change in the
image. In comparison to other classification problems, such as object recognition and
texture classification, steganalysis is more challenging due to the low value of stego noise.
Difference arrays of cover and stego images in the different steganography schemes are
displayed in Figure 1, where the cover image [5] is shown in the first row. Difference
arrays of cover and HILL, Mi-POD, S-UNIWARD, and WOW stego images are shown in
the second and third rows for 0.2 bit per pixel (bpp) and 0.4 bpp payloads, respectively.
Although it is difficult to interpret the difference between different steganography schemes,
the changes are more evident with a higher value of the payload.
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S-UNIWARD Payload=0.2 WOW Payload=0.2

MiPOD Payload=0.4 S-UNIWARD Payload=0.4 WOW Payload=0.4

Figure 1. Cover image with residual arrays of cover and stego images.

The effect of steganography with different schemes cannot be understood effectively
using natural images, as displayed in Figure 1. A computer-generated (CG) image with
(0-255) is displayed in the first row of Figure 2 to understand a better effect of different
steganography schemes. There is a difference of one unit value in adjacent pixels, with
the exception of major diagonal pixel values, as well as a difference of 255 unit values
in major diagonal pixel values. In different images of cover and stego images, it can be
observed that each scheme has different behavior. In the HILL scheme, the changes in
pixel values are more diversified than Mi-POD, followed by S-UNIWARD. However, WOW
behavior is entirely different. The variations in the behavior of schemes are also reflected in
experimental analysis.
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HILL MiPOD

S-UNIWARD wow

Figure 2. CG cover image and residual arrays of cover-stego images.

Several attempts have been made for the detection of image steganography. Initially,
the thriving steganalysis is performed using Markov model-based features. Moreover,
some researchers proposed steganalysis schemes based on texture descriptors. The first
order and higher order difference arrays and residual 2D arrays are exploited for large-size
feature vectors. As the large-size feature vector is more effective in steganalysis due to low
stego noise, a feature vector is extracted from the spatial and/or frequency domain. Lyu
and Farid [6] exploited the statistics of magnitude and phase information in the frequency
domain for the detection of F5 [7] and Outguess [8] steganography schemes. Li et al. [9]
used the texture and Markov features, with a dimension of 22,153, for the detection of
HUGO [10] steganography scheme. Fridrich and Kodovsky [11] introduced thirty high-pass
kernels that are frequently recognized as SRM kernels. These kernels are based on the first
and higher order difference arrays and multiple quantization factors. Additionally, SRM
kernels are applicable in most deep networks. The feature vector with a dimension of 34,671
is extracted using a Markov model, where the scheme is verified on HUGO and =1 variants



Appl. Sci. 2022,12, 11869

4 of 14

steganography schemes. Penvy et al. [12] extracted Markov features of the second order
from the first order difference arrays for the detection of the -1 steganography scheme. The
variants of the scheme [11], abbreviated as maxSRM and maxSRMd2, are proposed by Den-
emark et al. [13]. The formation process of the co-occurrence matrix is modified to decrease
the feature vector size in the maxSRM and maxSRMd2 schemes. The Denemark scheme is
verified on WOW, S-UNIWARD, and S-UNIGARD steganography schemes. Furthermore,
Tang et al. [14] utilized the Markov model, although the dense and edge region is exploited
for better results. The local correlation pattern [15] is proposed for identifying HUGO,
S-UNIWARD, and the LSB matching revisited LSBMR [16] steganography schemes. Li
et al. [17] proposed the steganalysis scheme based on texture operator features and verified
it on HUGO and WOW steganography schemes. In this scheme, images are preprocessed
with high-pass kernels. Moreover, PCA is used to decrease the size of feature vector and
increase the performance. In [18-20], popular texture operators, such as the variant of
the local binary pattern (LBP) with some improvements, are proposed for steganalysis.
Moreover, Markov features are combined for better performance. In [18,19], schemes are
verified on HILL, Mi-POD, and S-UNIWARD steganography schemes. A steganalysis
scheme [20] is applied for the detection of HILL, CMD-HILL [21], and Mi-POD steganog-
raphy schemes. At present, many recent steganalysis schemes depend on deep networks,
as the high computing power hardware is not an obstacle. Qian et al. [22,23] introduced
the deep network for the detection of HUGO, S-UNIWARD, and WOW steganography
schemes. Images are preprocessed by one 5 x 5 high-pass kernel. However, the results
are inferior to some manual schemes. In the Xu et al. method [24], the tanh is applied
rather than ReLU for the identification of HILL and S-UNIWARD steganography schemes.
In [25,26], numerous residual 2D arrays and one 5 x 5 high-pass kernel are used to enhance
the performance on many types of stego images. Ye et al. [27] used the residual array after
processing with thirty high-pass kernels [11]. Truncated linear unit (TLU) is considered
rather than ReLU to outperform previous schemes on WOW, HILL, and S-UNIWARD. A
deep network known as steganalysis residual network (SRNet) [28] is introduced, where
skip connections and pooling layers with other types of layers are used to create three
categories of blocks. Moments are extracted from a trained deep network to identify HILL,
S-UNIWARD, and WOW for uncompressed images and J-UNIWARD and UED-JC [29]
for compressed images. Yedroudj et al. [30] utilized thirty high-pass kernels [11] in a
non-trainable convolutional layer. In [31], a new concept of shared batch normalization
is proposed to improve the performance. The images are preprocessed with twenty high-
pass kernels [11], which is verified on HILL, HUGO, S-UNIWARD, and WOW. In Zhang
et al. [32], thirty high-pass kernels [11] are utilized in a non-trainable layer. In particular,
two concepts are incorporated with the suggested CNN, bottleneck approach and spatial
pyramid pooling, for the detection of three popular types of stego images. Furthermore,
Xiang et al. [33] utilized thirty high-pass kernels in a non-trainable convolutional layer with
some improvements in the order of layers. Wang et al. [34] preprocessed the image with
thirty high-pass kernels and included the transfer learning approach. The authors exploited
both spatial and frequency domains. The network was initialized with trained CNN from
low-capacity stego images and verified on S-UNIWARD and WOW stego images. As can be
seen from previous research on image steganalysis, the majority of the previous articles can
improve the performance by exploiting the high-pass kernels in preprocessing to increase
the stego noise for better classification. In this paper, two measures are considered to reduce
the detection error without increasing the computational cost. The key measurements of
the proposed scheme are outlined as follows:

e Inthe proposed scheme, thirty-one kernels are used; thirty are high-pass kernels and
one is the neutral kernel.

e  Twonon-trainable convolutional layers are considered using thirty-one kernels; one layer
is used at the beginning of the network and the second before the middle of the network.
To retain a complete statistical information, down-sampling is not performed.
The layer-specific learning rate is considered for better results.
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e  The clipped ReLU layer is applied with a customized cut-off value for better control
on the CNN.

e Softmax classifier is the popular choice in CNN. However, several classifiers are
investigated and the SVM classifier is the most suitable.

e  The outcomes of the proposed scheme are equated with the popular schemes Zhu-Net,
SRNet, Yedroudj-Net, and Ye-Net.

e  The comprehensive outcomes are discussed for HILL, Mi-POD, S-UNIWARD, and
WOW steganography schemes with 0.2, 0.3, and 0.4 bpp payloads.

e  The proposed scheme is discussed in detail in Section 2. The experimental evaluation
is carried out in Section 3 and the conclusions are presented in Section 4.

2. The Proposed Scheme

Numerous image steganography schemes are used to hide some secret data in an
image. At present, deep networks are found to be effective in state-of-the-art steganalysis
schemes. In this paper, a robust deep neural network for the steganalysis of content-
adaptive steganography schemes is proposed. The variation in different steganography
schemes can be understood from Figure 2, and only one standard solution can be proposed
for steganalysis. The effect of HILL, Mi-POD, S-UNIWARD, and WOW steganography
schemes can be understood by covariance plots of image entropy in Figure 3. A total of
twenty thousand images from BOWS2 [35] and BOSSBase [36] datasets is considered as a
cover image. The same number of corresponding stego images with payload PL = {0.1, 0.2,
0.3, 0.4} is created using HILL, Mi-POD, S-UNIWARD, and WOW steganography schemes.
In Figure 3, it is evident that a very small gap exists for cover and HILL PL = 0.1, which
indicates that the detection of HILL may be challenging. However, the gap is more evident
in Mi-POD followed by S-UNIWARD and WOW. Moreover, the behavior of covariance
plot is reflected in the classification of cover and stego images. The highest detection error
is found in HILL, followed by Mi-POD, S-UNIWARD, and WOW.
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Figure 3. Covariance plots of cover and stego images entropy.

The block diagram of the proposed scheme is shown in Figure 4. The proposed
convolutional neural network has two non-trainable convolutional layers. Thirty high-pass
kernels and one neutral kernel of size 5 x 5 are used in non-trainable convolutional layers.
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In Figure 5, one neutral kernel and three high-pass kernels are displayed to understand the
effect of kernels. Each kernel provides a different type of information. High-pass kernels
increase the stego noise. Conventionally, in [27,30-34], only one non-trainable convolutional
layer was used with thirty high-pass kernels. The neutral kernel is applied to retain the
unprocessed information from the preceding layer. Moreover, a neutral filter increases the
statistical information as unprocessed information is added with high-pass kernel operated
information. The effect is verified in experimental analysis. The proposed CNN is guided
by two non-trainable convolutional layers. It has already been established that a single
non-trainable convolutional layer with thirty high-pass kernels enhances the detection
performance for cover and stego images. In experimental analysis, it is discovered that the
performance can improve significantly using an additional non-trainable convolutional
layer. However, there is an adverse effect when three non-trainable convolutional layers
are tried. Therefore, two non-trainable layers are considered. The second non-trainable
layer provides the best results when used not very far from the first non-trainable layer.
If the distance between non-trainable layers becomes very far, then there is a drop in the
performance of the network.

i CONV 5x5 CONYV 3x3 80 CONYV 3x3 80 CONV 3x3 1
i 31 Filters > B_atch Norm |=p»| B_atch Norm [==3p| B_atch NOrm |
Clipped ReLU Clipped RelLU Clipped ReLU
CONV 5x5 CONV 3x3 80 CONV 3x3 40 CONYV 3x3 20
— 31 Filters )| Batch Norm =3 Batch Norm [=3»| Batch Norm jm=m
Clipped RelLU Clipped Rel U Clipped RelLU
CONYV 3x3 80 CONV 3x3 40 CONYV 3x3 20 CONV 3x3 40
—3( Batch Norm M= Batch Norm [=3»{ Batch Norm [=3»| Batch Norm [e=
Clipped RelLU Clipped ReLU Clipped ReLU Clipped RelLU
Global Fully S
) Average ) Connected 3 Softmax ) Classfication
Pooli Layer Layer
ooling Layer
Figure 4. Block diagram of the proposed scheme.
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0(0]l0]0]|O 0[0]0]0]|O 0[0]0]0]O -12|-=2]2]|-1

Figure 5. Neutral kernel and high-pass kernels.
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The network considers ten trainable convolutional layers, and their weights are initial-
ized using Glorot and Bengio [37] scheme. Each trainable convolutional layer is followed
by batch normalization and a clipped ReLU layer [38]. The layer-specific learning rate is
considered for each trainable convolutional layer. In previous research, a fixed learning rate,
irrespective of the layer, was considered. Layer-specific learning rate [39] can improve the
performance substantially which is found to be effective in many other applications [40,41].
The layer-specific learning is adapted by rigorous experimental analysis.

The ReL.U layer is utilized in the majority of the earlier networks. ReLU replaces the
negative elements with zero and remains intact in non-negative elements. The ReLU can

be defined as:
x, x>0
Elx) = {0, x <0

In this paper, the clipped ReLU (CReLU) is used to give an improved control in the
proposed CNN. Similar to ReLU, CReLU replaces the negative components with zero while
replacing the non-negative items that are higher than a threshold value with threshold
value (t). Positive elements smaller than the threshold value remain intact. The CReL.U can
be defined as:

0, x<0
Clx)=<x, 0<x<t
t, x>t

In the proposed CNN, down-sampling is not performed in order to gain the utmost
statistical information from the preceding layers. After the last clipped ReLU layer, the
global average pooling (GAP) layer is applied [30,42]. The GAP layer is effective in
decreasing the detection error. Stochastic gradient descent (SGD) optimizer is used to
train the CNN. The initial learning rate of 1 x 10~2 and L2 regularization factor 1 x 10~*
are considered. One hundred epochs are considered to fine-tune the proposed CNN. Mini-
batch of size 10 is considered. In the experimental analysis, the SVM classifier with the
quadratic kernel gave better results than the softmax classifier. Therefore, the SVM classifier
is utilized in the proposed CNN to classify cover and stego images. In Figure 6, the effect
of four kernels in layers three (second row), thirteen (third row), and twenty-eight (fourth
row) is displayed after training the CNN. Each layer has a different type of effect on the
image. The depth of the network has a significant effect on the kernels of the layer. As the
depth increases, the specific details become more prominent.

Figure 6. Cont.
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(d)

Figure 6. Effect of different layer kernels. (a) An image, (b) layer 3 kernels effect, (c) layer 13 kernels
effect, (d) layer 28 kernels effect.

3. Experimental Analysis

Digital image steganography is very popular for covert communication. Steganalysis
is challenging as there are little changes with a lower impact on the stego image. In this
paper, four popular content-adaptive steganography schemes are evaluated by classifying
cover and stego images. HILL, Mi-POD, S-UNIWARD, and WOW steganography schemes
are tested using the proposed scheme on BOWS2 [35] and BOSSBase [36] image sets. Each
set has ten thousand images with a dimension of 512 x 512 pixels of different varieties.
Experimental analysis is performed after changing the size of the image to 256 x 256 pixels
using interpolation. In most of the previous schemes, 256 x 256 pixel images are consid-
ered. The proposed scheme is compared with the latest schemes, SRNet [28], Ye-Net [27],
Yedroudj-Net [30], and Zhu-Net [32]. BOSSBase image set is used to create cover and stego
images for experimental analysis and experimental results are shown in Tables 1-6. Five
thousand images of each class, stego and cover, are considered for training the CNN. One
thousand and four thousand images are considered for validation and testing, respectively.
In Tables 7 and 8, experimental results are shown using BOWS2 [35] and BOSSBase [36]
image sets. The results are defined in terms of detection error. The small value of detection
error represents a better performance.

In Table 1, the detection errors are compared using thirty and thirty-one kernels in non-
trainable layers. As can be seen in Table 1, a neutral filter can improve the performance and
reduce the detection error. In earlier articles, only thirty kernels are used. The additional
kernel passes some unchanged information to subsequent layers, which can increase
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the detection accuracy. The improvement in experimental results can be seen in four
steganography schemes with three payloads.

Table 1. Detection errors using thirty and thirty-one kernels.

Steganography HILL Mi-POD S-UNIWARD WOW
Scheme
Payload (bpp) 02 03 04 02 0.3 0.4 02 0.3 0.4 02 03 04
Thirty
Non-trainable 03875 0.3242 02712 03475 02583 02378 03308 02166 0.1702 02523 0.1888 0.1512
kernels
Thirty-one
Non-trainable 03796 0.3198 02661 03414 02548 02343 03234 02132 0.1682 02491 0.1857 0.1484
kernels
In general, one preprocessing or non-trainable convolutional layer is considered in
previous networks. In the proposed scheme, CNN is guided by two non-trainable convolu-
tional layers that contain thirty-one kernels. The first non-trainable layer is considered after
the image input layer, and the second non-trainable layer after three trainable convolutional
layers. In experiments, three non-trainable layers are also considered. However, the best
performance is achieved when two non-trainable layers are used. There is a noticeable
reduction in detection error when compared with the single non-trainable layer, as depicted
in Table 2.
Table 2. Detection errors using different non-trainable convolutional layers.
Steganography HILL Mi-POD S-UNIWARD WOW
Scheme
Payload (bpp) 02 03 04 02 0.3 0.4 0.2 03 0.4 02 03 04
Single
Non-trainable 0.3925 0.3287 0.2739 0.3489 0.2624 0.2420 0.3337 0.2217 0.1749 0.2545 0.1905 0.1521
Layer
Two
Non-trainable 03796 0.3198 02661 03414 02548 02343 03234 02132 0.1682 02491 0.1857 0.1484
Layers
Three
Non-trainable ~ 0.3841 0.3246 02696 03479 02578 02390 03289 02157 0.1707 02525 0.1894 0.1503
Layers
The layer-specific learning rate is considered in the proposed scheme. Typically, a
common learning rate is considered in each convolutional layer. Although the customized
learning rate reduces the detection error moderately as shown in Table 3, customized learning
rates are found after an exhaustive experimental analysis. Four steganography methods with
three different payloads can be more effective in the proposed steganalysis scheme.
Table 3. Detection errors of fixed and layer-specific learning rate.
Steganography HILL Mi-POD S-UNIWARD WOW
Scheme
Payload (bpp) 0.2 0.3 04 0.2 0.3 04 0.2 0.3 04 0.2 0.3 0.4
Elxed 0.3898 0.3278 0.2715 0.3506 0.2606 0.2388 0.3289 0.2164 0.1731 0.2548 0.1898 0.1516
learing rate
Layerspecific 400 (3108 002661 03414 02548 02343 03234 02132 01682 02491 0.1857 0.1484

learning rate
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In Table 4, experimental results are compared using ReLU and clipped ReLU. High-
pass kernels in non-trainable layers increase the values, although CReLU is considered
to control the increase. As discussed in the previous section, some specific values are
controlled by the threshold in clipped ReLU. Similar to ReLU, CReLU replaces the negative
components with zero while replacing the non-negative items that are higher than a
threshold value with a particular threshold value. Positive elements below the threshold
value are retained.

Table 4. Detection errors using ReLU and clipped ReLU.

Steganography HILL Mi-POD S-UNIWARD WOow
Scheme
Payload 02 0.3 0.4 02 0.3 0.4 02 0.3 0.4 02 03 04
(bpp)
ReLU 03856 03236 02720 0.3462  0.2581  0.2397 0.3302 0.2170 0.1721  0.2540 0.1900 0.1519
Cﬁgfgd 03796 03198 02661 03414 02548 02343 03234 02132 01682 02491 0.1857 0.1484
Support vector machine (SVM) is a very popular classifier. The proposed scheme
replaces the softmax classifier with an SVM classifier with a quadratic kernel for a better
detection of cover and stego images. There is a fair deduction in detection errors using the
SVM classifier as shown in Table 5. A detailed analysis regarding the outperformance of
SVM over softmax classifier is performed by Tang [43]. While SVM seeks to maximize the
margin between data points belonging to different classes, the softmax classifier minimizes
the cross-entropy. The proposed steganography scheme can successfully classify the cover
and four steganography techniques with 0.2, 0.3, and 0.4 bpp payloads.
Table 5. Detection errors using softmax and SVM classifiers.
Steganography HILL Mi-POD S-UNIWARD wow
Scheme
Payload 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 02 03 04
(bpp)
SOftn.l?X 03854 03262 02735 03476  0.2620 0.2422  0.3298  0.2202 0.1757 0.2553 0.1933 0.1567
Classifier
Cliz/sl;fier 03796 03198 0.2661 0.3414 02548 0.2343 0.3234 0.2132 0.1682 0.2491 0.1857 0.1484

The proposed scheme is compared with the recent schemes SRNet [28], Ye-Net [27],
Yedroudj-Net [30], and Zhu-Net [32] as shown in Table 6. The proposed scheme outper-
forms other schemes with the exception of two cases. As represented in Figure 2, the spread
of stego noise is more uniform than other steganography schemes, making the detection of
HILL very challenging. HILL has the maximum detection error than the other schemes.
WOW has the least detection error as the stego noise is more concentrated in some specific
areas. The proposed scheme outperforms other schemes with a payload of 0.2 bpp, with the
exception of Mi-POD and S-UNIWARD. A detection error reduction from 2.37% to 13.77%
is observed in most cases when the proposed scheme is used, with an average decline of
6.92% in classification error.
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Table 6. Detection errors of the proposed and other schemes using BOSSBase image set.

Steganography HILL Mi-POD S-UNIWARD wow
Scheme
Payload 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 02 03 04
(brp)
SRNet 0.4560 03789 03305 04221 03417 02806  0.3568  0.2686  0.2225 0.2850 0.2226 0.1783
Ye-Net 04672  0.4202 03736 04311 03733 03470 04058 0.3301 02706 0.3228 0.2922 0.2214
YecllfIZ?d]_ 04710 04216 03372 04294 03798 0.2952 04122 0.3189 02757 0.3074 0.2652 0.2071
Zhu-Net 03888 0.3339 0.2878  0.3385  0.2828 0.2576  0.3167 0.2391 0.1951 0.2689 0.2339 0.1489
Psrgﬁ’:;‘zd 03796 03198 02661 03414 02548 02343 03234 02132 01682 02491 0.1857 0.1484
In Table 7, both BOWS2 and BOSSBase image sets are considered for experimental
analysis. Seven thousand images from each dataset are considered as the cover image for
training the CNN. Corresponding stego images are created using a particular steganog-
raphy scheme with specific payloads. The trained CNN is evaluated using six thousand
remaining images of BOWS2 and BOSSBase image sets. There is a significant reduction in
detection error after considering twenty-eight thousand images of both classes for training
and twelve thousand images for testing the proposed CNN. Moreover, the experimental
results show that the categorization error increases as the payload increases, which implies
that a low payload makes the classification difficult.
Table 7. Detection errors of proposed and other schemes using BOWS2 and BOSSBase image sets.
Steganography HILL Mi-POD S-UNIWARD wow
Scheme
Payload 0.2 0.4 0.2 0.3 0.4 0.2 0.3 04 02 03 04
(bpp)
SRNet 0.4180 0.3468 0.3170  0.3967 03212 0.2638  0.3392  0.2495  0.2087 0.2505 0.1832 0.1401
Ye-Net 04601 03994 03527 04052 03509 03262 03864 03065 02511 0.3009 0.2402 0.1947
Yecll\l}ztld]- 0.4426 03819 03257 04036 03570 02775 0.3835 0.2968  0.2543 0.2831 0.2130 0.1677
Zhu-Net 03718 03169 0.2414 03209 02658 0.2421 0.2875  0.2102 0.1695 0.2315 0.1702 0.1057
Psrslf’:;‘;d 0.3608 02867 02476 03109 02495 02203 02691 01922 0.1546 02066 0.1561 0.1011

In Table 8, experimental results are displayed after augmenting BOWS2 and BOSSBase
image sets. One hundred thousand images are considered for training the CNN, and
twenty-five thousand images for testing the trained CNN. There is a tremendous reduction
in detection error using augmented images. Then, ten thousand images (Table 6) and
twenty-eight thousand images (Table 7) are considered for training the CNN. The proposed
scheme outperforms the other schemes and Zhu-Net by decreasing the detection error from
4% to 10%. Thirty high-pass kernels were applied by Ye et al. [27], Yedroudj et al. [30], and
Zhang et al. [32]. The proposed scheme outcomes have been improved significantly with
the use of thirty-one kernels and two non-trainable convolutional layers.
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Table 8. Detection errors of proposed and other schemes using augmented images.
Steganography HILL Mi-POD S-UNIWARD wow
Scheme
Payload 02 0.3 0.4 02 0.3 0.4 02 0.3 0.4 02 03 04
(bpp)
SRNet 03739 03135 0.2920 03095 02505 0.2058  0.2930 0.2136  0.1807 0.2226 0.1592 0.1185
Ye-Net 04324 03682 03220 03161 02737 02544 0.3599 02761  0.2135 0.2847 0.2175 0.1697
Yecllflztld]_ 0.4093 0.3456  0.3140 0.3148 0.2785 0.2165 0.3479  0.2673  0.2292 0.2608 0.1774 0.1381
Zhu-Net 0.3469 02981 02291 02703 02073 0.1889 0.2312 0.1936  0.1400 0.1932 0.1413 0.0795
Psrgﬁ’:;‘zd 03166 02655 02114 02482 01868 01718 02129 01859 0.1286 0.1765 0.1296 0.0718
4. Conclusions
In this paper, a robust steganalysis scheme has been proposed for the detection of
content-adaptive steganography schemes. Two non-trainable convolutional layers with
fixed thirty-one kernels were incorporated to guide the proposed CNN, and multiple novel
strategies were considered to increase the performance of CNN. Moreover, customized
learning rates were applied to convolutional layers. In the proposed scheme, the clipped
ReLU was considered rather than ReLU for improvement and the SVM classifier was used
as an alternative to softmax classifier. Furthermore, the proposed scheme was verified on
popular content-adaptive steganography schemes, such as HILL, Mi-POD, S-UNIWARD,
and WOW. A remarkable reduction in the detection errors from 2% to 10% was observed in
the classification of cover and stego images. Furthermore, in the most cases, the performance
of the proposed scheme was more outstanding than other state-of-the-art techniques.
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