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Abstract: This paper considers the positivity-preserving model reduction for discrete-time positive
systems. Given a stable high-order positive system, we aim to find a reduced-order model such that
the approximation error is minimized within a prescribed H∞ performance and positivity is preserved.
Regarding the bounded real lemma, the sufficient and necessary condition for the existence of a
reduced-order model is established in terms of bilinear matrix inequality and convex semi-definite
constraint, which ensures that the reduced-order system is positive and the resulted error system is
stable and has an H∞ performance level. Based on the inner-approximation strategy, we approximate
the bilinear constraints with convex ones, under which an iterative procedure is provided to calculate
the desired reduced-order model. Finally, an example is provided to demonstrate the effectiveness
and potential benefits of the presented results.

Keywords: positive systems; H∞ model reduction; bilinear matrix inequalities; successive convex
optimization algorithm

1. Introduction

In nature and engineering applications, there exist some quantities that potentially re-
main to be non-negative, such as the populations of organisms within ecological systems [1],
the propagation rate of a signal in network communication [2], and the concentration of
liquid in chemistry [3]. Such a system characterized by non-negative quantities is com-
monly known to be positive for which the state variables and output trajectories reside in
the first quadrant whenever the inputs and initial states are non-negative [4]. The studies
concerning positive systems are derived from [5], based on which significant results such
as reachability and controllability [6], Kalman-Yakubovich-Popov [7] have been developed.
Due to the positivity, the state variables remain in the non-negative cone instead of the entire
linear space [8]. This property leads to the obstacle of applying the well-established general
theories to positive systems, which promotes specialized research including state-feedback
control [9], output–feedback control [10,11], observer design [12,13], etc.

On the other hand, actual systems bear complex dynamics and the order of exact
models is relatively high, which brings about great difficulties in the control and implemen-
tation of related systems. Naturally, the model reduction problem aiming at approximating
a higher-order model by a lower-order one with a sufficiently small error has received con-
siderable attention [14–18], and various model-reduction techniques have been established.
The traditional balanced-truncation method was extended for the inhomogeneous initial
condition case [19]. A lower-order stable transfer function was explored to approximate a
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given transfer function with the H∞ norm [20]. A complete characterization of all optimal
Hankel-norm approximations to a rational transfer function was provided in [21]. Nev-
ertheless, two challenges arise when attempting to adapt the developed model reduction
approaches to positive systems. On one hand, when approximating a specified positive
system, we expect that the reduced-order model is preserved to be positive, which imposes
additional constraints on system matrices. On the other hand, the approximation error
is usually characterized by specific criteria of an associated error system, which can be
transformed into a type of bilinear matrix inequalities (BMIs) involving the coupled terms
between the Lyapunov variable and unknown system matrices [22]. An intuitive idea
to resolve this issue is to transform the bilinear constraints into linear ones. In addition,
the congruent transformation method [23] and the D-K iteration method [24] have been
proposed to find feasible solutions in some cases. Nevertheless, the above results did not
take the intrinsic positivity constraints into account, and solving the non-convex stability
condition and the positivity constraint simultaneously remains a major challenge.

This paper explores the positivity-preserving model reduction method for positive
systems. A reduced-order positive model is sought to capture the dominant dynamics
of the original high-order system within a prescribed error bound. The sufficient and
necessary condition with the form of BMI for the positivity-preserving model reduction is
developed in a way such that the approximation error is minimized within a guaranteed
level. With the aid of the inner-approximation strategy, we develop a successive convex
optimization (SCO) algorithm, under which the desired reduced-order model is achieved
by sequentially solving the approximated convex problems. Overall, the main contributions
of the paper are stated as follows:

1. This paper proposes a positivity-preserving model reduction scheme, which guaran-
tees the H∞ performance of the resulted error system and preserves the
positivity simultaneously.

2. To render the positivity-preserving model reduction problem numerically tractable,
we propose an inner-approximation strategy, and then establish an SCO algorithm to
solve a type of BMI problem without parametrization techniques.

3. To achieve a smaller approximation error, the zero initial condition can be adapted to
iterate the reduced-order model, which simplifies the design process by abolishing
the initialization step.

The paper is arranged as follows: Section 2 discusses the problem statement and
presents the necessary fundamental results. Section 3 establishes the conditions required
for the existence of a positive reduced-order model, based on which a significant algorithm
for optimizing the desired reduced-order model is provided. In Section 4, we provide an
example to illustrate the effectiveness and potential benefits of the presented results. Finally,
Section 5 summarizes the conclusions and highlights future directions for improvement.

Notations: R,Rn,Rm×n are introduced to denote the set of real numbers, n-dimensional
column vectors and m× n-dimensional matrices, respectively, andRn

+ defines n-dimensional
column vectors whose all elements are non-negative. I and 0 represent the identical and
zero matrices with appropriate dimensions, respectively. For a square matrix X, X > 0(< 0)
indicates that X is positive-definite (negative-definite), and He{X} , X + XT , where XT

is the transpose of X. For an arbitrary matrix Y ∈ Rm×n, Y � 0(Y � 0) implies that every
elements in Y is non-negative (positive).

2. Preliminaries and Problem Formulation

Consider a class of stable systems, whose dynamics can be described as follows:{
x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

(1)
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where x ∈ Rnx , u ∈ Rnu , y(k) ∈ Rny are the vectors of state, controlled input and output,
respectively, and A, B, C, D are known constant matrices. In this paper, we assume that the
system (1) is positive, and the definition of positive systems is given as follows.

Lemma 1 ([25]). Given the initial condition x(0) = x0 ∈ Rnx
+ and the input u(k) ∈ Rnu

+ , the
system (1) is said to be positive if ∀k > 0, x(k) ∈ Rnx

+ , y(k) ∈ Rny
+ .

In the following, we present a well-established condition for checking whether the
system (1) is positive.

Lemma 2 ([26]). The system (1) is positive if and only if A � 0, B � 0, C � 0, D � 0.

In this paper, we aim at constructing a lower-order model to approximate the system (1),
and the dynamics of the reduced-order model can be formulated in the following form{

xr(k + 1) = Arxr(k) + Bru(k),
yr(k) = Crxr(k) + Dru(k),

(2)

where xr(k) ∈ Rnr (0 < nr < nx), yr ∈ Rny are the states and approximated outputs of the
reduced-order system (2), and Ar, Br, Cr, Dr are constant matrices to be designed.

Denote the augmented vector xe(k) =
[
xT(k) xT

r (k)
]T and the approximation error

e(k) = y(k)− yr(k). Substituting (2) into (1) results in the following error system{
xe(k + 1) = Aexe(k) + Beu(k),
e(k) = Cexe(k) + Deu(k),

(3)

where

Ae =

[
A 0
0 Ar

]
, Be =

[
B
Br

]
, Ce =

[
C −Cr

]
, De = D− Dr.

For the error system (3), the transfer function from u(k) to e(k) is given by

Gue(z) = Ce(zI− Ae)
−1Be + De. (4)

The primary objective of the conventional H∞ model reduction problem is to search
for a reduced-order model (2) such that

‖Gue(z)‖∞ < γ, (5)

where γ > 0 is a specified scalar. Nevertheless, a positive model is more likely to capture the
dynamics of (1) with a sufficiently small error. That is, apart from the H∞ performance (5),
it is expected that the reduced-order model is preserved as positive.To ensure positivity, it
follows from Lemma 2 that Ar � 0, Br � 0, Cr � 0, Dr � 0.

For convenience, we denote Sr , {(Ar, Br, Cr, Dr) : Ar � 0, Br � 0, Cr � 0, Dr � 0}.
The problem formulation for the positivity-preserving model reduction can be stated
as follows:

Positivity-preserving H∞ model reduction: Given a stable positive system (1), con-
struct a positive model with a lower order such that

1. (Ar, Br, Cr, Dr) ∈ Sr.
2. The resulted error system (3) is asymptotically stable with an H∞ performance

‖Gue(z)‖∞ < γ.

To characterize the H∞ performance in (5), we present the following bounded real lemma.

Lemma 3 ([27]). Given the state-space realization (3) and a scalar γ > 0, the following statements
are equivalent:
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1. The error system in (3) is asymptotically stable with an H∞ performance ‖Gue‖∞ < γ.
2. There exists matrix P = PT > 0 satisfying

−P 0 PAe PBe
? −I Ce De
? ? −P 0
? ? ? −γ2I

 < 0. (6)

To facilitate the construction of the reduced-order model, an efficient condition equiv-
alent to (6) is provided.

Lemma 4. The error system in (3) is asymptotically stable with an H∞ performance (5) if and only
if there exist matrices P = PT > 0 and G such that

P− G− GT 0 GT Ae GT Be
? −I Ce De
? ? −P 0
? ? ? −γ2I

 < 0. (7)

Proof. (Necessity) Letting G = GT = P, the condition (6) is expressed as (7) exactly.
(Sufficiency) Assume that the condition (7) holds, and we can infer from (7) that G + GT >
P > 0, which means that G is non-singular. Further, (P − G)T P−1(P − G) ≥ 0 yields
P− G− GT ≥ −GT P−1G, and it is straightforward that (7) implies

−GT P−1G 0 GT Ae GT Be
? −I Ce De
? ? −P 0
? ? ? −γ2I

 < 0. (8)

Pre- and post-multiplying (8) with diag{PG−T , I, I, I} and its transpose leads to (6).
The proof is completed.

Remark 1. Lemma 3 establishes the necessary and sufficient condition ensuring that the error
system (3) is stable under a given error bound. Note that (6) is hard to solve, for which there exist
coupled terms between the Lyapunov variable P and Ar, Br, and more significantly, both P and
Ar, Br bear structural constraints. To address this issue, an equivalent condition (7) is developed. It
is observed that (7) is easier to implement than (6) by eliminating the coupled terms between P and
Ar, Br, and thus facilitating parametrization on the positivity constraint.

3. Main Results

This section designs the desired reduced-order model to approximate the original
high-order one. Firstly, we realize the parameterization of unknown matrices in (2) by
providing an alternative characterization for the system (3). We then formulate the design
conditions for a reduced-order model in terms of BMIs, guaranteeing the stability and
H∞ specification of the error system. Finally, an iterative procedure based on the inner-
approximation strategy is proposed to achieve the desired reduced-order model.

Denote the augmented matrices:

Ā =

[
A 0
0 0

]
, B̄ =

[
B
0

]
, C̄ =

[
C 0

]
, D̄ = D,

F̄ =

[
0 0
I 0

]
, H̄ =

[
0 −I

]
, M̄ =

[
0 I
0 0

]
, N̄ =

[
0
I

]
,
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and the error system (3) can be described by

Ae = Ā + F̄Gr M̄, Be = B̄ + F̄Gr N̄, Ce = C̄ + H̄Gr M̄, De = D̄ + H̄Gr N̄

with Gr =

[
Ar Br
Cr Dr

]
.

Remark 2. To render the problem of positivity-preserving model reduction tractable, the matrices
Ar, Br, Cr, Dr to be designed are reorganized as a single matrix Gr. Notice that Gr is embedded
between two known matrices, and by Lemma (4), the design condition for Gr is recast into a BMI
involving the coupled term between G and Gr. Furthermore, (Ar, Br, Cr, Dr) ∈ Sr implies Gr � 0,
and the additional positivity constraint on Gr sharpens the difficulty in searching for feasible
solutions for the non-convex optimization problem.

Theorem 1. For a given scalar γ > 0 and known matrices Gκ , Gκ
r , Uκ , Vκ , the problem of

positivity-preserving H∞ model reduction is solvable if there exist matrices P, G, Gr, U, V such that
P = PT > 0, Gr � 0 and

Γ =

[
Φ Ψ

ΨT Ξ

]
< 0, (9)

where

Φ =


P− G− GT 0 GT(Ā + F̄Gκ

r M̄) GT(B̄ + F̄Gκ
r N̄)

? −I C̄ + H̄Gr M̄ D̄ + H̄Gr N̄
? ? −P 0
? ? ? −γ2I



+ He



(Gκ)T

0
0
0

[0 0 F̄(Gr − Gκ
r )M̄ F̄(Gr − Gκ

r )N̄
],

Ψ =


β(G− Gκ)T 0 0

0 0 0
M̄T(Gr − Gκ

r )F̄T(Uκ)T M̄T(Gr − Gκ
r )F̄TVκ 0

N̄T(Gr − Gκ
r )F̄T(Uκ)T N̄T(Gr − Gκ

r )F̄TVκ 0

,

Ξ =

−β(U + UT) 0 U −Uκ

? −2Vκ + V 0
? ? −V

.

Proof of Theorem 1. From the above analysis, (7) is presented in the form of BMI, which
can be further reformulated as

L+ He{XNY} < 0, (10)

where

L =


P− G− GT 0 GT Ā GT B̄

? −I C̄ + H̄Gr M̄ D̄ + H̄Gr N̄
? ? −P 0
? ? ? −γ2I

,

X =
[
G 0 0 0

]T ,Y =
[
0 0 F̄Gr M̄ F̄Gr N̄

]
, N = I.

For given feasible matrices Gκ , Gκ
r , (10) is equivalent to

L+ He{XNYκ +Xκ N(Y−Yκ)}+ He{(X−Xκ)N(Y−Yκ)} < 0, (11)
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which contains the linear term L + He{XNYκ + Xκ N(Y − Yκ)} and the bilinear term
He{(X−Xκ)N(Y−Yκ)}. By performing the matrix decomposition [22], we have

He{(X−Xκ)N(Y−Yκ)}

=

[
(X−Xκ)T

(Y−Yκ)

]T[ 0 N
NT 0

][
(X−Xκ)T

(Y−Yκ)

]
=

[
(X−Xκ)T

(Y−Yκ)

]T[
βN βN
UT −U

][ 1
β (U+UT)−1 0

0 − 1
β (U+UT)−1

][
βN βN
UT −U

]T[
(X−Xκ)T

(Y−Yκ)

]
≤ 1

β

(
β(X−Xκ)N + (Y−Yκ)TUT

)(
U + UT

)−1(
β(X−Xκ)N + (Y−Yκ)TUT

)T
,

(12)

where U is introduced as an auxiliary variable satisfying U + UT > 0. Denote ∆Xκ ,
X− Xκ , ∆Yκ , Y− Yκ . Replacing the bilinear term He{(X− Xκ)N(Y− Yκ)} with its
upper-approximation and applying the Schur complement lemma yields[

L+ He{XNYκ +Xκ N∆Yκ} β∆Xκ N + (U∆Yκ)T

? −β(U + UT)

]
< 0, (13)

and we can reorganize (13) as[
L+He{XNYκ+Xκ N∆Yκ} β∆Xκ N+(Uκ∆Yκ)T

? −β(U + UT)

]
+He

{[
(∆Yκ)T

0

][
0 (∆Uκ)T]} < 0. (14)

Recalling that He{AB} ≤ AMAT + BTM−1B, then (14) can be conservatively ex-
pressed as [

L+ He{XNYκ +Xκ N∆Y} β∆Xκ N + (Uκ∆Yκ)T

? −β(U + UT)

]
+

[
(∆Yκ)T

0

]
V
[
(∆Yκ) 0

]
+

[
0

(∆Uκ)

]
V−1[0 (∆Uκ)T] < 0.

(15)

By the Schur complement lemma, one obtains

Γ′ =
[

Φ Ψ′

(Ψ′)T Ξ

]
< 0, (16)

where

Ψ′ =


β(G− Gκ)T 0 0

0 0 0
M̄T(Gr − Gκ

r )F̄T(Uκ)T M̄T(Gr − Gκ
r )F̄T 0

N̄T(Gr − Gκ
r )F̄T(Uκ)T N̄T(Gr − Gκ

r )F̄T 0

,

Ξ′ =

−β(U + UT) 0 U −Uκ

? −V−1 0
? ? −V

.

(17)

For a given Vκ, we obtain −V−1 ≤ −2Vκ + (Vκ)−1V(Vκ)−1 according to the concavity
of −V−1. Replacing −V−1 with its over-approximation and pre- and post-multiplying (16)
with diag{I, I, Vκ , I} and its transpose, the convex condition (9) is established.

With the aid of the inner-approximation strategy (12), Theorem 1 establishes a convex
approximation for the non-convex constraint (9). Note that given known matrices Gκ , Gκ

r
satisfying L+He{Xκ NYκ} < 0, the condition (9) is formulated in the form of linear matrix
inequality (LMI), and it suffices to check the feasibility of the original non-convex problem
by alternatively solving the convex surrogate optimization problem
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{
min γ

s.t. P = PT > 0, Gr � 0, (9).
(18)

In addition, the superscript κ can be viewed as an iteration indicator, and once given
the feasible initial condition G0, G0

r , one can obtain a sequence of reduced-order models
as the iteration proceeds. Next, we summarize the above procedures into the following
SCO algorithm (Algorithm 1).

Algorithm 1 Successive convex optimization algorithm for the computation of reduced-
order models
Require: ε: given tolerance level; IMax: the maximum number of iterations.

1: Given the initial condition G0
r = 0, determine the initial condition G0 by solving[

P− G0 − G0 G0(Ā + F̄G0
r M̄)

? −P

]
< 0 (19)

and fix κ ← 1
2: while κ < IMax do
3: Solve (18)
4: if γκ−γκ+1

γκ ≤ ε then
5: γ← γκ+1, Gr ← Gκ+1

r
6: break;
7: end if
8: κ ← κ + 1
9: end while

10: Result Gr: the reduced-order model; γ: the H∞ performance index.

Remark 3. Algorithm 1 provides a straightforward solution to the non-convex BP problem without
any parametrization techniques. In addition, it is worth noting that Algorithm 1 is performed
iteratively, which presents a potential computational burden relative to the conventional method. As
mentioned above, an essential prerequisite for implementing Algorithm 1 is that the initial condition
G0, G0

r should satisfy L0 + He{X0NY0} < 0. Nevertheless, finding a feasible initial solution can
be as equally challenging as solving the original non-convex problem. Fortunately, the original
high-order system is stable, and the reduced-order model with Ar = 0 enables the resulted error

system Ae =

[
A 0
0 Ar

]
to be stable. In this setting, compared with [24], the proposed algorithm is

easier to implement by avoiding the arduous initialization step.

4. Simulation

Compartmental networks consist of a finite number of homogeneous, well-mixed sub-
systems, called compartments, which exchange with each other and the environment [28].
In this example, we compare the proposed model-reduction method with [26]. Consider
the compartmental model of six states with the following system matrices:

A =



0.7 0.12 0.2 0 0 0
0.06 0.6 0.04 0 0 0
0.04 0.1 0.4 0.2 0 0

0 0 0.1 0.4 0.15 0.1
0 0 0 0.08 0.6 0.06

0.05 0 0 0.12 0.1 0.68

, B =



0.5 0
0 0.7
0 0
0 0.3

0.2 0
0 0

,

C =
[
0.3 0.2 0.5 1 0.6 0.9

]
, D =

[
0 0.3

]
.

and we observe that the system is stable. The aim of this example is to construct reduced-
order positive models with different orders to approximate the original system.
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Case 1: nr = 4
According to Remark 3, the initial condition A0

r = 0, B0
r = 0, C0

r = 0, D0
r = 0 is

adopted, and by Algorithm 1, one can iteratively obtain the reduced-order model as:

G(4)
r =


0.8201 0.0054 0.0032 0.0022 0.0811 0.0385
0.3838 0.3638 0.0610 0.0327 0.0709 0.0439
0.2039 0.1697 0.4350 0.0262 0.0662 0.0471
0.0451 0.1008 0.3554 0.2962 0.0502 0.0605
0.0234 0.0355 0.0510 5.2130 0.0004 0.3000

.

Moreover, by adopting the model reduction method in [26], we obain

G(4)′
r =


0.5602 0.2264 0.0558 0.1771 0.9126 0.0231
0.1634 0.2966 0.1163 0.2773 0.0689 0.0386
0.0326 0.1058 0.4542 0.1454 0.0230 0.7114
0.1125 0.2105 0.1469 0.2337 0.0545 0.0474
0.2828 0.3093 0.3349 0.3084 0.0110 0.3529

.

Similarly, the corresponding second-order model for Algorithm 1 and [26] can be
readily obtained as follows.

Case 2: nr = 2 with

G(2)
r =

 0.4774 0.3713 0.0566 0.0684
0.0000 0.8342 0.0799 0.0397
4.6078 0.0555 0.0015 0.3005

,

G(2)′
r =

 0.3106 0.1945 0.1020 0.4109
0.5039 0.6506 0.7127 0.1763
0.4228 0.3956 0.0035 0.3694

.

Moreover, the H∞ performance indices γ with respect to the above cases are listed in
Table 1. It can be readily observed from the attained results that the provided algorithm can
achieve smaller H∞ performance indices than [26]. To evaluate the approximation effects
of different model reduction methods, Figures 1 and 2 provide the frequency response
gains of the original and reduced-order systems, and Figures 3 and 4 depict the frequency
response gains of the associated error systems with different orders. We can easily infer

that compared with G(4)′
r and G(2)′

r , the frequency gains of proposed forth-order G(4)
r model

and second-order one G(2)
r are much closer to the original system, and the associated error

system with G(4)
r and G(2)

r have smaller gains than that for corresponding G(4)′
r and G(2)′

r ,
which illustrates the benifits of the proposed algorithm.

Table 1. The H∞ performance indices achieved by different methods.

Different Methods Algorithm 1 [26]

nr = 4 0.004 0.15
nr = 2 0.004 0.18
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To further verify the efficiency of the obtained reduced-order models, we will show
their approximation performances under the initial conditions x(0) = 0, xr(0) = 0 and
the input

u(k) =
[
e−0.01k|5 cos(10k)| 5

1+5k | sin( π
10 k)|

]T
.

Figures 5 and 6 depict the output trajectories of the original model and the reduced-
order models with nr = 4 and nr = 2, respectively, and Figures 7 and 8 show the corre-
sponding approximation errors between the original model and the reduced-order ones. It
can be seen that the proposed method can approximate the original model without causing
remarkable errors.
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Figure 5. The output trajectories of the original model and G(4)
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Figure 6. The output trajectories of the original model and G(2)
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5. Conclusions

This paper presents an H∞ model-reduction method that preserves positivity. In par-
ticular, the H∞ performance of the associated error system is characterized by BMI, and the
positivity of the reduced-order model is formulated as an element-wise positivity constraint.
Based on this, a sufficient condition for the existence of the desired reduced-order system
has been established in the form of LMI. Furthermore, an SCO has been developed to
optimize the desired reduced-order model. Finally, a compartmental network example has
been provided to verify that the proposed result permits a sufficient improvement in H∞
performance. Future research directions are related to the static output feedback problem
of complex positive systems via the proposed algorithm.
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