
Citation: Zhang, Z.; Feng, F.; Huang,

T. FNNS: An Effective Feedforward

Neural Network Scheme with

Random Weights for Processing

Large-Scale Datasets. Appl. Sci. 2022,

12, 12478. https://doi.org/10.3390/

app122312478

Academic Editors: Luis Javier Garcia

Villalba and Krzysztof Koszela

Received: 28 October 2022

Accepted: 25 November 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

FNNS: An Effective Feedforward Neural Network Scheme with
Random Weights for Processing Large-Scale Datasets
Zhao Zhang, Feng Feng * and Tingting Huang

School of Information Engineering, Ningxia University, Yinchuan 750021, China
* Correspondence: feng_f@nxu.edu.cn

Abstract: The size of datasets is growing exponentially as information technology advances, and it
is becoming more and more crucial to provide efficient learning algorithms for neural networks to
handle massive amounts of data. Due to their potential for handling huge datasets, feed-forward
neural networks with random weights (FNNRWs) have drawn a lot of attention. In this paper, we
introduced an efficient feed-forward neural network scheme (FNNS) for processing massive datasets
with random weights. The FNNS divides large-scale data into subsets of the same size, and each
subset derives the corresponding submodel. According to the activation function, the optimal range
of input weights and biases is calculated. The input weight and biases are randomly generated in
this range, and the iterative scheme is used to evaluate the output weight. The MNIST dataset was
used as the basis for experiments. The experimental results demonstrate that the algorithm has a
promising future in processing massive datasets.

Keywords: feed-forward neural network with random weights; massive datasets; neural network;
learning algorithm; weight optimization

1. Introduction

Feed-forward neural networks (FNNs) have gained increasing attention in recent
years because of their flexible structural design and strong representational capacity. Feed-
forward neural networks [1], which have adaptive characteristics and universal approxima-
tion characteristics, have been widely used in regression and classification. In addition, they
offers study models for a wide range of natural and artificial processes, and it has been used
in numerous technical and scientific domains [2]. In the traditional neural network theory,
all the parameters of FNNs, such as input weight, bias, and output weight, need to be
adjusted under specific conditions. The hierarchy of the network structure, however, makes
this process complex and ineffective. The usual method is a gradient-based optimization
method, such as the BP algorithm, but this method usually has some problems such as
local minimum, slow convergence speed, sensitive learning speed, and so on. In addition,
some parameters, such as the hidden node count or the learning algorithm parameters,
need to be manually adjusted. In order to solve this series of problems, as the times require,
Schmidt, Kraaijveld, and Duin first proposed the FNNRW in 1992 [3]. The output weights
may be evaluated and estimated using the well-known least-square approach since the
input weights and biases’ random distribution are uniformly distributed in [−1, 1]. Many
simulation results in the literature show that the randomization model has higher perfor-
mance than the fully adaptive model, and provides simpler implementation and faster
training speed [4].

Theoretically, it is clear that the capability of global approximation cannot be guaran-
teed by the random distribution of input weights and biases [5,6]. For a variety of reasons,
many random learning algorithms emerge endlessly. Ref. [7] suggested a feed-forward
neural network learning method with random weights. Ref. [8] studied the sparse al-
gorithm of random weight networks and its applications. Ref. [9] presented a random

Appl. Sci. 2022, 12, 12478. https://doi.org/10.3390/app122312478 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312478
https://doi.org/10.3390/app122312478
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8392-0114
https://doi.org/10.3390/app122312478
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312478?type=check_update&version=1

Appl. Sci. 2022, 12, 12478 2 of 14

single hidden layer feed-forward neural network metaheuristic optimization research. The
authors of [10] carried out a study on distributed learning of random vector function chain
networks. Ref. [11] proposed a probability learning algorithm based on a random weight
neural network for robust modeling.

In addition, Ref. [12] provided a complete discussion of the randomization method of
neural networks. In order to ensure the universal approximation property, the development
of neural network randomization methods is promoted for the constraints of random
weights and biases [13]. However, data are in a period of rapid expansion due to the
ongoing advancement of information technology. The resulting problem is that the number
of data samples or neural network hidden layer nodes in the NNRW model becomes very
large so the method of calculating the output weight is very time-consuming. In response
to this problem, there have been many studies on large-scale data modeling problems in the
past few decades. Ref. [14] explained how to efficiently train language models using neural
networks on big datasets. Ref. [15] provided a kernel framework for energy-efficient large-
scale classification and data modeling. Ref. [16] examined a population density method that
makes large-scale neural network modeling possible. Ref. [17] presented a framework for
parallel computing to train massive neural networks. Ref. [18] presented a multiprocessor
computer for simulating neural networks on a huge scale. Reducing the size of the datasets
by subsampling is perhaps the easiest method for dealing with enormous datasets. Osuna E,
Freund R, and Girosi F were the first to suggest using this decomposition technique [19,20].
Bao-Liang Lu and Ito, M. (1999) also proposed this method [21], which is used to solve the
problem of pattern classification. However, the method used for large-scale data processing
in this paper is similar to the method of dealing with large-scale data by the Bayesian
committee SVM proposed by Tresp et al. [22,23]. In this approach, the datasets are split into
equal-sized parts, and models are generated from each subset. Each submodel is trained
independently, and a summary is used to get the final determination.

This study examines a feed-forward neural network model for big datasets that uses
random weights and a decomposition approach. In this study, the data were divided into
tiny subsets of the same size at random, and each subset was then utilized to generate
the associated submodel. The weights and biases of the hidden nodes that determine
the nonlinear feature mapping are set randomly and are not learned in the feed-forward
neural network with random weights. It is crucial to pick the right interval when selecting
the weights and deviations. This topic has not been fully discussed in many studies.
The method used in this paper calculates the optimal range of input weights and biases
according to the activation function, and each submodel initializes the same input weight
and biases within the optimal range. At the same time, an iterative scheme is adopted to
evaluate the output weight.

The rest of this article is divided into the following sections. Section 1 introduces the
traditional random weight feed-forward neural network learning algorithm. Section 2
details the work related to this paper. Section 3 describes in detail the optimized random
weight feed-forward neural network learning algorithm proposed in this paper. In Section 4,
the experimental simulation results are shown, the algorithm’s performance is examined
and appraised, and the possibility of an engineering application is discussed. In Section 4,
the experimental simulation results are given, and the performance of the algorithm is
analyzed and evaluated, as well as the prospect of engineering applications. Section 5 is
the conclusion of this paper and the planning for the future work.

2. The Related Work

This section introduces the development of feed-forward neural networks (FNN) and
related works. This paper first discusses the history of artificial neural networks (ANNS)
and the use of feed-forward neural networks in real-world applications. It next discusses
random weight feed-forward neural networks, their optimization, and ultimately our
optimization strategy. This paper first introduces the origin of artificial neural networks
(ANNS) and the practical application of feed-forward neural networks, then introduces the

Appl. Sci. 2022, 12, 12478 3 of 14

optimization and application of random weight feed-forward neural networks, and finally
presents our optimization scheme.

An artificial neural network (ANN), also referred to as a neural network (NN), is
a mathematical model of hierarchically distributed information processing by imitating
the behavior characteristics of animal brain neural network [24], through the relationship
between various neurons, mainly by regulating the relationship between a large number of
internal nodes, to achieve the purpose of data processing [25]. The logician W. Pitts and
psychologist W.S. Macculloch created the mathematical MP models and neural networks in
1943. The age of artificial neural network research began when they proposed the formal
mathematical description of neurons and the network structure approach through the MP
model, and demonstrated that a single neuron can carry out logical functions [26]. Artificial
neural networks have many model structures, and feed-forward neural networks are only
one of them [27].

Frank Rosenblatt created the perceptron, an artificial neural network, in 1957. The per-
ceptron is a simple neural network in which each neuron is arranged in layers and is only
connected to the previous layer. The output of the previous layer is received and exported
to the next layer, and there is no feedback between neurons in each layer. This is the earliest
form of a feed-forward neural network (FNN). The feed-forward neural network is one of
the most popular and rapidly evolving artificial neural networks due to its straightforward
construction. The study of feed-forward neural networks started in the 1960s, and both
theoretical and practical advancements have been made. The FNN can be regarded as a
multilayer perceptron. With all the links between layer and layer, it is a kind of typical deep
learning model. The performance of the traditional model, with large data samples and
outstanding performance, can solve the problems that some traditional machine learning
models cannot understand. However, deep learning models with small data samples are
complex, making the process difficult to explain. The FNN also shares these characteristics,
so it is mainly used in scenarios with large datasets. A feed-forward neural network-based
approach for creating rocket trajectories online is presented in [28], and the trajectory is
roughly estimated utilizing the neural network’s nonlinear mapping capability. In [29],
the study of source term inversion of nuclear accidents uses deep feed-forward based neu-
ral networks. The Bayesian MCMC technique is used to examine the DFNN’s prediction
uncertainty when the input parameters are unclear. In [30], with the chaotic encryption
of the polarization division multiplexing OFDM/OQAM system, the feed-forward neural
network is used to increase data transmission security and realize a huge key space. In [31],
a feed-forward backpropagation artificial neural network is used to predict the force re-
sponse of linear structures, which helps researchers understand the mechanical response
properties of complex joints with special nonlinearities. In [32], the initial weight approach
and the construction algorithm are combined to form a novel method of feed-forward
neural network multi-class classification that can achieve high success rates. In [33], hybrid
MVO and FNN were improved for fault identification of WSN cluster head data. It is clear
that feed-forward neural networks are used in a variety of industries.

Feed-forward neural networks demonstrate the superiority of mathematical models
in a variety of applications, but as the size of the dataset keeps growing, the feed-forward
neural network’s original performance cannot keep up with the demands of engineer-
ing. As a result, many researchers have focused on developing improved feed-forward
neural networks to deal with large-scale datasets. The feed-forward neural network is
optimized primarily from two aspects: on the one hand, random weighting by weight set
in selected is used to enhance the performance of the algorithm, as mentioned in [33–37];
on the other hand, large datasets are processed by using the method of sample selection,
as described in [38,39], in order to enhance the algorithm’s performance. The method of
random weight optimization is commonly used by scholars. Because it offers effective
learning capabilities, feed-forward neural networks are frequently employed in mathe-
matical modeling [34]. Recently, some advanced stochastic learning algorithms have been
developed slowly, a feed-forward neural network with a random hidden nodes approach

Appl. Sci. 2022, 12, 12478 4 of 14

was proposed in [34]. Weights and bias are generated randomly depending on the input
data and kinds of activation functions, allowing the model’s level of generalization to be
controlled. In [35], a training iterative solution for large-scale datasets is developed, and the
regularization model is used to initially generate a learning model with improved general-
ization ability. When dealing with large-scale datasets, good applicability and effectiveness
are achieved. In [36], a distributed learning algorithm of a feed-forward neural network
with random weights is proposed by using an event-triggered communication scheme.
To reduce needless transmission overhead, the method adopts a discrete-time zero-gradient
and strategy solution and introduces an event-triggered communication approach. In [37],
a new feed-forward neural network method for initializing weights is proposed, which
linearizes the whole network at the equilibrium point, especially the initial weights and
deviations. Ref. [40] offered a linear algebraic approach based on the Cauchy inequality that
guaranteed the output of neurons in the active area, sped up convergence, and drastically
decreased the number of algorithm iterations for sample extraction. Many scholars discuss
hot topics [38] such as combining Monte Carlo simulations (MCSs) and implementing effi-
cient sampling of feed-forward neural networks (FNNs). The authors of [39] put forward a
kind of incremental learning method based on a hybrid fuzzy neural network framework
from the angle of the dataset to improve the performance of the algorithm.

Feed-forward neural network optimization has drawn a lot of interest in the era
of big data. To lower the sample size, feed-forward neural network optimization now
primarily uses the processing of random weights, although researchers have only been able
to increase the performance of these networks in isolation. In order to handle enormous
datasets, this research suggests a random weighting feed-forward neural network scheme
based on a decomposition approach. This scheme not only ensures the network’s integrity
but also the random performance of feed-forward neural networks. However, the sample
feature extraction’s actual applicability is not exhaustive; large-scale datasets only use
random weights, which have poor feed-forward neural network performance.

3. Our Proposed FNNS
3.1. FNNRW Learning Algorithm

Feed-forward neural networks have been widely used in many fields. FNNRWs are
generally described as:

f (x) =
N

∑
i=1

βig(ωi · x + bi), (1)

where N is the number of hidden nodes; x = [x1, x2, · · · , xn]T ∈ Rn is the input;
ωi = [ωi1, ωi2, · · · , ωin] ∈ Rn and βi ∈ R are the input and output weights connect-
ing the i th hidden node and the output node, respectively; bi ∈ R is the bias; g(·) is the
activation function; and the activation function generally adopts the common sigmoid
function, as shown in Equation (2).

g(x) =
1

1 + e−x . (2)

Presented with a collection of practice data s = {(xj, tj) : xj ∈ Rn, tj ∈ R, j =
1, 2, · · · , M}, satisfies expression Hβ = T, where

H =

 g(ω1 · x1 + b1) · · · g(ωN · x1 + bN)
... · · ·

...
g(ω1 · xM + b1) · · · g(ωN · xM + bN)

, (3)

is the hidden-layer output matrix, β = [β1, β2, · · · , βN]
T is the output weights, and

T = [t1, t2, · · · , tM]T are the target vectors.

Appl. Sci. 2022, 12, 12478 5 of 14

In FNNRWs, as shown in Figure 1, input weights and biases are distributed uni-
formly at random, ω ∼ U(ωmin, ωmax), bi ∼ U(bmin, bmax). The well-known least-squares
approach may be used to analytically compute the output weights:

min
β∈RN

{
‖Hβ− T‖2

2

}
, (4)

which gives β = (HT H)−1HTT. The least squares issue is typically poorly phrased, though.
So we can use the l2 regularization method to solve this kind of problem, i.e.,

min
β∈RN

{
‖Hβ− T‖2

2 + µ‖β‖2
2

}
, (5)

where µ > 0 is a regularization factor. If µ is given such that HT H + µI is invertible, then
the minimizer of Equation (5) is easily described as:

β = (HT H + µI)−1HTT, (6)

where I represents the identity matrix.

1iw

2iw

inw

ib

()g × ib

1y

iy

ny

åå y

1X

2X

nX

Figure 1. Mathematical model of FNNRWs. The convergence of the output weights of the unified
learning model is provided by the FNNRW, which divides the whole training sample into many tiny
subsets and utilizes each subset to create a local learning model to integrate the unified classifier.

3.2. Improved FNNRW Learning Algorithm

In large-scale data, as shown in Figure 2, the sample is randomly divided into m parts,
s = {s1, s2, · · · , sm}. For each subset si, derive the corresponding submodel and initialize
the same input weights and biases. Calculate the hidden layer output matrix Hsi, and Hsi
is a positive definite matrix. The whole problem can be described as:

fs(β) =
1
m

m

∑
i=1

fsi(β), (7)

fsi(β) =
1
2
‖Hsiβ− Tsi‖2

2, i = 1, 2, . . . , m, (8)

The ith local model’s hidden output matrix and target output, respectively, are denoted
by the symbols Hsi and Tsi.

Appl. Sci. 2022, 12, 12478 6 of 14

()sf b

1()sf b 2 ()sf b ()sif b ()smf b

Figure 2. General organization. The link between the local model fsi(β) and the global model fs(β)

is depicted in the picture. A big data collection may be broken up into smaller subsets, each of which
is made up of s = {s1, s2 · · · sm}, and m submodels that are derived from each subset.

In this algorithm, the most common sigmoid function is used for the activation func-
tion. For convenience, the activation function can be denoted as:

g(x) =
1

1 + e−(ωx+b)
, (9)

The parameters ω and b are used to govern the movement of the g(x) picture on the
x axis. The derivative of the activation function is shown in Equation (10). When ω > 0,
the derivative is also greater than zero, so the slope of g(x) is greater than zero. Similarly,
when ω < 0, the slope of the activation function g(x) is less than zero, so ω can be used as
the slope parameter of g(x). According to Figure 3, when x = 0, g(x) = 0.5; when x = 1,
g(x) = r.

g′(x) =
a · e−(a·x+b)

(1 + e−(a·x+b))
2 . (10)

0 0.5 1
x

0

0.5

1

g(
x)

Sigmoid

r

Figure 3. The flatter fragments of the activation function. The figure corresponds to the range when
the activation function’s value range is [0, 1].

When x = 1, g(x) = r, and b = 0, we get:

Appl. Sci. 2022, 12, 12478 7 of 14

1
1 + e−(ω·1+0)

= r, (11)

After transformations we obtain:

ω = − ln(
1− r

r
) = ω1 , (12)

Assuming that the fitting curve of the activation function is not as flat as that of the
sigmoid function, then:

ω ≤ −|ω1| or ω ≥ |ω1|, (13)

In order to determine the range of parameters more accurately, let ω2 = s ·ω1, where
s > 1 is used to define the maximum input weight and the steepest part of the acti-
vation function. The ranges may be used to calculate the slope parameter of the i-th
activation function:

ωi ∈ [−|ω2|,−|ω1|] ∪ [|ω1|, |ω2|], (14)

After substituting Equation (12) into Equation (14), we obtain:

|ωi| ∈
[

ln
(

1− r
r

)
, s · ln

(
1− r

r

)]
, (15)

Parameter s determines the steepest part of the activation function, whose specific
value is determined by the target function.

As for the determination of parameter b, when x ∈ [0, 1], according to Figure 3 we
can get:

1
1 + e−(ω·x+b)

= 0.5, (16)

Following transformations, we get:

b = −ω · x. (17)

For x = 0 we get the first boundary of b:b1 = 0; for x = 1, we get the second boundary
of b:b2 = −ω. It can be seen that bias b depends on the input weight ω, so the range of bias
b can be obtained:

bi ∈
{

[0, ωi], ωi ≤ 0
[−ωi, 0], ωi > 0

, (18)

The formula above illustrates the best decision range in the process of determining
input weights and biases at random.

In the process of determining the output weight, randomly initialize the output matrix
as β(0) and, respectively, calculate the local and global gradients:

∇ fsi(β(t−1)) = HT
si(Hsiβ

(t−1) − Tsi), (19)

∇ fs(β(t−1)) =
1
m ∑m

i=1∇ fsi(βt−1) =
1
m ∑m

i=1 HT
si(Hsiβ

(t−1) − Tsi), (20)

At the same time, calculate:

∇2 fsi(β(t−1)) = HT
si Hsi, (21)

Each local model is locally optimized during each iteration:

β
(t)
i = arg min

β

{
fsi (β)− (∇ fsi(β(t−1))− η∇ fs(β(t−1)))

T
β +

σ

2

∥∥∥β− β(t−1)
∥∥∥2

2

}
, (22)

Appl. Sci. 2022, 12, 12478 8 of 14

The idea of Bregman divergence is presented in order to better comprehend this local
model:

Bψ(β, β
′
) = ψ(β)− ψ(β

′
)−∇ψ(β

′
) · (β− β

′
) (23)

In this algorithm, for each fsi(β), there is

Fi(β) = fsi(β) +
σ

2
‖β‖2

2, (24)

The regularization parameter is σ > 0. Accordingly, the Bregman divergence is

Bi(β, β
′
) = BFi(β, β

′
) = B f i(β, β

′
) +

σ

2

∥∥∥β− β
′
∥∥∥2

2
, (25)

According to the above equation, Equation (22) can be be changed to:

β
(t)
i = arg min

β

{
fs(β(t−1)) +∇ fs(β(t−1)) · (β− β(t−1)) +

1
η

Bi(β, β(t−1))

}
, (26)

Taylor’s extension, however, transforms the Bregman divergence into:

Bi(β, β(t−1)) =
1
2
(β− β(t−1))(∇2 fsi(β(t−1)) + σI)(β− β(t−1)), (27)

Thus, Equation (22) can be further transformed into:

β
(t)
i = β(t−1) − η(∇2 fsi(β(t−1)) + σI)−1∇ fs(β(t−1)), (28)

The ultimate output weight may be calculated using the preceding derivation as follows:

β(t) = β(t−1) − η(
1
m ∑m

i=1 (∇
2 fsi(β(t−1)) + σI)−1)∇ fs(β(t−1)). (29)

These are a few of the approaches for improvement this study employed. Algo-
rithm 1 displays the particular FNNS algorithm, and Figure 4 displays the flowchart of
algorithm development.

Algorithm 1 Improved FNNRW learning algorithm.
Step 1: Divide the sample randomly into m parts, s = {s1.s2, · · · , sm}. For each subset si , derive the
corresponding submodel.
Step 2: Determine the range of input weights and biases that the activation function deems to be optimum,

|ωi | ∈
[

ln
(

1− r
r

)
, s · ln

(
1− r

r

)]
, (30)

bi ∈
{

[0, ωi], ωi ≤ 0
[−ωi , 0], ωi > 0 . (31)

Step 3: Randomly initialize the same input weights ωi and biases bi within the range of values.
Step 4: Calculate the Hsi hidden layer output matrix and initialize the β(0) output matrix at random.
Step 5: Calculate the required components such as local gradients and global gradients.

∇ fsi(β(t−1)) = HT
si(Hsi β

(t−1) − Tsi), (32)

∇ fs(β(t−1)) =
1
m ∑m

i=1∇ fsi(βt−1) =
1
m ∑m

i=1 HT
si(Hsi β

(t−1) − Tsi), (33)

∇2 fsi(β(t−1)) = HT
si Hsi . (34)

Step 6: Calculate the output weight,

β(t) = β(t−1) − η(
1
m ∑m

i=1 (∇
2 fsi(β(t−1)) + σI)−1)∇ fs(β(t−1)). (35)

Step 7: if ‖β(t)−β(t−1)‖2
‖β(t−1)‖2

≤ σ or reach the maximum number of iterations,then break; else go on Step 5 and Step 6 .

Step 8: Train the network using the calculated weights.
Step 9: Return result.

Appl. Sci. 2022, 12, 12478 9 of 14

Start

Divide the sample randomly into several parts

Each subset derive the corresponding submodel

Calculate the optimal range of input weights and Bias

according to the activation funcption

Randomly initialize the same input weights and biases

within the range of values

Initialize the output weights

Calculate the required components such as local gradients

and global gradients

Local optimization performed on each local model at

each iteration

Introduce Bregman divergence

Calculate the output weight based on the above results

Reach the maximum

number of iterations or

satisfy other iteration

conditions

Determine the final output weight

Train the network using the calculated weights

Return result

End

1

1
() ()

m

s si

i

f f
m

b b
=

= å
2

2

1
() , 1,2, ,

2
si si sif H T i mb b= - = m, ,

1 1
ln , lni

r r
s

r r
w

é - - ùæ ö æ öÎ ×ç ÷ ç ÷ê úè ø è øë û

[]
[]
0, , 0

,0 , 0

i i

i

i i

b
w w

w w

ì £ï
Îí

- >ïî

(1) (1)

(1) (1) (1)

1 1

2 (1)

() ()

1 1
() () ()

()

t T t

si si si si

m mt t T t

s si si si sii i

t T

si si si

f H H T

f f H H T
m m

f H H

b b

b b b

b

- -

- - -

= =

-

Ñ = -

Ñ = Ñ = -

Ñ =

å å

2
() (1) (1) (1)

2
arg min () (() ())

2

t t t T t

i si si sf f f
b

s
b b b h b b b b- - -ì ü= - Ñ - Ñ + -í ý

î þ

' ' ' '(,) () () () ()By b b y b y b y b b b= - -Ñ × -

() (1) 2 (1) 1 (1)

1

1
((())) ()

mt t t t

si si
f I f

m
b b h b s b- - - -

=
= - Ñ + Ñå

() (1)

2

(1)

2

t t

t

b b
e

b

-

-

-
£

1

() ()
N

i i i

i

f x g x bb w
=

= × +å

Y

N

Figure 4. An optimized FNNRW learning algorithm flowchart. The graphic depicts each phase of
the FNNRW optimization process, and the chosen approach corresponds to that step specifically.
The flow chart may be used to more clearly illustrate the improved FNNRW algorithm’s execution
process, condition judgment at its start, and condition at its conclusion.

4. Performance Analysis
4.1. Results and Discussion

The effectiveness of the suggested algorithm is tested in this section. A Pentium (R)
dual-core E5400 processor clocked at 2.70 GHz and operating with 2 Gb of memory was
used for all tests in the MATLAB 7.10.0 (2010a) environment. The activation function used

Appl. Sci. 2022, 12, 12478 10 of 14

by the algorithm is the sigmoid function g(x) = 1
1+e−x . Because it is for large-scale data

processing, the dataset used in this paper is the MNIST dataset. The Mixed National Insti-
tute of Standards and Technology database, also known as the MNIST dataset, is a sizable
collection of handwritten digits that the National Institute of Standards and Technology
has collected and organized. It includes a training set of 60,000 examples and a test set
of 10,000 examples. In comparison to other types of datasets, MNIST, a publicly accessi-
ble handwritten digital dataset, has small image pixels, relatively low computing power,
the ability to build a neural network with fewer layers, is amenable to computer arithmetic,
and the dataset has sufficient quantity, high discrimination, and low noise. Consequently,
it was selected as the experiment’s dataset. The samples are initially separated into m
equal subgroups and all samples are normalized in order to test the algorithm’s efficacy.
During the experiment, the parameters r = 0.1 and s = 3 were selected in the process of
calculating the input weights and biases. Additionally, take the regularization parameter
σ = 0.05, learning rate µ = 10−3, the threshold ε = 10−3. The following charts intuitively
show the performance of the optimized algorithm.

When the number of subsets m is 10 or 20, respectively, Tables 1 and 2 compare the
accuracy of the FNNRWs learning algorithm and the improved FNNRWs learning method.
As shown in Tables 1 and 2, the accuracy of the optimized FNNRWs learning algorithm is
greater than the accuracy of the FNNRWs learning algorithm as sample size or the number
of hidden layer nodes increases. Figures 5 and 6 compare the training accuracy and test
accuracy while displaying the accuracy of the optimized FNNRWs learning algorithm
and the accuracy of the FNNRWs learning algorithm as the number of training rises,
respectively. In the figure, the advantages of the optimized FNNRWs learning algorithm
in terms of accuracy can be seen very intuitively. Figures 7 and 8 show the performance
advantages of the optimized FNNRWs learning algorithm from the aspect of relative error
by calculating the relative error.

Table 1. Training accuracy and test accuracy of the FNNRW learning algorithm and the optimized
FNNRW learning algorithm when samples are divided into 10 subsets. We partitioned the entire
huge dataset into 10 smaller datasets, using the training set and test set to examine how well the
improved method performed. The accuracy of each dataset is displayed in the table.

Nodes

FNNRW Learning Algorithm Improved FNNRW Learning Algorithm

Training
Accuracy

Testing
Accuracy

Training
Accuracy

Testing
Accuracy

400 0.8300 0.7980 0.8200 0.8500
800 0.8427 0.7786 0.8786 0.8700
1200 0.8583 0.7977 0.9011 0.8935
1600 0.8600 0.8034 0.9300 0.9084
2000 0.8621 0.8022 0.9406 0.9099

Table 2. Training accuracy and test accuracy of the FNNRW learning algorithm and the optimized
FNNRWs learning algorithm when samples are divided into 20 subsets. We partitioned the entire
huge dataset into 20 smaller datasets, using the training set and test set to examine how well the
improved method performed. The accuracy of each dataset is displayed in the table.

Nodes

FNNRW Learning Algorithm Improved FNNRW Learning Algorithm

Training
Accuracy

Testing
Accuracy

Training
Accuracy

Testing
Accuracy

400 0.8058 0.7323 0.8129 0.7572
800 0.8183 0.7885 0.8238 0.7704
1200 0.8595 0.8007 0.8693 0.8331
1600 0.8600 0.8042 0.9021 0.8947
2000 0.8679 0.8145 0.9130 0.9249

Appl. Sci. 2022, 12, 12478 11 of 14

Figure 5. Comparison of the learning algorithms used by the FNNRW for training accuracy. The ac-
curacy of the improved FNNRW method is superior to the FNNRW algorithm in the training dataset
in terms of different training durations.

Figure 6. Test accuracy comparison of learning algorithms for the FNNRW. The accuracy of the
improved FNNRWs method is superior to the FNNRW algorithm in the test dataset in terms of
various training durations.

Figure 7. Algorithm for learning the FNNRW’s relative error. While the error of the optimized
FNNRW learning algorithm is typically lower than 0.05, the relative error of the FNNRW learning
algorithm drops with the number of training repetitions but stays around 0.1.

Appl. Sci. 2022, 12, 12478 12 of 14

Figure 8. Relative inaccuracy of the FNNRW learning method that has been improved. The optimized
FNNRW learning algorithm’s relative errors show a downward trend as training times increase,
and the majority of them are lower than 0.05, which is much lower than the FNNRW learning algo-
rithm’s relative error of 0.1, demonstrating the optimized FNNRW algorithm’s superior performance.

4.2. Engineering Applications

Data have grown more quickly as science and technology have advanced. In the big
data era, people may find a ton of pertinent information. For instance, environmental
factors that are regularly studied offer a significant dataset in coal mine safety. The feed-
forward network random weighting algorithm presented in this paper is based on the
decomposition method, which is more adaptable, divides a large dataset into local datasets
rather than using sampling to reduce it, preserves the integrity of the original dataset,
and is thus better suited for use in real-world engineering applications.

5. Conclusions and the Future Work

In this paper, a feed-forward neural network model with random weights based on
decomposition technology is examined for large-scale datasets. It is based on the feed-
forward neural network with random weights (FNNRW). Each subset of the data is used
to create the associated submodel once the samples are separated into subsets of the same
size. The technical contribution of this study is to optimize the three parameter generating
process in order to increase overall performance. The input weights and biases in FNNRWs
are set arbitrarily and are not learned. The choice of the proper interval is crucial. The best
value range is computed in this study using the activation function. Starting with a variety
of input weights and biases will boost performance as a whole. In addition, an iterative
approach is employed to get over the challenge of assessing the output weights of the
random model. The MNIST dataset was used as the basis for experiments. The outcomes
of the experiments demonstrate the algorithm’s efficacy.

The algorithm performance of the suggested feed-forward neural network model
with random weights for large-scale datasets based on decomposition technology has
greatly improved; however, the following has to be done in the future: (a) Despite a minor
flaw, the suggested method can still be made better. The improved approach will be
used in further work to boost the algorithm’s performance even more. The experimental
data used in the paper are two-dimensional, and the subsequent work will start from the
dimensionality to improve the algorithm’s adaptability, filter the dataset to improve its
quality in order to indirectly improve algorithm performance, and continue to improve the
algorithm structure in order to satisfy more application requirements. (b) Only the MINIST
dataset will be tested since the future data will be enormous and the dataset utilized in
the experiment will be small. The performance of the method will be examined in the
subsequent study using a bigger dataset. (c) Every algorithm update is eventually used
in everyday life, and our original goal was to use high-performing algorithms in actual

Appl. Sci. 2022, 12, 12478 13 of 14

situations. In our upcoming work, we will concentrate on applying algorithms to many
technical domains in addition to improving the algorithm’s performance.

Author Contributions: Writing—original draft, Z.Z., F.F., T.H.; Writing—review & editing, Z.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ningxia Key Research and Development project grant number:
2022BEG02016, and Ningxia Natural Science Foundation Key Project grant number: 2021AAC02004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The MNIST database is available from http://yann.lecun.com/exdb/
mnist/ (accessed on 20 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Han, F.; Jiang, J.; Ling, Q.H.; Su, B.Y. A survey on metaheuristic optimization for random single-hidden layer feedforward neural

network. Neurocomputing 2019, 335, 261–273. [CrossRef]
2. Li, F.-j.; Li, Y. Randomized algorithms for feedforward neural networks. In Proceedings of the 2016 35th Chinese Control

Conference, Chengdu, China, 27–29 July 2016; pp. 3664–3668.
3. Scardapane, S.; Wang, D.; Panella, M.; Uncini, A. Distributed learning for random vector functional-link networks. Inf. Sci. 2015,

301, 271–284. [CrossRef]
4. Tang, S.; Chen, L.; He, K.; Xia, J.; Fan, L.; Nallanathan, A. Computational intelligence and deep learning for next-generation

edge-enabled industrial IoT. IEEE Trans. Netw. Sci. Eng. 2022. [CrossRef]
5. Li, M.; Wang, D. Insights into randomized algorithms for neural networks: Practical issues and common pitfalls. Inf. Sci. 2017,

382, 170–178. [CrossRef]
6. Xia, F.; Hao, R.; Li, J.; Xiong, N.; Yang, L.T.; Zhang, Y. Adaptive GTS allocation in IEEE 802.15. 4 for real-time wireless sensor

networks. J. Syst. Archit. 2013, 59, 1231–1242. [CrossRef]
7. Dudek, G. A method of generating random weights and biases in feedforward neural networks with random hidden nodes.

arXiv 2017, arXiv:1710.04874.
8. Cao, F.; Tan, Y.; Cai, M. Sparse algorithms of Random Weight Networks and applications. Expert Syst. Appl. 2014, 41, 2457–2462.

[CrossRef]
9. Wu, C.; Luo, C.; Xiong, N.; Zhang, W.; Kim, T.H. A greedy deep learning method for medical disease analysis. IEEE Access 2018,

6, 20021–20030. [CrossRef]
10. Schmidt, W.F.; Kraaijveld, M.A.; Duin, R.P.W. Feed forward neural networks with random weights. In Proceedings of the 11th

IAPR International Conference on Pattern Recognition. Vol. II. Conference B: Pattern Recognition Methodology and Systems, The
Hague, The Netherlands, 30 August–3 September 1992.

11. Ye, H.; Cao, F.; Wang, D.; Li, H. Building feedforward neural networks with random weights for large scale datasets. Expert Syst.
Appl. 2018, 106, 233–243. [CrossRef]

12. Scardapane, S.; Wang, D. Randomness in neural networks: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2017,
7, e1200. [CrossRef]

13. Wang, D.; Li, M. Stochastic Configuration Networks: Fundamentals and Algorithms. IEEE Trans. Cybern. 2017, 47, 3466–3479.
[CrossRef] [PubMed]

14. Mikolov, T.; Deoras, A.; Povey, D. Strategies for training large scale neural network language models. In Proceedings of the 2011
IEEE Workshop on Automatic Speech Recognition & Understanding, Waikoloa, HI, USA, 11–15 December 2012.

15. Yoo, P.D.; Ng, J.W.; Zomaya, A.Y. An Energy-Efficient Kernel Framework for Large-Scale Data Modeling and Classification.
In Proceedings of the 25th IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum,
Anchorage, AK, USA, 16–20 May 2011.

16. Nykamp, D.Q.; Tranchina, D. A Population Density Approach That Facilitates Large-Scale Modeling of Neural Networks:
Extension to Slow Inhibitory Synapses. Neural Comput. 2001, 13, 511–546. [CrossRef] [PubMed]

17. Gu, R.; Shen, F.; Huang, Y. A parallel computing platform for training large scale neural networks. In Proceedings of the 2013
IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; pp. 376–384.

18. Elias, J.G.; Fisher, M.D.; Monemi, C.M. A multiprocessor machine for large-scale neural network simulation. In Proceedings of
the IEEE Ijcnn-91-seattle International Joint Conference on Neural Networks, Seattle, WA, USA, 8–12 July 1991.

19. Osuna, E.; Freund, R.; Girosi, F. An Improved Training Algorithm for Support Vector Machines. In Proceedings of the Neural
Networks for Signal Processing Vii-IEEE Workshop, Amelia Island, FL, USA, 24–26 September 1997.

20. Osuna, E.; Freund, R.; Girosi, F. Training Support Vector Machines: An Application to Face Detection. In Proceedings of the IEEE
Computer Society Conference on Computer Vision & Pattern Recognition, Quebec City, QC, Canada, 6 August 2002.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://doi.org/10.1016/j.neucom.2018.07.080
http://dx.doi.org/10.1016/j.ins.2015.01.007
http://dx.doi.org/10.1109/TNSE.2022.3180632
http://dx.doi.org/10.1016/j.ins.2016.12.007
http://dx.doi.org/10.1016/j.sysarc.2013.10.007
http://dx.doi.org/10.1016/j.eswa.2013.09.045
http://dx.doi.org/10.1109/ACCESS.2018.2823979
http://dx.doi.org/10.1016/j.eswa.2018.04.007
http://dx.doi.org/10.1002/widm.1200
http://dx.doi.org/10.1109/TCYB.2017.2734043
http://www.ncbi.nlm.nih.gov/pubmed/28841561
http://dx.doi.org/10.1162/089976601300014448
http://www.ncbi.nlm.nih.gov/pubmed/11244554

Appl. Sci. 2022, 12, 12478 14 of 14

21. Lu, B.L.; Ito, M. Task decomposition and module combination based on class relations: A modular neural network for pattern
classification. IEEE Trans. Neural Netw. 1999, 10, 1244–1256.

22. Schwaighofer, A.; Tresp, V. The Bayesian Committee Support Vector Machine. In Artificial Neural Networks—ICANN 2001;
Springer: Berlin/Heidelberg, Germany, 2001.

23. Tresp, V. A Bayesian committee machine. Neural Comput. 2000, 12, 2719–2741. [CrossRef] [PubMed]
24. Cheng, H.; Xie, Z.; Shi, Y.; Xiong, N. Multi-step data prediction in wireless sensor networks based on one-dimensional CNN and

bidirectional LSTM. IEEE Access 2019, 7, 117883–117896. [CrossRef]
25. Yao, Y.; Xiong, N.; Park, J.H.; Ma, L.; Liu, J. Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput.

Math. Appl. 2013, 65, 1318–1325. [CrossRef]
26. Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 26, 31–44. [CrossRef]
27. Krogh, A. What are artificial neural networks? Nat. Biotechnol. 2008, 26, 195–197. [CrossRef] [PubMed]
28. Wang, X.; Dai, P.; Cheng, X.; Liu, Y.; Cui, J.; Zhang, L.; Feng, D. An online generation method of ascent trajectory based on

feedforward neural networks. Aerosp. Sci. Technol. 2022, 128, 107739. [CrossRef]
29. Cui, W.; Cao, B.; Fan, Q.; Fan, J.; Chen, Y. Source term inversion of nuclear accident based on deep feedforward neural network.

Ann. Nucl. Energy 2022, 175, 109257. [CrossRef]
30. Xiao, L.; Fang, X.; Zhou, Y.; Yu, Z.; Ding, D. Feedforward neural network-based chaos encryption method for polarization division

multiplexing optical OFDM/OQAM system. Opt. Fiber Technol. 2022, 72, 102942. [CrossRef]
31. Mouloodi, S.; Rahmanpanah, H.; Gohari, S.; Burvill, C.; Davies, H.M. Feedforward backpropagation artificial neural networks for

predicting mechanical responses in complex nonlinear structures: A study on a long bone. J. Mech. Behav. Biomed. Mater. 2022,
128, 105079. [CrossRef] [PubMed]

32. Fontes, C.H.; Embiruçu, M. An approach combining a new weight initialization method and constructive algorithm to configure
a single Feedforward Neural Network for multi-class classification. Eng. Appl. Artif. Intell. 2021, 106, 104495. [CrossRef]

33. Dudek, G. Generating random weights and biases in feedforward neural networks with random hidden nodes. Inf. Sci. 2019, 481,
33–56. [CrossRef]

34. Cao, F.; Wang, D.; Zhu, H.; Wang, Y. An iterative learning algorithm for feedforward neural networks with random weights. Inf.
Sci. 2016, 328, 546–557. [CrossRef]

35. Ai, W.; Chen, W.; Xie, J. Distributed learning for feedforward neural networks with random weights using an event-triggered
communication scheme. Neurocomputing 2017, 224, 184–194. [CrossRef]

36. Kumar, P.; Kumar, R.; Srivastava, G.; Gupta, G.P.; Tripathi, R.; Gadekallu, T.R.; Xiong, N.N. PPSF: A privacy-preserving and
secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 2021, 8,
2326–2341. [CrossRef]

37. Yam, J.Y.; Chow, T.W. A weight initialization method for improving training speed in feedforward neural network. Neurocomputing
2000, 30, 219–232. [CrossRef]

38. Li, D.; Liu, Z.; Xiao, P.; Zhou, J.; Armaghani, D.J. Intelligent rockburst prediction model with sample category balance using
feedforward neural network and Bayesian optimization. Underground Space 2022, 7, 833–846. [CrossRef]

39. Deng, X.; Wang, X. Incremental learning of dynamic fuzzy neural networks for accurate system modeling. Fuzzy Sets Syst. 2009,
160, 972–987. [CrossRef]

40. Makantasis, K.; Georgogiannis, A.; Voulodimos, A.; Georgoulas, I.; Doulamis, A.; Doulamis, N. Rank-r fnn: A tensor-based
learning model for high-order data classification. IEEE Access 2021, 9, 58609–58620. [CrossRef]

http://dx.doi.org/10.1162/089976600300014908
http://www.ncbi.nlm.nih.gov/pubmed/11110133
http://dx.doi.org/10.1109/ACCESS.2019.2937098
http://dx.doi.org/10.1016/j.camwa.2012.02.003
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.1038/nbt1386
http://www.ncbi.nlm.nih.gov/pubmed/18259176
http://dx.doi.org/10.1016/j.ast.2022.107739
http://dx.doi.org/10.1016/j.anucene.2022.109257
http://dx.doi.org/10.1016/j.yofte.2022.102942
http://dx.doi.org/10.1016/j.jmbbm.2022.105079
http://www.ncbi.nlm.nih.gov/pubmed/35114570
http://dx.doi.org/10.1016/j.engappai.2021.104495
http://dx.doi.org/10.1016/j.ins.2018.12.063
http://dx.doi.org/10.1016/j.ins.2015.09.002
http://dx.doi.org/10.1016/j.neucom.2016.10.059
http://dx.doi.org/10.1109/TNSE.2021.3089435
http://dx.doi.org/10.1016/S0925-2312(99)00127-7
http://dx.doi.org/10.1016/j.undsp.2021.12.009
http://dx.doi.org/10.1016/j.fss.2008.09.005
http://dx.doi.org/10.1109/ACCESS.2021.3072973

	Introduction
	The Related Work
	Our Proposed FNNS
	FNNRW Learning Algorithm
	Improved FNNRW Learning Algorithm

	Performance Analysis
	Results and Discussion
	Engineering Applications

	Conclusions and the Future Work
	References

