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Abstract: Block modeling is an effective way to understand Earth’s crustal deformation. However,
the choice of block boundaries and the number of blocks affect the model results. Therefore, the
subjectivity of this analysis should be avoided. Clustering analysis can be used to define the blocks
of GPS (Global Positioning System) velocity fields without a priori information. Unfortunately,
clustering methods also have unique solutions and differ with various algorithms. Ensemble methods
could be an answer to enhance the clustering results for GPS velocities. In this study, we use ensemble
clustering to identify block boundaries before block modeling without a priori information about the
data. The ensemble clustering method is used for the first time in the clustering of GPS velocities and
the case of Turkey is discussed. The published horizontal GPS velocities were first clustered with five
different clustering methods and the optimum classes were determined using ensemble clustering
methods. It is proven that the Meta-CLustering Algorithm can be used in terms of ensemble clustering
for this region.

Keywords: clustering analysis; GPS velocities; ensemble clustering; Meta-CLustering algorithm

1. Introduction

Turkey is in the eastern Mediterranean region in which the Arabian and African plates
collide with the Eurasian Plate [1]. This plate collision zone reveals itself in various tectonic
processes such as continental strike-slip faults such as the dextral North Anatolian Fault
(NAF) or sinistral East Anatolian Fault (EAF) and Dead Sea Fault, oceanic lithosphere
subduction and results such as Cyprus and Hellenic Arcs [2], continental extensions such as
Sea of Marmara, Aegean region [3], western Turkey, westward extrusion of the Anatolian
plate. All these interactions make Turkey an open laboratory and help researchers to
understand and interpret crustal deformation.

Many models have been developed to determine the behavior of the earth’s crust
such as continuum or kinematic models. Among these, block models are closer to surface
deformation [4]. Plate kinematic models aim to quantify the slip rates for major faults and
rotation rates of crustal blocks [1,5]. The utility of the kinematic model depends on how well
the block rotations are determined and the presence of significant intra-block deformation.
These depend on the data distribution and can be considered subject-specific. Moreover,
the determination of blocks and block boundaries is generally subjective and sometimes
questionable [4]. Therefore, the utility of block models depends on how well-defined the
block boundaries are.

When starting block modeling for the GPS velocity field, candidate blocks are first
determined by the location of major faults [4]. Reilinger et al. [5] used mapped faults,
historical earthquakes, and the seismicity of the region to determine the block boundaries.
However, the location of the ductile shear zone at depth does not always directly reflect by
the surface traces of strike-slip faults and clustering could be used to locate the shear zones
at depth in the absence of a priori of the surface fault traces [6,7].

Clustering analysis has been employed in numerous real-world problems such as
data mining, pattern recognition, statistics, document retrieval, and machine learning [8,9].
Various clustering algorithms such as k-means, k-medoids, Hierarchical Agglomerative
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Clustering (HAC), Euler-vector, and Gaussian Mixture Model (GMM) have been used in
geodetic studies as well to find proper solutions that are acceptable and GPS velocities
have been clustered to determine boundaries before block modeling [7,10–17]. However,
as it is known, clustering is considered to be an inherently unsupervised learning method
and forms normally a bottleneck problem. In other words, there is no a priori information
about the underlying data distributions or about any specific properties that we want
to find, or about what we consider proper solutions to the data. Each of the different
clustering algorithms may produce different results by implicitly or explicitly imposing a
particular structure on a similar data set. On the other hand, based on the impossibility
theorem [18], there is no single clustering algorithm that can produce consistent and
optimal results for different problems and there is no consensus on a universal standard
for choosing any clustering algorithm for a specific problem. At this point, there is a need
for efficient methods that can benefit from combining the strengths of many individual
clustering algorithms [19]. To overcome this problem and to improve the quality of the
single clustering algorithm results, the concept of combining different clustering results
known as cluster ensemble (consensus clustering) has been introduced [20]. It has been
broadly employed in clustering research for the purpose of enhancing the quality and
robustness of individual clustering techniques [9,21,22].

Therefore, the objective of this study is to explore the following questions “Is there
a better way to cluster GPS velocities? Which one is the proper solution (individual
or ensemble clustering) about the cluster/block boundaries?”. In the direction of these
research questions, we first gathered horizontal velocities inferred from the published
cGPS (continuous GPS) measurements in Turkey for clustering GPS velocities. Then,
once the determined the number of clusters k that best represents, we clustered GPS
velocities using five different clustering techniques including Balanced Iterative Reducing
and Clustering using Hierarchies (BIRCH), k-means, mini batch k-means, HAC, and spectral
clustering. After that, unlike the other studies, we investigated the performance of three
cluster ensemble techniques known as Hybrid Bipartite Graph Formulation (HBGF), Meta-
CLustering Algorithm (MCLA), and Non-Negative Matrix Factorization-based (NMF)
consensus clustering to find out whether they produce proper results for GPS velocities
or not. With this paper, ensemble clustering algorithms are used for the first time in the
clustering of GPS-derived horizontal velocities.

2. Data and Methodology

The data used in this paper are the last published horizontal GPS velocities for Turkey
in [15] shown in Figure 1. The velocity field is obtained from 10 years of data between
2008 and 2018 of Continuously Operating Reference Stations Turkey (CORS-TR) and some
other networks to improve the velocity field [15]. The data consist of CORS-TR data which
are homogeneously distributed in Turkey, Turkish National Permanent GNSS Network
(TNPGN), and Marmara Region Continuous Network (MAGNET). 19 TNPGN stations
operated by the General Directorate of Mapping, and 11 MAGNET stations from the
Marmara Region Continuous Network (MAGNET) which is operated by the Scientific
and Technical Research Council of Turkey (TUBITAK), Marmara Research Centre, Earth
and Marine Sciences Research Institute (EMSRI) are included. The velocities derived from
TNPGN and MAGNET GPS data cover the period between 2008 and 2015.

A total of 188 GPS stations’ data were used for clustering analysis. Firstly, we de-
termined the optimum number (k) of clusters using the Gap statistics method which is
designed to be applied to any distance measure and clustering technique. After deter-
mining the k value, we generated clustering models from different clustering techniques
(members) for building the ensemble clustering approach. Last but not least, we combined
the outputs of the members to obtain the final clustering results using different ensemble
clustering methods and determined the quality of the final solutions (Figure 2).
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Figure 1. GPS velocity field with respect to Eurasian tectonic plate from [15], gray thin lines show
active faults [23].

Figure 2. The flowchart of this study.

2.1. Gap Statistic Algorithm

The Gap is one of several methods determining the number of clusters k that best represents
a given data set. The Gap algorithm is a data mining statistic developed by Tibshirani et al. [24]
to measure the significance of the clustering for each k. This procedure determines the
validity or the goodness of fit of the clustering evaluations. Moreover, it is a popular internal
indicator such as Silhouette and/or Davies–Bouldin in terms of test data processing of
building the clustering algorithm. The advantage among other methods that have different
computational models for determining the optimal number of clusters is that it is designed
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to be applied to any clustering technique and distance measure. For any xij = 1, 2, . . . , n
observation data with p features, this method compares the total intra-cluster variation in k
different number of clusters with the expected values of the data under a distribution of
reference null hypothesis (i.e., no significant clustering). It can be achieved by generating a
random distribution of points (Monte Carlo sampling method) that occupy the same spatial
extent in velocity space as does the data to be tested [12,24]. A measure of the quality of
the rth cluster of given data set is calculated using Equation (1).

Dr =
nr

∑
i,i′=1

dii′ (1)

In Equation (1), the sum for both i and i
′

is overall nr points within the rth cluster and
d(ii′ ) is the squared Euclidean distance in velocity space between the observations i and

i
′

in each class. After that, the sum over all k clusters (Wk) according to the mean of each
cluster is defined as:

Wk =
k

∑
r=1

(
1

2nr
Dr) (2)

where nr is the number of points in cluster r. At this point, for different values of k, the
total within-cluster variation between the observation and the reference data is calculated
as in Equation (3) by standardizing log(Wk) compared to the expected distribution of the
reference data in the zero-mean distribution:

GAPn(k) = E∗nlog(Wre f
k )− log(Wobs

k ) (3)

where E∗n is expressed the expected value of n samples in the reference data distribution.
While the superscript “ref” refers to a random, null, and reference data set, the superscript
“obs” represents the observed data set being tested. The choice of the optimal number of
clusters with the Gap statistic (GAPn(k)) is the value of k at which log(Wk) has the longest
decline below the reference value.

2.2. Clustering Ensemble Approach

Generally speaking, a clustering ensemble, also referred to as a clustering aggregation
or consensus clustering makes a combination of several clustering results into a single
consolidated partition [20]. Theoretically, for a given data set C = c1, c2, . . . , cn that has n
data, X clustering algorithms are utilized to find X single partitions and cluster C (Figure 2).
Then, the clustering ensemble member set can be formed with x partitions Γ = P1, P2, . . . , Px
and consensus function F, and denoted by F = P1, P2, . . . , Px = F(Γ). Finally, the clustering
ensemble process gets a partition P∗ of data set C by combining these ensemble members
P1, P2, . . . , Px with Γ without access to original features or algorithms [25,26].

Ensemble clustering approaches promise efficient methods that would significantly
benefit from combining the strengths of many individual clustering algorithms [19]. There-
fore, by combining single clustering models, ensemble clustering can go beyond what a
single clustering algorithm is capable of achieving in several respects:

• Robustness: better average performance compared to individual clustering algorithms.
• Novelty: finding a new consolidated solution unattainable by any single clustering algorithm.
• Stability: Final solutions with lower sensitivity to noise and outliers.
• Scalability and Parallelization: Ability to compute distributed data and to integrate solutions

(parallel clustering) from multiple sources of data or features. See [9,19,27–29].

The clustering ensemble approach is generally conducted in two principal steps:
generation mechanism to obtain the ensemble members and consensus function to combine
the ensemble members.
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2.3. Generation Mechanisms

Generation is the primary step in clustering ensemble models and its main purpose is
to adopt n different clustering models for generating ensemble members. In theory, any
individual clustering algorithm can be used in this step, as long as it is appropriate for
certain data. Furthermore, the generated members are expected to be as different from
each other as possible. Ensuring a high level of diversity among members denotes that
they yield distinct information about the data and this can potentially help improve the
performance of the ensemble clustering process [25]. In a particular problem, it is important
to apply one or more suitable generation processes to accomplish reasonable quality but
also diversity.

There are several ensemble member generation approaches: different clustering al-
gorithms, different objects representation, different parameter initialization, projection to
subspaces, and different subsets of objects. Among these approaches, different clustering
algorithms strategy is used for each member with a consideration that different algorithms
may generate more diverse members in this study. Several individual clustering algorithms
such as k-means, k-medoids, Fuzzy C-means algorithm, self-organizing maps and hierar-
chical clustering were applied on different data sets to generate ensemble members in the
literature [30–32].

2.3.1. Birch Clustering

BIRCH is a clustering algorithm that can cluster noisy and multidimensional data in
particular massive data sets with a single scan [33]. It greatly reduces the temporal costs
unlike k-means and dynamically and incrementally clusters acquired data instances. For a
given data set i = 1, 2, . . . , n with N-dimensional data points in a cluster

−→
Xl :

−→
X0 =

∑N
t=1
−→
Xl

N
(4)

R = (
∑N

t=1(
−→
Xt −

−→
X0)

N
)1/2 (5)

D = (
∑N

t=1 ∑N
j=1(
−→
Xt −

−→
Xj)

2

N(N − 1)
)1/2 (6)

where
−→
X0 indicates centroid of each cluster. R refers to the average distance of member

points from the centroid. D represents the diameter of the cluster. R and D are two
alternative measures of the tightness of the cluster around the centroid [34]. After that, five
alternative distances are defined to measure their proximity between two clusters. Given
the centroids of two clusters

−→
X01 and

−→
X02, the Euclidean distance DO, Manhattan distance

D1, the average inter-cluster distance D2, average intra-cluster distance D3 and variance
increase distance D4 of the two clusters are calculated as follows:

D0 =
(
(
−→
X01 −

−→
X02)

2
)1/2

(7)

D1 =
∣∣∣−→X01 −

−→
X02

∣∣∣ = d

∑
t=1

∣∣∣−→X01
(t) −−→X02

(t)
∣∣∣ (8)

D2 = (
∑N1

t=1 ∑N1+N2
j=N1+1(

−→
Xt −

−→
Xj)

2

N1N2
)1/2 (9)

D3 = (
∑N1+N2

t=1 ∑N1+N2
j=1 (

−→
Xt −

−→
Xj)

2

(N1 + N2)(N1 + N2 − 1)
)1/2 (10)
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D4 = ∑N1+N2
k=1 (

−→
Xk −

∑
N1+N2
l=1

−→
Xl

N1+N2
)2 −∑N1

i=1(
−→
Xi −

∑
N1
l=1
−→
Xl

N1
)2 −∑N1+N2

j=N1+1(
−→
Xj −

∑
N1+N2
l=N1+1

−→
Xl

N2
)2 (11)

The BIRCH method is based on two important concepts: the Clustering Feature (CF)
and the CF tree. The CF is a structure consisting of three parameters that will represent
in the main memory the subsets formed from small groups of data objects. The clustering
vector of the cluster

−→
X01 is expressed as CF = (N,

−→
LS, SS), where N is the number of data,

−→
LS is the linear sum of the N data, i.e., ∑N

i=1
−→
Xl , and SS is the square sum of the N data, i.e.,

∑N
i=1(
−→
Xl )

2.
The CF tree created using the CF values determined for the clusters has a structure

representing a branching factor B and a threshold value T. The CF tree represents each
node as a subset and each entry in the CF tree gives an input value to the sub-nodes which
is the sum of this tree. The threshold value T sets the limit of the maximum input value
at each node. The first step in the creation of the CF tree is to iteratively determine the
appropriate leaf structure according to a chosen distance metric: DO, D1, D2, D3, and D4.
If the current input values in the data set are greater than the threshold value as a result of
the distance calculation process, a new sub-cluster is created [33].

2.3.2. K-Means Clustering

The k-means method is a widely used clustering and unsupervised learning algorithm.
In this method, first used by MacQueen [35], the main objective is to partition k clusters
from a database consisting of n data, in which each object belongs to the cluster with
the nearest mean. By this means, the similarities within the cluster are homogeneous
(maximized), and the similarities between clusters are heterogeneous (minimized) after the
clustering process. In other words, the within-cluster variances are minimized in k-means
clustering (Equation (12)).

Jkmeans =
k

∑
j=1

n

∑
i=1

∥∥∥x(j)
i − cj

∥∥∥2
(12)

where k is the number of clusters; n is the number of cases; x is the ith case c is the centroid
for cluster j.

The process steps of the k-means clustering are as follows:

• k points are chosen randomly as initial cluster centroids.
• The squared Euclidean distances from each point to the initially chosen centroids are calculated

and then points are allocated to the nearest centroid.
• The new cluster centroids of the formed clusters are updated by taking the mean of the points

in each cluster.
• The previous steps are repeated until the changes of all clusters remain stable and reach

convergence. Notice that although it is possible to carry out k-means with other distance
metrics such as Manhattan, Chebychev, etc., it is not suggested for they may prevent the
convergence.

2.3.3. Mini Batch K-Means Clustering

The mini batch k-means is first presented by Sculley [36] and is proposed as an alter-
native to the k-means algorithm for especially clustering large data sets. As in partitioning
clustering methods, it is used to group data with similar characteristics in a given data
set. The main idea underlying the mini batch k-means method is to make a large data set
storable in memory by using small random batches of data of fixed size. A new random
sample from the data set is retrieved in each iteration and then is used to update the clusters.
Finally, this process is repeated until convergence. Unlike k-means clustering, this one does
not need all the data sets in the main memory, and therefore greatly reduces the temporal
and memory costs of the algorithm [37].
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For a given data set D = x1, x2, . . . , xy, xi ∈ Rm, xi refers to a network record. m
represents the number of records found in the data set D. The optimization clustering
problem is to find the set C of cluster centers c ∈ Rm so as to minimize over a data set D of
examples c ∈ Rm the following function:

min ∑
xεD
‖ f (C, x)− x‖2 (13)

where f (C, x) returns the nearest cluster centroid c ∈ C to record x using the Euclidean
distance. With |C| = k, k is the number of clusters that want to be found [36].

2.3.4. Hierarchical Agglomerative Clustering

HAC methods aim to combine the objects by taking into account the similarities
(velocity vector in this study) in a data set at certain levels (distance measures). Differing
from the partitioning clustering methods such as k-means, there is no need to determine
the number of clusters beforehand in the HAC method [15,38].

With HAC, each object or each velocity observation is initially considered as a set. In
short, if there are n velocity vectors in the data set, there are initially n clusters at the first
step. Then the two closest clusters (with the smallest dij value) are merged and assembled
in a new cluster. So, now n − 1 clusters are obtained and iterated distances matrix is
calculated. The process is repeated n− 1 time and finally, the last two clusters are merged
to form a single cluster containing all vectors. All these operations are based on grouping
objects into tree structures known as a dendrogram. It is used to explore the relationship
between each object in a “bottom-up continuation” of grouping results. In the dendrogram
tree or chart, the distances between merged clusters are shown (Figure 3).

Figure 3. The dendrogram of the hierarchical agglomerative clustering in the form of a flower chart.

At this point, the higher the distance between the merged clusters, the clearer the
distinction between them [15]. By visual inspection of the dendrogram, it is possible to
decide where to cut the cluster tree which results in natural groupings and/or to determine
the optimum number of clusters. In Figure 3, the flower chart dendrogram of HAC
clustering of GPS velocities (from k = 2 to 5) is constructed using squared-Euclidean
distance and ward linkage.

At the hierarchical clustering procedure, distance calculations and (dis)similarity
between objects in the data set are updated at each iteration. The matrix of calculated
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distance/(dis)similarity values is the basis for using the selected linkage criterion. To decide
which objects/clusters should be merged, methods to measure the similarity between them
are needed. Several distance metrics such as squared Euclidean, Manhattan, Cosine and
Minkowski, etc., are used depending on different data sets and the purpose of the study.
Note that the squared Euclidean and Manhattan distances consider both the orientation
and magnitude of the velocity vectors in clustering GPS velocities, unlike, e.g., cosine,
which treats all velocities as unit vectors. On the other hand, a linkage criterion is used to
define the proximities of pairs of objects into clusters based on their similarity. In particular,
various linkage criteria are used for this purpose: (1) Single or minimum (nearest neighbor);
(2) Average or mean (unweighted pair group method with arithmetic mean); (3) Complete
(farthest neighbor); (4) Weighted (weighted pair group method with arithmetic mean);
(5) Centroid; (6) Median; and (7) Ward’s minimum variance method [39]. For instance,
Simpson et al. [10] and Takahashi et al. [16] used the centroid linkage approach to join GPS
velocity clusters. It is important to note that the last three of these criteria as mentioned
above require Euclidean distances for geometric precision in the calculation of the centers
and it is not appropriate to use the Manhattan distance in combination with these.

2.3.5. Spectral Clustering

The Spectral algorithm is a modern clustering technique based on graph theory that
constructs a graph by addressing each object as a node in given data set and weights the
edges with pairwise similarities between them. This method is a powerful unsupervised
learning algorithm based on the eigenvalue decomposition of this graph. It is very simple
to implement by using standard linear algebra concepts and bioinformatics. In addition,
this algorithm has a nonparametric model and the ability to capture a wider range of ge-
ometries, which makes it more flexible than other algorithms such as k-means. Despite their
superiority, it is not widely used over classical algorithms such as hierarchical clustering
and k-means due to their computational complexity for large-scale data sets [40].

The spectral clustering process is conducted in three stages: constructing the (Lapla-
cian) graph based on the affinity matrix of the data set, spectral representation, and clus-
tering. For calculating the affinity matrix, several approaches such as ε-neighborhood
graph, κ-nearest neighbor graph, and fully connected graph are utilized [41]. A graph “G”
commonly includes a set of V of vertices (nodes) together with a set E of edges (lines) and
is shown G = (V, E). Given a group of n data objects X = x1, x2, . . . , xn in Rl that we want
to cluster them into c clusters:

1. Compute affinity matrix A ∈ Rnxn defined using A = exp(−
∥∥xi − xj

∥∥2/(2σ2)) if
i 6= j and Aij = 0, where σ is scale parameter and the choosing value of σ is performed
manually.

2. Construct degree matrix (D) to be the diagonal matrix.
3. Calculate the normalized Laplacian matrix [42] defined using L = D−1/2 ∗ A ∗ D−1/2.
4. Find e1, e2, . . . , ec, the k largest eigenvectors of Laplacian matrix (L), and construct the

matrix U = [x1, x2, . . . , xc] ∈ Rnc by stacking the eigenvectors in columns.
5. Form the matrix Y from U by renormalizing each of U’s rows to have unit length

(Yij = Uij/(∑j U2
ij)

1/2).

6. Let each row of Y be points in RC, cluster them into c clusters using k-means or any
other algorithm.

Finally, assign the original point xi to cluster c if and only if the corresponding row i
of the matrix Y was allocated to cluster c [43].

2.4. Consensus Functions

The consensus functions are the main step in any clustering ensemble algorithm
and aggregate the outcome of ensemble members to produce the final data partition or
consensus partition P∗. Several existing consensus functions have been used to generate
final clustering in the literature and they are gathered into two main approaches according
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to the review study conducted by Vega-Pons and Ruiz-Shulcloper [8]: object co-occurrence
and median partition.

The object co-occurrence approach: It first calculates the co-occurrence of objects by
identifying which must be the cluster label associated with each object in the consensus
partition. To accomplish this, it counts how many times one or two objects belong to the
same cluster, and computes the final clustering result through a voting process among the
objects. This approach includes methods such as the Relabeling and Voting method [44,45],
the Co-association matrix [46], and the Graph- and Hypergraph-based method [20,47].

Median partition: It produces solutions by treating the consensus function as an op-
timization problem of finding the median partition regarding the cluster ensemble [25].
Regarding Vega-Pons and Ruiz-Shulcloper [8], it is described as “the partition that max-
imizes the similarity with all partitions in the clustering ensemble”. This approach is
categorized into three groups: Non-Negative Matrix Factorization based method [48,49],
Kernel-based method [50], and Genetic-based algorithms [51].

Vega-Pons and Ruiz-Shulcloper [8] explicitly state in their work that consensus func-
tions based on the median partitioning approach are theoretically more proposed than
those based on the object co-occurrence approach. Notwithstanding, Topchy et al. [52]
presents theoretical arguments based on the validity of both approaches. Therefore, we
have investigated two methods based on the object co-occurrence approach (Hybrid Bipar-
tite Graph Formulation and Meta-CLustering Algorithm) and one method based on the
median partitioning approach (Non-Negative Matrix Factorization consensus clustering)
for clustering GPS velocities.

2.4.1. Hybrid Bipartite Graph Formulation

HBGF is a kind of clustering ensemble model which transforms the combination
problem into a hypergraph partitioning problem. It was first introduced by Fern and
Brodley [47]. This method models the clusters and the data points in the same graph
simultaneously [53]. This method creates a bipartite graph with no edges between vertexes
that are both instances or clusters. There is an edge between two nodes only if one node
represents a cluster and the other node corresponds to an object belonging to that cluster.
Then, traditional graph partition techniques such as the METIS algorithm [54] or spectral
clustering [43] are applied to obtain this consensus partition.

2.4.2. Meta-Clustering Algorithm

MCLA defines the similarity between two clusters in terms of the number of objects
grouped in them using the extended Jaccard index [55]. After that, the similarity matrix
between the clusters is created and then a graph is formed by considering clusters as nodes
and assigning a weight equal to the similarity between clusters to the edge between two
nodes. Finally, this graph is partitioned using the METIS algorithm and the final partition
known as “meta-clustering” is obtained.

2.4.3. Non-Negative Matrix Factorization

NMF is the clustering ensemble method based on a non-negative matrix factorization
process. It was first introduced by Paatero and Tapper [56] and popularized in an article
by Lee and Seung [57]. NMF corresponds to the problem of factorizing a given non-
negative data matrix V into two matrix factors, i.e., V ≈ WH, while requiring W and
H to be non-negative. At this point, while W refers to the dimensionally reduced data
matrix, H represents the associated coefficient matrix (weights associated with W). In theory,
although various extensions have emerged to propose the clustering feature, the original
model formulation does not include a clustering objective and was first presented as a
dimensionality reduction algorithm.
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In this method, the distance between partitions is defined using Equation (14):

µ(P, P
′
) =

n

∑
i,j=1

µij(P, P
′
) (14)

where µ(P, P
′
) = 1 if ci and cj belong to different clusters in the other and belong to the

same cluster in one partition, otherwise µ(P, P
′
) = 0. The consensus partition (final) is

determined by the median partition model using µ [8].

3. Results and Discussion
3.1. How Many Clusters?

Conceptually speaking, determining the optimal number of clusters is usually per-
formed subjectively. Depending on the distribution pattern, structure, and scale of the
parameters in the data set, however, the choice of the best number of clusters poses a
bottleneck problem. To determine the goodness of fit or validity of the clustering results,
the gap statistic algorithm is used (Figure 4).

Figure 4. The gap statistic algorithm: (a) Plot of loge(Wk) as a function of k, the number of clusters;
(b) the difference between the two curves in (a).

A plot of loge(Wk) versus the number of clusters k for this data is shown in Figure 4a.
The null hypothesis in Figure 4a elementally represents the average of 20 different random
reference data sets, and the error bars (two standard deviations on either side of the plotted
point) correspond to the scatter of those individual reference sets about that mean value.
The log(Wobs

k ) values in Figure 4a fall significantly (more than two standard deviations)
below the null hypothesis, indicating that clustering is significant for k ≥ 1. Figure 4b is a
plot of the gap statistic (the difference between the two curves in Figure 4a) for this data;
the error bars in Figure 4b refer to two standard deviations on either side of the plotted
point. The gap statistic increases as the number of clusters k is increased from k = 1 to 5,
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but it is seen that there is no significant increase beyond k = 5. Therefore, it can be revealed
that k = 5 is the optimum choice of k. This value is similar to the other internal indicator
results regarding the determination of the optimum number of clusters [7,15]. For instance,
ref. [15] the clustered velocity field of Turkey with the optimum number of clusters that
best represent the data, 5 as they found with the Silhouette Index. Moreover, in [7], the
authors used various optimum cluster number determination algorithms such as Elbow,
Davies–Bouldin, GAP, and Silhouette to detect the best fk value that represents the data
and they found the value as 5 for this region in a combined data set.

3.2. Identification of Blocks

Continental lithosphere deformation especially in tectonic regions such as Turkey can
be provided by GPS data [10]. Elastic blocks that are bounded by active faults can describe
velocities derived from GPS data. In geographic space, remaining cluster boundaries with
increasing cluster numbers are identified as block boundaries, especially if the boundary of
the cluster coincides with an active fault [13]. Ref. [7] gave the results from k = 2 to 10 and
North and East Anatolian transform faults can be seen as the border of clusters because
these two are the most prominent faults. Because Anatolia is divided into more clusters
with the increasing number, one can note that there is not a block boundary inside this block.
Here, we tried to assess the velocity field for k = 5, because over five is not tectonically
significant. With five clusters in this region, also Aegean part identifies a cluster and it is
compatible with [5]. On the other hand, the eastern part differs from [5] block boundaries
because clustering methods determine clusters according to velocity discontinuities. The
velocity gradient in the eastern part differs from the fault traces, consequently, cluster
borders are not incompatible with [5] in this region.

3.3. Clustering Results

Clustering analysis results vary according to the number of clusters which is a chal-
lenging task to determine. Some algorithms have the advantage of running without
identification of the k value such as HAC. Internal evaluation criteria are a powerful tool
to assess the clusters such as Davies–Bouldin, Silhouette, or GAP as used in this paper.
Unfortunately, these indexes take the similarities of the objects into account, not the tec-
tonics or the velocity gradients. Moreover, algorithms such as k-means and/or mini batch
k-means can not detect non-convex clusters. On the other hand, HAC, BIRCH, and spectral
clustering are suitable for data set with arbitrary shape but they suffer from high time
complexity [58]. As a solution, one can use the k-means algorithm and then apply HAC
to take better results [15]. In our paper, the coincides borders with NAF and EAF, and the
compatible Aegean cluster with the literature show that GAP gives a fine solution.

BIRCH, HAC, k-means, mini batch k-means, and spectral clustering algorithms were
used to cluster GPS-derived velocity field into 5 different classes. The results are illustrated
in Figure 5a–e, respectively. All clustering results identify NAF and EAF (seen in Figure 1)
as borders of different clusters. In all figures (Figure 5a–e), red stars and blue diamonds
show the Eurasian and the Arabian tectonic plates, respectively. The Aegean coast cluster,
which is illustrated as pink squares, is changing depending on the clustering method.
Moreover, the Anatolian part is divided in two but with different borders according to all
methods. In the tectonic sense, Anatolia is accepted as a rigid body with no clusters inside
as mentioned previous section. This situation is clearly explained in [7] which has been
recently published. The reader is referred to [7] for a background on the clustering analysis
of Turkey from published GPS velocities.

As seen in Figure 5, clustering borders can vary and clusters of some GPS sites can
change with different algorithms. Let us consider the two sites in Figure 5a (the sites in the
navy-blue circle) and the one in Figure 5b (the site in the navy-blue triangle). As compared
with Figure 1, these sites have an anomaly compared to the velocity field; therefore, this is
natural to be in another cluster. However, site number 2 is in the right cluster in the HAC
and mini batch k-means methods. Furthermore, in Figure 5b the marked site is different
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only in the HAC method. Moreover, in the spectral clustering method, the four sites in
Cyprus are in one of the Anatolia clusters (Figure 5e), while in the other methods they
are all in the Eurasian cluster. These subjects will be discussed later in the comparison of
clustering results with the ensemble clustering part.
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Figure 5. Turkey GPS-derived velocity clustering results for k = 5 clusters with: (a) BIRCH; (b) HAC;
(c) k-means; (d) mini batch k-means; (e) spectral clustering algorithms. Black solid lines are the block
model at [5]. Gray thin lines show active faults [23].

3.4. Ensemble Results

After clustering horizontal GPS velocities with the methods mentioned above, it
is aimed to determine the most accurate clusters by ensemble clustering algorithms.
Figure 6a–c gives the ensemble clustering results from HGBF, MCLA, and NMF, respec-
tively. As seen in Figure 6a,c, HGBF and NMF results are not satisfactory. In both methods,
the Eurasian plate does not consist of a group of GPS sites in one shape and color, but two
mixed clusters. Furthermore, in the NMF method, there is no Aegean cluster, even though
it exists in all clustering method results. Moreover, in the HGBF method, the Aegean
cluster is mixed with Anatolian clusters. In Figure 7, one can see the clusters for HGBF,
MCLA, and NMF in velocity space, respectively. This figure provides a more discriminating
assessment of ensemble results. In Figure 7b, the clusters are in groups and not mixed, but
in Figure 7a,c, the situation is the opposite, the objects are involved in different clusters, not
split correctly. For example, HGBF performs a clustering process such that each cluster has
approximately equal numbers of data. This is because it is a more suitable algorithm for
balanced clusters [9]. In balanced clustering, the HGBF results are not consistent because
it performs a special clustering process where cluster sizes are constrained. Moreover, in
the NMF method, the success of the results depends on the diversity and distribution of
the compounds in the data set. Since it neglects local relationships between data points,
it fails to reveal the geometric structure of data distributions, which is one of its main
drawbacks [59]. On the contrary, MCLA considers a different approach even though it has
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a similar structure (graph-based) to HGBF. MCLA first creates meta-clusters for expected
clusters and places data points into these meta-clusters through a voting process.

The results show that HGBF and NMF ensemble algorithms are not suitable for GPS
velocity field clustering voting for Turkey. However, the MCLA method (Figure 6b) appears
to be usable for the GPS velocity field for this region.
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Figure 6. Ensemble results gathered from five clustering algorithms for horizontal GPS-derived
velocity field with: (a) HGBF; (b) MCLA; (c) NMF methods. Black solid lines are the block model
at [5]. Gray thin lines show active faults [23].
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Figure 7. Ensemble results gathered from five clustering algorithms for horizontal GPS-derived
velocity field in velocity space: (a) HGBF; (b) MCLA; (c) NMF methods. The colors and the shapes
are the same as the map view of the locations in the previous figure.

As seen in Figures 6b and 7b, MCLA results are coherent with five clustering methods,
and also with block borders given in [5]. Details will be discussed in the comparison of
clustering results with the ensemble clustering part.

3.5. Comparison of Clustering Results with Ensemble Clustering

The MCLA ensemble clustering method has yielded quite consistent results with
clustering results and one can say that it improves the results by removing the subjectivity
of the clustering algorithms.

Figure 8 shows individual clustering and MCLA ensemble results for eastern Turkey,
with the block model at [5], as black solid lines. In the tectonic sense, this is where
Arabian and Eurasian plates converge and cause the extrusion of Anatolia towards the
west [5]. Therefore, it is quite natural to see three different clusters at this point. Clustering
algorithms are quite successful to divide GPS sites into clusters without prior information.
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However, clusters of some sites vary with algorithms. One can see in Figure 8, MLZ1,
BING, and SIRN GPS sites are in different clusters due to varied methods. As described
above (Figure 5a—Number 2), the SIRN site probably has a local effect and is assigned
to a cluster that is not even close. However, BING and MLZ1 sites are varied between
neighbor clusters. The MCLA ensemble method (Figure 8f) could not do much about the
SIRN site (because of the local effects in this site—See Figure 1) but assigned the other sites
to the Arabian plate. Figure 8f gives the result of clustering the eastern part and the green
dashed line shows the border of the Eurasian and Arabian plates according to five clusters
of Turkey.
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Figure 8. Comparison of clustering results with ensemble clustering for eastern Turkey with: (a)
BIRCH; (b) HAC; (c) k-means; (d) mini batch k-means; (e) spectral clustering; (f) MCLA results. Red
circles show the differences between algorithms. Black solid lines are the block model at [5]. The
green dashed line is our block border according to the ensemble clustering result. Gray thin lines
show active faults [23].

The boundaries of the MCLA clustering are shown with green dashed lines. Com-
paring our block border with [5], here we only have one border between Eurasia and
Arabian plates. Our border is very close to their Caucasus block border but here we do
not have that many blocks. In the eastern part while they have five blocks we only have
three clusters. The reader should also remember that in [5] the area of the paper is quite
large, the Africa-Arabia-Eurasia continental collision zone because they have worked on
continental deformation.

As one can see in Figure 9, the western part of Turkey has a complex dynamic mech-
anism for extension in the Aegean because of the subduction and slab retreat along the
Hellenic trench [5]. One can see the difference between clustering algorithms for the Aegean
part GPS sites in Figure 9a–e. From north to south, AYVL, KIKA, SALH, DENI, and TVAS
GPS stations are in two different clusters, the Aegean coast cluster and the Anatolian cluster,
due to the varied algorithms. One can see in Figure 9d, even CAVD, CAV1, and ELMI GPS
sites are in the Aegean cluster as a result of the mini batch k-means algorithm. Figure 9f
shows the last decision for the western part of the Turkey cluster analysis. All these stations
except CAVD, CAV1, and ELMI, decided to be in the Aegean cluster as a result of the
MCLA algorithm (Figure 9f). Compared to the [5] the Aegean block, the clustering border,
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as shown in the green dashed line in Figure 9, is a bit larger than their block border, but
generally is compatible.
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Figure 9. Comparison of individual clustering results with ensemble clustering for western Turkey
with: (a) BIRCH; (b) HAC; (c) k-means; (d) mini batch k-means; (e) spectral clustering; (f) MCLA
results. Black solid lines are the block model at [5]. The green dashed line is our block border
according to the ensemble clustering result. Gray thin lines show active faults [23].

Figure 10 shows the southern part of Turkey where the African oceanic lithosphere
subducts along the Cyprus trench [5]. In Cyprus island, we have five GPS sites and four
of them are clustered in the Eurasian cluster except in the spectral clustering algorithm.
One can think that Cyprus is another block that has similar GPS-derived velocities to
Eurasia [7]. However, spectral clustering assigned these four sites in Anatolia apart from
the other algorithms. Perhaps, a solution with Euler vector clustering [13] could enlighten
this situation. One can see the result of the MCLA ensemble method that all four GPS sites
were assigned in the Eurasian tectonic plate cluster.

The other GPS sites that are assigned in different clusters (Figure 10) are generally
exchanged in neighbor clusters except for the ADAN site as explained before. Compared
to the block borders with [5], in our study, there is no small block under the Aegean block
seen in Figure 10. A small part of this block is in our Aegean coast block and the rest is in
Anatolia.

In this study, ensemble clustering methods are tested and the results are analyzed.
In the case of Turkey’s GPS horizontal velocity field, it is seen that the MCLA method is
compatible with clustering methods and eliminates the subjectivity of clustering methods.
In addition, when compared with the literature, one can see that the results obtained can
be used in block modeling without a priori information about the data. One should keep in
mind that these results are specialized in the case of Turkey and should be supported with
different examples.
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Figure 10. Comparison of individual clustering results with ensemble clustering for western Turkey
with: (a) BIRCH; (b) HAC; (c) k-means; (d) mini batch k-means; (e) spectral clustering; (f) MCLA
results. Black solid lines are the block model at [5]. Gray thin lines show active faults [23].

4. Conclusions

In this study, the authors tried to answer the following questions “Is there a better way
to cluster GPS velocities? Which one is the proper solution (individual or ensemble cluster-
ing) about the cluster/block boundaries?”. In the direction of these research questions the
results are given as follows:

• Before clustering, the GAP algorithm was used to obtain a priori information about
the distribution of GPS velocities and classify the data into five classes.

• Five different individual clustering methods, BIRCH, k-means, mini batch k-means,
HAC, and spectral clustering, were used to classify the published horizontal GPS
velocities into five clusters. In general, the individual clustering methods separated
NAF and EAF immediately. Furthermore, some sites in the western part of Turkey
were assigned for the Aegean block. However, the number of GPS sites and the area of
this block are changing due to the used methods. Moreover, in complex regions such
as eastern or southern parts of Turkey, GPS sites were assigned to distinct generally
neighbor clusters.

• To enhance the differences in clustering methods, the performance of three different
ensemble clustering methods, HBGF, MCLA, and NMF-based consensus clustering is
utilized for the first time with a GPS velocity field.

• Among the three ensemble clustering methods, HBGF and NMF did not give satisfac-
tory results.
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• On the other hand, MCLA consensus results are successful and proven here to be used
with GPS-derived velocities.

• As a result, the block boundaries created with the MCLA ensemble clustering algo-
rithm are compatible with the literature.
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