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Abstract: Residual stress within a structural component can significantly affect the mechanical
performance and stability of a structure. Therefore, it is crucial to find a way to determine the
residual stress distribution to maintain the normal working of structures. Conventional methods for
residual stress determination primarily include experimental testing, finite element simulations and
inverse identification. However, these methods suffer from disadvantages of high testing costs, long
calculation time and low inverse efficiency. To avoid these shortcomings, this study developed a high-
performance method based on a deep learning technique. In this method, an artificial neural network
was used to replace the finite element calculation in the finite element model updating (FEMU)
technique and the residual stress distribution of structural components was inversely obtained based
on the measured residual stresses of a finite number of measuring points. Compared with the
conventional FEMU technique, the calculation efficiency of the proposed method was considerably
improved. Furthermore, the accuracy and efficiency of the method were verified by simulated
four-point bending experiments considering an elastic-plastic material.

Keywords: residual stress distribution; artificial neural network; finite element model updating;

inverse identification

1. Introduction

Residual stress is inevitably introduced into structural components during manufac-
turing processes such as forging, cutting and shot peeing [1,2]. Residual stress may reduce
the yielding limit, fatigue life, tensile or compressive strength and other mechanical prop-
erties of the material [3,4]; it can also significantly impact the stability of the components.
Therefore, understanding the residual stress distribution in engineering components is of
great significance to ensure the safety of components and structures.

At present, experimental testing is the main means to obtain the residual stress dis-
tribution of structural components. Based on whether the components are damaged
during the testing process, the experimental testing methods can be classified into destruc-
tive [5,6] and non-destructive [7,8] testing. Destructive testing methods redistribute the
residual stress in components through mechanical damage, which leads to deformation.
The residual stress can then be calculated based on the magnitude of the deformation.
Such a method can achieve high measurement accuracy and evaluate large measure-
ment depths; however, it cannot characterize the evolution of in situ residual stress in
a service environment [5]. The in situ residual stress of structural components can be
obtained via non-destructive testing methods, while ensuring structural integrity. The
most commonly used non-destructive testing method is the X-ray diffraction method. As
an example, Silvia et al. [9] measured the residual stress of an AlSi10Mg alloy using the
X-ray diffraction method. Further, Schoderbock and Kostenbauer [10] studied the residual
stress state of fibre-reinforced sputtering film using the X-ray diffraction method. However,
this method can only measure the residual stress values of certain scattered points in the
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components. Thus, developing a method to obtain the complete residual stress field of the
components is of great practical significance.

The complete residual stress field of components can be obtained via interpolation [11],
finite element simulations [12,13], or inverse identification [14,15]. The interpolation
method is a mathematical calculation method, which does not consider the physical prop-
erties of materials, whereas the finite element simulation method has the disadvantage of
long calculation time in predicting the residual stress under thermo-mechanical coupling
conditions. A more accurate method to achieve the whole residual stress field is to deter-
mine the residual stress distribution which satisfies the elastic theory and is consistent with
the residual stresses at the measuring points. Further, the inverse identification method
combines an experimental test with the FEMU method [16,17] and is expected to become
an effective method for residual stress field prediction because its finite element calculation
results in the residual stress distribution naturally satisfying the elastic theory. The inverse
eigenstrain method is the most commonly used inverse identification method, using which
the complete residual stress field can be reconstructed by updating the residual stress in the
incompatible region [15]. However, if no prior knowledge of the region with residual stress
distribution exists, the successful application of the inverse eigenstrain method is a chal-
lenge. In addition, most of the current inverse problems regarding residual stress use few
parameters to describe the residual stress field, which may not be sufficient to accurately
express its complex nature. Based on the FEMU method, this study attempts to develop a
multi-parameter inverse method for residual stress identification that is suitable for a com-
plex residual stress field without prior knowledge. However, for multi-parameter inverse
identification problems, the inverse process often needs to call the finite element program
several times iteratively and the resulting high time cost may make the inverse identifi-
cation difficult to complete in a reasonable time. Therefore, developing a time-efficient
simulation technology to replace the finite element calculation is crucial.

The artificial neural network (ANN) is a possible alternative to the finite element
program. By adjusting the weights of neurons, the ANN can automatically learn the com-
plex mapping relationship between the input and output parameters. Further, it has an
excellent nonlinear fitting ability and can realize almost real-time prediction. In fact, many
data-driven research works have focused on using an ANN instead of a finite element anal-
ysis for real-time simulation [18,19]. Aguir et al. [18] used two neural networks to replace
the simulated tensile and bulging tests and simultaneously identified the elastic-plastic
constitutive parameters of materials via multiple experiments. Further, Zhang et al. [20]
employed a neural network, instead of a finite element program, to obtain the constitutive
model parameters of aluminium foam. Thus, considering the existing research studies, it
can be concluded that an ANN can not only significantly improve inverse efficiency but
also maintain an accuracy as high as that of finite element calculations.

The inverse identification of the residual stress field is a highly nonlinear problem.
Using the ANN can remarkably reduce the calculation time. Considering this, an inverse
method to generate a self-balanced residual stress field by replacing the finite element
calculation with a convolutional neural network (CNN) [21] is proposed in the paper.
By using this method, the residual stress field can be obtained from the residual stresses
measured at a finite number of points. The CNN is a deep feedforward neural network that
consists of convolution, pooling and fully connected layers. It exhibits good fault tolerance
and generalization ability. Thus, it should be suitable for predicting complex residual
stress distributions with a highly nonlinear relationship. As a deep convolutional network,
the U-Net architecture has shown great potential in solving nonlinear problems [22]. For
example, Mendizabal et al. [23] applied the U-Net to the nonlinear relationship between
the contact force on an external surface and the finite element displacement of a three-
dimensional cantilever beam as well as a liver model under a moving load on the external
surface; their results showed that the network could simulate various geometric shapes
and topological structures very quickly. Koeppe et al. [24] applied the U-Net to model
reduction technology and accurately predicted the stress, node force and displacement in
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relation to the plastic history of the model. Consequently, considering the complexity of
the finite element programs used to calculate the residual stress of components, the U-Net
was utilized in this work to replace the finite element calculation.

The rest of this paper is structured as follows: The principles of the inverse method for
residual stress field prediction are introduced in Section 2. In Section 3, the proposed inverse
method is verified by simulated four-point bending experiments. Section 4 compares the
performance of the CNN and FEMU methods and discusses their initial value stability.
Finally, the results are summarized at the end of the paper.

2. Inverse Method

In this section, the inverse method of replacing a finite element program with a CNN
to generate a self-equilibrium stress field is proposed. This section is divided into three
parts. First, the inverse strategy and corresponding technical details are presented. Second,
the U-Net architecture is introduced. Finally, the way to generate the sample dataset and
train the neural network is described.

2.1. Inverse Strategy

The inverse problem is essentially an optimisation problem, which aims to minimise
the difference between the simulation and experimental results. The FEMU method is
one of the commonly used inverse methods and has been successfully applied to the
parameter identification of a variety of materials. However, owing to the complexity
of the finite element method in calculating residual stress, the inverse approach based
on the FEMU method is rarely used for residual stress determination. In this paper, an
inverse method using a neural network is proposed to replace the finite element program.
Without compromising accuracy, this method can not only determine the complete residual
stress distribution base on the stress values of finite measuring points, but also reduce the
calculation time dramatically.

To obtain the residual stress of structural components under different process and
boundary conditions, selecting the appropriate inverse parameters is of prime impor-
tance. In a thermal analysis, when the element temperature and coefficient of thermal
expansion are provided, the finite element model can generate a stress field satisfying the
self-equilibrium equation. Based on this, complex and diverse stress fields can be realised
by applying random temperature and coefficient of thermal expansion at the integration
point of each element in a finite element model. However, it should be noted that the
temperature field in this method is fictitious and is only used as a means to obtain the
residual stress, or to simulate any process conditions that produce the residual stress field.
To determine the residual stress field, the optimisation task of this study is to determine
the temperature distribution which can minimise the difference between the measured
residual stresses and the inversely calculated residual stresses under a particular coefficient
of thermal expansion. In fact, when the material properties are provided, the optimisation
algorithm can always find a temperature field satisfying the convergence criterion of the
objective function by adjusting the temperatures of the elements. Therefore, in this inverse
method, all parameters are set as given constants except the element temperature.

To minimise the difference between the inversely calculated and measured residual
stresses, the objective function was established as follows:

Q Z Z CNN T DC) EXP(T,,[X ‘| /N (1)

where « and T; are the coefficient of thermal expansion and element temperature, respec-
tively, N is the total number of measured points and M represents the number of stress
components. For a planar problem, the stress components include oy, 0y and Ty, so M = 3.

Further, U]CN N'is the stress at the integration point of each element calculated by neural
EXP ;

network and opt s the measured residual stress at the corresponding position.



Appl. Sci. 2022,12,1195

40f12

Figure 1 shows the flow chart of the inverse method based on the CNN. The inverse
strategy mainly includes three steps, residual stress measurement, CNN establishment and
parameter optimisation. For the first step, to verify the proposed inverse method, the stress
field created by a simulated four-point bending experiment of an elastic-plastic material
was used as the residual stress field in this paper. The second step involves a series of
skills such as pre-processing, training and post-processing of the neural network. In the
final step, the optimisation algorithm is used to update the temperature in each element to
minimise the objective function (Equation (1)).

Coefficient of thermal expansion and

Boundary conditions | |. ..
Y initial temperature parameters (&, 7))

Run trained artificial
neural network to generate
the stress field

|

Construct the objective Update
function (Eq.(1)) temperature 7,

in each element

Figure 1. Flow chart of the inverse method.

Experiment

Output the residual
stress field

2.2. U-Net Architecture

The U-Net architecture is a typical U-shaped CNN architecture, which was proposed
by Ronneberger et al. [22] for medical image segmentation. It exhibits excellent prediction
accuracy among similar networks. As shown in Figure 2, the U-Net framework is symmetric.
It is similar to an automatic encoder with an encoding path that converts the input space
into a low-dimensional representation and a decoding path that extends it back to the
original size [23]. The encoding path contains four down-sampling steps (steps 0, 1, 2 and
3), each consisting of two 3 x 3 convolution operations followed by a pooling operation
with a stride of 2. Thus, the convolution layer learns the mechanical response of different
temperature fields, such as stress fields. In each step, the number of channels doubles
and the size of the feature map halves. Channels are used to store feature maps and each
channel stores a feature map. At the bottom of the network, there are two 3 x 3 convolution
layers connecting the encoder to the decoder. Moreover, similar to the encoding path, the
decoding path also consists of four steps, with each step including an up-sampling 2 x 2
transposed convolution and two padded 3 x 3 convolutions. Simultaneously, the feature
maps from the encoding path are cropped and connected to the up-sampled feature maps
to complete the information fusion. In the decoding part, the numbers of feature maps and
channels are halved in each step, but the size of the feature map is doubled. Finally,a 3 x 3
convolution operation converts the feature maps to three output channels, that is, three
stress components are stored in three channels, respectively. The number of the feature
maps controls the prediction accuracy of the network and a higher number of feature maps
can deal with more complex problems. Consequently, on comparing the prediction effects
of different number of feature maps, it was observed that, when the number of feature
maps was equal to 128 or 256, the prediction performance was the best.
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Figure 2. U-Net architecture.

2.3. Database and U-Net Training Strategy

Sufficient data are the key to ensure the high-precision prediction ability of the neural
network and finite element software is one of the primary sources to generate large datasets.
In fact, once the finite element model is established with given material parameters, the
dataset can be obtained by applying random temperatures to the element integration points.
To render the training and verification dataset more universal, the Latin cube sampling
method [25] was used to design the virtual experiment of variable space, wherein the range
of a variable was divided into several intervals and one number was randomly selected from
each interval to form a sample. This helped to evenly distribute the variable values in the
whole variable space. In this study, the element temperature is the variable to be optimised
and its upper and lower limits depend on the magnitudes of actual residual stresses and
can be determined by the trial and error method. After determining the temperature range,
the Latin cubic sampling method is used to divide the temperature range into several
intervals with its number equal to the sample size. Subsequently, the temperature and
corresponding stress components of each element can be extracted from the dataset.

Different evaluation indexes have different dimensions and units, which may affect
the result of data analysis. To avoid this, the dataset was normalised using Equation (2).

X = @)

where x is the original datum and X and s represent the mean and standard deviation of
the dataset, respectively.

Based on Keras [26], a deep learning library of Python, the U-Net architecture was
constructed and tested. When training the network, the MSE (Equation (1)) was used as
the error function and the Adam optimiser was employed. Further, the learning rate for
the network was set as 107> with ReLU used as the activation function and the training
number was equal to 1000.

3. Results

In this section, we present how, first, the target residual stress field was obtained via
simulated four-point bending experiments of elastic-plastic aluminium alloy. Thereafter, a
four-point bending CNN model based on the U-Net was established and the influence of
dataset size on the prediction accuracy of the model was analysed. Finally, the effect of the
number of measured points on the inverse accuracy of the residual stress field was studied.

3.1. Residual Stress Field of Simulated Four-Point Bending Experiment

As shown in Figure 3a, a two-dimensional four-point bending finite element model
with the size of 100 mm x 20 mm was created using ABAQUS software. Owing to the
symmetry of the load and structure, only one half of the bending beam was modelled,
while the symmetric boundary condition was applied on the left of the model. Further,
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the supporting cylinder at the bottom and the loading cylinder on the top were estab-
lished as analytical rigid bodies. The finite element model was discretised into 1024 plane
stress elements (CPS4R in ABAQUS) with 64 elements along the horizontal direction and
16 elements along the vertical direction. The beam was assigned with ideal elastic-plastic
material properties with an initial elastic modulus of 70 GPa, Poisson’s ratio of 0.3 and a
yielding stress of 200 MPa. Moreover, a prescribed vertical displacement with the magni-
tude of 10 mm was applied at the reference point of the loading cylinder to make the beam
yield. Subsequently, the beam was completely unloaded and then the stress field existing
in the beam was regarded as the actual residual stress field. Figure 3b shows the actual
residual stress field in the horizontal direction (¢ ). It is evident that the residual stress was
mainly distributed in the pure bending part of the beam.

T im TIT TIT T TIT imm T
T T T T T T T y
T = 1 I im
T T T I
T
1 1 1 1
T i T T
T i T T I
I mm mm Ty I
Symmetry @)
MPa
- 350
100
°
-50
-100
- -150

Figure 3. Fourpoint bending model and simulated residual stress field: (a) four-point bending model;
(b) simulated residual stress field (o).

3.2. Residual Stress Prediction Based on UNet Architecture

The U-Net architecture accepts images as its input and output. The length and width of
the images (in pixels) are equal to the number of elements along the horizontal and vertical
directions of the finite element model, respectively. Each pixel in the image represents
the element temperature or stresses at the integration point position of the finite element.
Different from the classification problems, the regression U-Net architecture established
in this paper needed to output the stress components of each element. For the model
in Figure 3, the numbers of input and output variables were 1024 (element temperature
T) and 3072 (stress components 0, 0y and Tyy), respectively. Owing to the multitude of
variables, successful training of the neural network was a challenge. However, to improve
the prediction accuracy, this large-scale prediction task was decomposed into multiple
sub-tasks. Task decomposition was divided into two steps. In the first step, the whole
image was divided into four sub-images labelled as M-, that is, the four black bold line
boxes as shown in Figure 4, with each sub-image containing 16 x 16 pixels. However,
edges were produced between sub-images after image segmentation and large errors were
caused when the neural network learned the image features due to the lack of pixels near
these edges. Consequently, to diminish this edge effect, three more sub-images with the
same size (16 x 16 pixels), that is, the red dash line boxes labelled as ®— in Figure 4,
were created in the second step. Moreover, the edges generated in the first step should be
located in the middle of the red sub-images as far as possible. Following this processing,
seven networks were to be trained. Further, when the model needed to be restored to its
original size after the neural network learning for each sub-image, the pixel values on the
segmentation edges of sub-images (D—(@) were overwritten by those at the same positions
of sub-images ®—@).
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Figure 4. Sub-images in task decomposition:[D—@?) represents seven sub-images.

According to the four-point bending simulation results shown in Figure 3b, the range
of residual stress was from —200 to 200 MPa. For an assumed coefficient of thermal
expansion (1.5 x 1072/°C), the temperature range of elements was determined to be from
—130 °C to 130 °C via the trial and error method. In this work, the dataset was obtained
by providing different temperature fields in the finite element model and extracting the
corresponding stress fields. In total, 80% of the dataset was used to train the CNN model
and the remaining 20% was used for model verification. However, the size of the dataset
has an important effect on the prediction accuracy of a model. Too small a dataset results
in insufficient model feature learning, while too large a dataset causes very long model
training time. Therefore, to determine the appropriate size of dataset, three analyses were
performed with dataset sizes equal to 8260, 10,260 and 12,260, respectively. Figure 5 shows
the root-mean-square errors (RMSE) for model verification of the three analyses. The RMSE

was defined as
F=+Q ®3)

where Q is calculated using Equation (1). It is evident, from Figure 5, that the dataset size
used in this paper had a slight effect on the prediction accuracy of the model, indicating
that the amount of data required for neural network learning was reached. In contrast, the
RMSE was the smallest when the dataset size was 10,260; thus, the subsequent study will
be conducted based on this dataset.

8

GRE 6.42
5.94

RMSE/MPa
EN o

N

8260 10,260 12,260
Sample size

Figure 5. Influence of dataset size on prediction accuracy of U-Net.

Only the residual stresses at a finite number of points can be measured by experi-
mental testing and it is very important to inversely determine the full-field residual stress
according to the measured results at these points [27]. To study the influence of the num-
ber of measurement points on the full-field residual stress prediction, four cases were
considered with the number of measurement points (elements) equal to 1024, 768, 512
and 448, respectively. The positions of these measurement points are shown in Table 1.
Row and Column represent the positions of elements with known residual stresses at
their integration points according to the rule of “start:step:end”. For example, “1:2:16”
in Row represents the elements in the 1st row, the 3rd row (...) and the 15th row of the
mesh (Figure 3a). Figure 6 shows the inversely determined residual stress fields based
on different numbers of measurement points. It can be observed that the four cases with
different numbers of measurement points yielded quite similar residual stress contours to
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the simulated experimental result in Figure 3b, except for the stress distribution at the edges
of the model. The reason for the relatively large errors at the edges may be that, during the
network training process, the pixels near the edges were lost in each convolution, resulting
in insufficient learning of the features. Further, to compare the predicted residual stress field
with the simulated experimental result more intuitively, the relative error among them is
shown in Figure 7. The relative error is defined as the difference between the predicted and
experimental values divided by the experimental value. In Figure 7, the abscissa represents
the actual residual stresses of all elements in Figure 3b, while the ordinate represents the
relative error. It is evident that the larger the absolute value of residual stress, the smaller
the error and the residual stresses of most elements with error greater than 20% were close
to zero. This is reasonable because, for a small residual stress, a small deviation yields a
huge relative error. Figure 8 shows the relative errors of elements with stress exceeding
20 MPa versus the proportion of elements with relative errors larger than a specified value.
It can be observed that, with the decrease in the number of measurement points, the relative
error increased sharply. For 1024 measurement points, the ratio of elements with relative
error larger than 20% was only 1.42%. However, when the number of measurement points
was reduced to 448, the ratio of elements with relative error larger than 20% increased
to 12.56%. In fact, the elements with large errors were mainly located at the edges of the
model. This is mainly due to the insufficient learning caused by the lack of pixels when the
neural network learned the edge features. Some image processing methods could be used
to improve this in the future.

Table 1. Locations of measurement points (elements).

Measurement Points 1024 768 512 448
Row 1:1:16 1:2:16; 2:2:16 1:1:16 1:1:16
Column 1:1:64 1:1:64; 1:2:64 1:2:64 1:2:40; 41:3:64
MPa

150

100

— . ————

(d

Figure 6. Residual stress fields (0y) by inverse identification: (a) 1024 measurement points, (b) 768
measurement points, (c) 512 measurement points and (d) 448 measurement points.
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Figure 7. Relative error versus element stress.
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Figure 8. Relative error versus ratio of elements.

4. Discussion

In this section, the stability of the inverse algorithm under different initial values is
studied and the efficiencies of the inverse methods based on U-Net and traditional FEMU
are compared.

4.1. Influence of Initial Values on Stability of the Inverse Algorithm

A stable algorithm should provide stable results under different data disturbances,
which is crucial to the reliability of the algorithm. In general, the stability of the algorithm
is examined using different initial values. In the optimisation process of this study, the
normalized temperatures of all elements were set as a constant T (0 < T < 1), which was
then mapped to the input range of the network using Equation (4).

T = (Tmax - Tmin)T + Tmin (4)

where T* represents the input temperature of the elements for the neural network and
T'max and Tmin were set at 130 °C and —130 °C, respectively, as stated in Section 3.2. From
Table 2, it is evident that, when different initial normalized temperature values (0.2, 0.5 and
0.8) were used for the inverse algorithm, similar accuracies could be achieved after enough
iterations. However, the initial values affected the computational efficiency and T = 0.5
yielded the least number of iterations among the three cases studied.
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Table 2. RMSE and iterations of the inverse algorithm under different initial values.

Initial Values 0.2 0.5 0.8
RMSE (MPa) 7.82 7.45 7.61
Iteration times 2.5 x 10° 106 2.3 x 10°

4.2. Comparison of CPU Running Time of Different Inverse Algorithms

The inverse method proposed in this study used a CNN to replace the FEMU used in
the conventional inverse method. The efficiencies of these two methods were compared
by considering the case of T = 0.5 in Table 2 as an example. The inverse problems were
simulated on a computer configured with a quad-core 2.6 GHz CPU, but only one CPU
was used without parallel computing. Table 3 presents the time required for the CNN-
and FEMU-based methods to complete one iteration. The time used for the FEMU-based
method was 21 s, while the CNN-based method only required 0.08 s, which is almost
negligible compared to the former. Totally, 10° iterations were needed for the CNN-based
method to obtain the converged result. Including the training and sampling time, the whole
optimisation task took about 82.76 h for the CNN-based method, while it seemed to take
forever for the FEMU method. If the same number of iterations was assumed for the two
methods, the estimated time for the FEMU-based method would be 5833.33 h, which is far
more than that of the CNN-based method. Therefore, it can be concluded that the proposed
CNN-based inverse method significantly outperformed the conventional one in terms of
computational efficiency.

Table 3. Comparison of running time between CNN- and FEMU-based methods.

Time
Procedure
CNN-Based FEMU-Based
Each iteration 0.08 s 21s
Training 2291 h 0
Sampling 59.85h 0
Total 82.76 h 5833.33 h (estimated)

5. Conclusions

The efficient prediction of the full-field residual stress from a limited number of
measurement points is still a challenging task. However, by replacing the FEMU technique
in the conventional inverse method with a CNN, a novel inverse method is proposed in this
paper to determine the residual stress field of structural components. The main conclusions
are as follows:

(1) The machining process and conditions of structural components need not be known
and the full-field residual stress satisfying mechanical constrains can be inversely
determined from limited measurement points.

(2) Inthe proposed method, the U-Net architecture trained by the temperature and stress
fields exhibited superior performance in predicting residual stress field and greatly
improved the computational efficiency. In fact, the residual stress determined by this
method reached an accuracy close to that of the X-ray diffraction method.

(3) Moreover, the proposed inverse method based on neural networks is not only suitable
for the residual stress prediction but can also undertake inverse identification of
various material parameters such as damage factors.

Author Contributions: Conceptualization, G.L.; methodology, T.X., L.W. and X.G.; formal analysis,
T.X.; investigation, T.X., L.W. and X.G.; writing—original draft preparation, T.X.; writing—review
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the published version of the manuscript.
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