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Abstract: Recently, drones, have been utilized in many real-life applications including healthcare
services. For example, providing medical supplies, blood samples, and vaccines to people in remote
areas or during emergencies. In this study, the maximum coverage facility location problem with
drones (MCFLPD) was studied. The problem is the application of drones in the context of the facility
location and routing. It involves selecting the locations of drone launching centers, which maximizes
patient service coverage within certain drone range constraints. In this study, a heuristic named the
maximum coverage greedy randomized heuristic (MCGRH) is developed. The idea of the algorithm
is to first choose some facilities to open at random from among those that can handle the most weight
of the patient demands. After that, patients are assigned to the closest opened facility with the
capacity to serve them. Finally, drones are assigned to patients based on the least amount of battery
consumed between the patient and the facility. Extensive testing of MCGRH indicated that it ranks
efficiently alongside other methods in the literature that tried to solve the MCFLPD. It was able to
achieve a high coverage of patients (more than 80% on average) within a very fast processing time
(less than 1 s on average).

Keywords: maximum coverage; facility location problem; routing and scheduling; drones; combinatorial
optimization; heuristics; metaheuristics; healthcare

1. Introduction

The provision of vital medical services to save patients in emergency and post-disaster
situations is an essential outreach activity in healthcare. Recent years have witnessed an
increase in natural disasters, including North American Wildfire Season in 2021 [1], the
Haiti Earthquake and Tropical Storm Grace in 2021 [2], the Atlantic Hurricane Season
in 2021 [3], the COVID-19 pandemic in 2020 [4], the bushfires in Australia in 2019 [5],
Cyclone Idai in Africa in 2019 [6], and both an earthquake and tsunami in Indonesia in
2018 [7]. Natural disasters present obstacles to healthcare workers attempting to provide
essential treatments to patients and victims, which may exacerbate the spread of epidemics
and increase the number of fatalities. To rescue people in emergency and post-disaster
situations, healthcare services must be quickly provided to injured individuals. Such
rescues can be accomplished by assigning patients to the nearest medical provider, medical
institution, or community center as well as by sending essential medical deliveries, such as
defibrillators and blood supplies, to the injured person’s location.

Most of the challenges related to accessing a patient’s location are based on geographi-
cal characteristics such as dispersed islands, poor transportation infrastructure, and limited
means of transport. These challenges tend to be particularly severe in both rural and
developing countries. Moreover, when natural disasters occur, surrounding transportation
infrastructure is often disrupted. For example, roads may become blocked because of
natural disasters, or bridges may be broken [8].

To overcome these challenges and to provide necessary healthcare for patients in
emergency and post-disaster situations, it is crucial to implement efficient methods to
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serve them. Ideally, transport means that it is not affected by damage to transportation
infrastructure and that it is not significantly more expensive than ground transportation.
Therefore, it is noteworthy that this can be achieved using unmanned aerial vehicles (UAVs),
also known as drones.

Drones have proven successful in many applications in rugged environments, includ-
ing agriculture, aerial photography, and data collection [9,10]. Drones have also been used
in several healthcare applications (Figure 1). For example, drones have been used to spray
chemicals in China to prevent the spread of COVID-19 [11]; to deliver medications during
the Haitian earthquake of 2010 [12]; and to transfer blood samples [13], vaccines [14], and
stool [15] to laboratories or wherever they are needed by patients.
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Importantly, healthcare applications demand specific considerations related to patients’
individual situations to provide them with an ideal service. For example, people facing
emergency situations may require devices such as defibrillators to quickly revive an injured
person, or blood delivery may be needed within the shortest possible time while ensuring
the validity of the supply [17]. In such cases, optimization of healthcare applications, given
these considerations, is highly important [18,19].

With the above considerations in mind, this study examines several problems faced by
healthcare workers in emergency situations, namely: (i) the selection of drone launching
centers (facilities) to maximize the ability of drones to serve patients (in this case, the drone
centers must be selected from existing community centers); (ii) the distribution of available
drones to drone launching centers; and (iii) the assignment of patients to drone launching
centers and the available drones in those centers, considering the center’s capacity and
the range constraints of the drones. This problem has been referred to in the literature as
the maximum-coverage facility location problem with drones (MCFLPD) [20], which is a
variant of the well-known Facility Location Problem (FLP). The FLP is a typical NP-hard
combinatorial optimization problem [21,22]. Usually, NP-hard problems are solved using
heuristic oSr metaheuristic algorithms, rather than exact methods. Such algorithms can
provide optimal or near-optimal solutions at relatively low computational costs.

The contribution of this paper is a novel heuristic for solving the MCFLPD, which is
termed the maximum coverage greedy randomized heuristic (MCGRH). The MCGRH can
solve the MCFLPD problem and significantly achieve high patient coverage with a low
computational time compared to the approaches attempted in [20], which are a Gurobi
mixed-integer programming solver [23] and two heuristics. The idea of the MCGRH is
to first randomly select some facilities to be opened from among the facilities that can
serve the highest weight of the required patient demands. Following this, each patient was
assigned to the nearest open facility with the capacity to serve them, after which drones
were assigned to patients according to the lowest battery consumed between the patient
and its facility.

The remainder of this paper is organized as follows: Section 2 reviews the work
related to the MCFLPD, Section 3 describes the problem formulation, Section 4 presents the
proposed method, Section 5 explores the results and discussion, and Section 6 concludes
with an examination of directions for future research.
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2. Literature Review

In this section, we explore and discuss state-of-the-art methods for solving the FLP
for drone launching centers. Few studies have been conducted on FLP and its variants
by using drones [24]. In fact, FLP has important applications in the field of drone usage,
particularly in post-disaster situations or when seeking to enter locations that are difficult
to access. Many issues must be considered when selecting the locations of drone launching
centers, including the drone battery life, drone flying range, and other variables [25,26]. In
the field of healthcare, maintaining a short distance between the drone launching center
and the patient is particularly important to enable a rapid medical response [27]. In this
section, some efforts of prior researchers who have attempted to solve the FLP, as well as
its variants, for the selection of drone-launching centers are reviewed.

MCFLPD is an NP-hard problem that was introduced in 2019 by Chauhan et al. [20] In
the MCFLPD, the locations of the drone launching centers were selected from a network of
prespecified capacitated facilities. The objective is to maximize the ability of drones to meet
patient demands. In [20], three approaches were used to solve the problem: a mixed-integer
programming solver, a novel greedy heuristic, and a three-stage heuristic (3SH). The two
heuristics (greedy and 3SH) were proposed by the authors. The greedy heuristic first builds
a weight matrix, where the rows represent instances of the demand point and the columns
represent the facilities. Each element is filled by the percentage difference between the
demand weight of a point and the battery consumed between the point and the facility.
Subsequently, facilities are opened and specific demand points are assigned to them using
the weight matrix. Then, the number of drones needed by each facility NDj is defined
according to the ratio of the total battery consumed between the facility and the demands
assigned to it and the battery capacity of the drone. After this, opened facilities Ĵ are sorted
according to NDj. A drone from the available drones is sequentially assigned to each open
facility. Finally, the demand assignment to the drone is performed according to the battery
consumed between the demand and the facility.

In contrast, the 3SH proposed in [20] performs the following three steps: (i) solve
a capacitated p-median facility location problem by trying to maximize the total weight,
where the weight is determined by the percentage difference between the demand weight
of a point and the battery consumed between the point and the facility; (ii) consider the
assignment of the drones to facilities and the demand points to drones as a maximum-profit
knapsack problem; and (iii) use a local exchange heuristic to improve the solution by
randomly replacing a facility that has a low weight with another one. Extensive testing of
the approaches proposed in [20], as well as a comparison, indicated that 3SH had the best
performance in terms of both time and solution quality.

Lynskey et al. [28] studied a problem derived from the FLP, in which the objective was
to select drone ports to minimize the average distance to the locations of patient demand
to be served by each port. A k-means algorithm was applied to cluster the demand areas.
Next, several traveling salesman algorithms—2-opt, a genetic algorithm, exhaustive search,
and ant colony optimization (ACO)—were applied to identify the preferred locations of
drone ports to ensure that the demand in each cluster could be met by drones, as well
as to ensure that the drone trips would involve the shortest routes. The ACO algorithm
outperformed other algorithms investigated in this study.

In another study, Shavarani et al. [29] studied an FLP to identify an optimal solution
for finding the locations of launching drones and recharging stations. Their objective was to
minimize the total cost of the system. A genetic algorithm and a hybrid genetic algorithm
were applied and compared, and the latter was found to provide the best solution. The last
noteworthy study is Kim et al. [30], wherein the authors introduced a stochastic framework
for regions affected by disasters. The framework accounts for uncertain trip distances
for drones and aims to solve the FLP by identifying the optimal number of drone launch
facility locations and their capacities. The authors used Benders decomposition and linear
programming rounding to develop a heuristic algorithm that provides high-quality and
efficient solutions.
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The literature shows that limited research has examined the use of drones in the
healthcare field, despite their importance in saving human lives and reducing the burden
on both healthcare facilities and individual patients. The paucity of research in this area
has become even more noticeable with the emergence of the recent COVID-19 pandemic,
where drone applications have tremendously alleviated the delivery of services to remote
areas while being cheaper, safer, and faster than traditional modes of transport.

Another important finding from this literature review is that exact methods are evi-
dently unsuitable for solving large datasets of FLP and its variants. As an NP-hard problem,
exact methods require very long processing times to generate solutions. Therefore, for
real-life problems with large datasets, the existing literature typically utilizes heuristics and
metaheuristics to identify near-optimal solutions (in terms of quality) with an acceptable
processing time.

3. Problem Formulation

As previously mentioned, the maximum coverage facility location problem with
drones (MCFLPD) [20] is a variant of the Facility Location Problem (FLP). Specifically, the
FLP serves the demands of a set of customers using a set of facilities that can be allocated
or chosen from existing locations. In contrast, in the MCFLPD, there are additional features
to the FLP, namely drone-to-facility and demand-to-drone distribution, in addition to the
consideration of the drone range constraints. These features require hard computations,
which makes the MCFLPD more complex than the classical FLP.

The aim of this study was to implement a solution to improve the MCFLPD results
described by Chauhan et al. [20] Specifically, the MCFLPD is concerned with identifying
the optimal or near-optimal number of locations of drone launching centers such that the
coverage is maximized for serving patients. Drone centers must be chosen from the existing
community centers. Figure 2 shows an example of the locations of the community centers
and patients to be served.
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Figure 2. An example of locations of community centers and patients.

Formally, within a certain planning period, there is a set of locations for patient
I, where each has a demand weight wi, along with a set of potential facility locations
(i.e., drone launching centers) J and a set of drones K, each with a full battery charge. The
MCFLPD formulation, as described by Chauhan et al. [20], is shown in Table 1.

Table 1. Formulation of MCFLPD.

Sets
I: Set of locations of patients (i ∈ I)
J : Set of all possible facility locations (j ∈ J)
K : Set of drones (k ∈ K)
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Table 1. Cont.

Parameters

η: Efficiency of the power transfer
θs : Lift-to-drag ratio
B: Drone battery capacity
bij : Battery consumed on one trip between patient i ∈ I and facility j ∈ J
dij : Travel distance between patient i ∈ I and facility j ∈ J
mb : Drone battery mass
mt : Drone mass tare, without battery and load
p: Maximum number of facilities to be opened
U: Capacity of each opened facility
wi : Weight of demand at patient location i ∈ I

Decision Variables

xijk =

{
1 if patient i is served by the kth drone of facility j ∈ J
0 otherwise

yj =

{
1 if facility is opened at j ∈ J
0 otherwise

cij =

{
1 if patient i is a potential patient at facility j ∈ J where bij < B
0 otherwise

aij =

{
1 if patient i is assigned to facility j ∈ J
0 otherwise

Objective Function
To maximize the ability of the fleet of drones to cover the total patient demand

∑
i ∈ I

∑
j ∈ J

∑
k∈K

wixijk

Constraints

1. Each patient location is covered at most once
2. The number of chosen facilities must be less than or equal to the maximum number of

existing facilities
3. The drone battery range must cover the trip distance
4. The patient demand served by each selected facility must be less than or equal to the

facility’s capacity
5. Drones must be assigned only to the selected facilities

Assumptions

• The cost of transportation is not considered
• If the demand of a patient is higher than the carrying capacity of the drone, multiple trips will

be conducted to meet the patient’s needs; in this case, the number of trips will be based on
drone capacity

• Each drone can complete several one-to-one trips (where a trip lasts from drone launching
center to a patient’s location and back) until the battery range B is met

• Recharging of drone batteries is not considered (i.e., assume that the drone batteries are fully
charged prior to the start of a trip)

• The effects of charging cycles and weather on drone battery capacity are not considered
• The effect of obstacles such as high buildings or mountains on drone battery capacity is

not considered
• The total power consumed bij in a delivery from facility j to patient i is given by

Equation (1) [31].
• The capacity of each opened facility is calculated by Equation (2) [32].

Equation (1) [31] calculates bij, where a drone travels to patient i with a load wi and
drops wi then returns empty to the facility j.

bij =
mt + mb + wi

θs η
dij +

mt + mb
θs η

dij ∀ i ∈ I, j ∈ J (1)

Equation (2) [32] calculates U, which is equal to the total demands weight of all
patients divided by 80 percent (according to the reference [32], the average utilization of
the facilities is equal to 80 percent of the total available capacity) of the number of facilities
to be opened.

U =
∑i∈I wi
0.8 p

(2)
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4. Solution Method

This paper proposes a novel heuristic known as MCGRH, the purpose of which is to
solve the MCFLPD problem. This guarantees that all constraints in Table 1 are satisfied. At
the outset, the idea of the algorithm is to select a set of facilities S to be opened, with size p,
from the set of potential facilities J that maximizes ∑i ∈ I ∑j ∈ S yj cijwi (i.e., maximizing
the total demand of patients that it is possible to serve). In turn, the algorithm assigns each
potential patient to the nearest open facility j ∈ S with the available capacity Uj. Any
available drones are then assigned to the opened facilities according to the highest unserved
demand weights ∑i ∈ I wi aij, where aij = 1 and j ∈ S. Finally, patients are assigned to
drones (in each opened facility) according to the lowest battery consumed bij followed by
the highest demand weight wi of all unserved patients of a specific facility j, such that for
each drone k, the total battery consumed by the drone in serving the demand is less than
the drone’s total battery capacity (that is, ∑i ∈ I bij ≤ Bk, where j ∈ S.)

The proposed method proceeds in three steps: (i) select the number of facilities to be
opened from the potential facilities, (ii) assign patients to the opened facilities, and (iii)
assign drones to the opened facilities and assign patients to those drones. Algorithms 1–3
present the details of these steps. An explanation of each algorithm is provided below.

4.1. Select a Number of Facilities to Be Opened from the Potential Facilities

The purpose of this algorithm is to select from potential facilities J a number of facilities
p to be opened that maximizes the total demand of patients that can be served. Let I be
the list of all potential patients and J be the list of all potential facilities with their potential
patients such that patient i can be covered by facility j if a drone can reach i in one trip
using its battery charge. In other words, bij ≤ B, where bij is calculated using Equation (1).
In addition, suppose that p is the maximum number of facilities to be opened. Let S be an
empty list of the initial solution of size p to maintain open facilities. Let U f be the capacity of
each facility calculated according to Equation (2) (i.e., all facilities have identical capacities).

After implementing the above steps, the algorithm repeats the following steps p times,
until J is exhausted or until all patients in I have been served:

First, calculate ∑i ∈ I wi cij ∀ j ∈ J. That is, we calculated the total demand weights
of the potential patients of each facility j ∈ J. In turn, sort J is sorted in descending order
according to these values. Then, select a subset HF consisting of n facilities from J with the
highest ∑i ∈ I wi cij, and select a facility f —to be opened from HF at random. In this case,
the idea is to utilize a greedy randomized approach to ensure that a facility is selected from
among the top facilities that can cover large patient demand. This maximizes the coverage
and, at the same time, eliminates selection bias and variegates the results using random
selection, which cannot be achieved using only the greedy criterion. Next, remove f is
removed from J so that it will not appear again in subsequent iterations when selecting a
new facility to be opened.

Second, the potential patients i of f , where i ∈ I and ci f = 1, in descending order
according to the demand weight wi. Following this, iterate over these patients and mark
them as covered until U f is filled, or until the list of f ’s potential patients is exhausted
(thus making these patients unavailable for other facilities). Hence, if there is more than
one facility in J with the same potential patient A, marking A as covered by f will change
∑i ∈ I wi cij ∀ j ∈ J (i.e., the total demand weights of the potential patients of each facility
j ∈ J). It is noteworthy that this affects their appearance in HF in the next iteration. The
last part of the second algorithm adds f to S.

Finally, list S now contains the facilities to be opened that can serve the greatest
possible demands. Algorithm 1 presents the details of the above steps.
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Algorithm 1: Select a number of facilities to be opened from the potential facilities.

1. I ← List of all potential patients
2. J ← List of all potential facilities with their potential patients
3. p← Maximum number of facilities to be opened
4. S← { }
5. Calculate U f =

∑i∈I wi
0.8 p \\ capacity of each facility f in S

6. Repeat
7. Calculate ∑i ∈ I wi cij∀ j ∈ J \\ the total demand weights of the potential patients

of each facility j ∈ J
8. Sort(J) \\ in descending order of the total demand weights of the potential patients
9. HF ← J[1 . . . n]
10. f = Random(HF)
11. Remove( f , J)
12. Sort(potiential patients o f f )\\ in descending order of patients demand weight wi
13. Repeat
14. MarkAsCoverd(patienti, f )
15. Until filling U f OR the list of f ’s potential patients is exhausted
16. S← S ∪ f
17. Until Size p is reached OR I is exhausted OR J is exhausted
18. Output: S

4.2. Assign Patients to the Opened Facilities

The purpose of this algorithm is to assign patients to the nearest open facility in S
whose capacity is available, and drone constraints are satisfied. Using S from Algorithm 1
as an input list of opened facilities with size p, along with the list of all potential patients I,
several operations should be performed. First, for each patient i in I, traverse the patients
one by one until the list of patients ends, such that the current patient i is assigned to
the first open facility f in the list S based on two conditions: (i) f is the nearest opened
facility to i, where bi f ≤ B; and (ii) there is available capacity in f to add i (i.e., wi ≤ U f ).
The second operation recalculates U f (i.e., the available capacity) and ∑i ∈ I wi ai f (total
demand served by f ). Algorithm 2 presents the details of the above steps.

Algorithm 2: Assign patients to the opened facilities.

1. Input: S \\ the list of opened facilities from Algorithm 1
2. I ← List of all potential patients
3. For each patient i in I Do
4. Pick best f for i from S \\ the nearest opened facility where bi f ≤ B with available

capacity U f

5. Assign(i, f )
6. Recalculate available capacity (U f ) and total required demands weights from f

(∑i ∈ I wi ai f )
7. Output: S

4.3. Assign Drones to the Opened Facilities and Assign Patients to Those Drones

The purpose of this algorithm is to assign the available drones to the opened facilities
in S according to the required demand weights of their assigned patients. This is achieved
using the concept of the maximum-profit knapsack problem, as proposed in [20], along with
additional conditions. The idea is to prioritize facilities that have large required demand
weights by assigning more drones to them and, at the same time, assigning more patients
of these facilities to drones to maximize coverage.

Given S, which is the input list of the opened facilities from Algorithm 2, for each
facility f in S, in order to give priority to patients who consume lower batteries, sort the
assigned patients i of f , where i ∈ I and ai f = 1, in ascending order according to bi f ,
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followed by wi in descending order. In other words, if two patients are equal in bi f , the
patient with the higher wi will occur first in the list.

Assuming K is the number of available drones and Total_demand_served is initialized
at a value of 0, repeat the following steps K times or until all patients in S are served:

First, select a drone k from the set of available drones K. To maximize coverage, find
MF facility of S that has the maximum demand weights of the patients assigned to this
facility that are not yet assigned to any drone (i.e., maximum facility MF from S according
to maximum ∑i ∈ I wi ai f , where xi f k = 0 ∀ f ∈ S and ∀ k ∈ K). In turn, assign k is
assigned to MF and the demand served by drone k (Demand_servedk) to 0.

Second, traverse the patients assigned to MF who are not assigned to any drone, and
then check whether the value of bi MF of the current patient i is lower than the remaining
battery capacity Bk of drone k. If this is the case, assign i to k, subtract its consumed
battery bi MF from Bk, and add wi to the drone’s Demand_servedk; otherwise, if the current
patient i cannot be served by the remaining BK and to maximize the coverage, try to
replace patient i with patient z already assigned to k, where wz < wi, without violating
the drone constraints. This is done by sorting the patients already assigned to k according
to ascending demand weights w, traversing them one by one, and checking whether there
is a patient z for whom wz < wi and bz MF + the remaining Bk ≥ bi MF. Then, release the
assigned patient z and assign the current patient i to k. Also, and update Demand_servedk
and Bk according to the changes.

Finally, after completing the assignments to drone k, we update Total_demand_served.
After finishing all drones or serving all patients in S, calculate and return Coverage, which
is equal to the percentage of Total_demand_served. Algorithm 3 presents the details of the
above steps.

Algorithm 3: Assign drones to the opened facilities and assign patients to those drones.

1. Input: S \\ from Algorithm 2
2. K ← number of the available drones
3. Total_demand_served← 0
4. Sort (patients in each f acility f in S) \\ by bi f in ascending order, followed by wi in

descending order
5. Repeat
6. Select (new k ∈ K)
7. B←battery capacity of k
8. MF ← max(S) \\ according to max ∑i ∈ I wi ai f where xi f k = 0 ∀ f ∈ S and ∀ k ∈ K
9. Assign_drone (k, MF)
10. Demand_servedk ← 0
11. For each patient i assigned to MF Do \\ i is not assigned to any drone (xi f k = 0 ∀ f ∈ S

and ∀ k ∈ K)
12. bi MF ← battery consumed between current patient i and current facility MF
13. IF bi MF ≤ B Then
14. Assign_patient (i, k)
15. B ← B− bi MF
16. Demand_served k ← Demand_served k + wi
17. Else
18. Sort(patients assigned to k) \\ according to the ascending demands weights w
19. For each patient z assigned to the drone k Do
20. IF wz < wi AND bz MF + B ≥ bi MF Then
21. Release (z, k)
22. Assign_patient (i, k)
23. B← B + bz MF − bi MF
24. Demand_servedk ← Demand_servedk + wi − wz
25. break
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Algorithm 3: cont.

26. Total_demand_served← Total_demand_served + Demand_servedk
27. Until K times OR until all patients in S are served
28. Coverage← The percentage of Totaldemandserved of patients covered

29. Output: Coverage

5. Results and Discussion

This section describes the dataset used to test the proposed method, the MCGRH, and
the parameter settings. A numerical analysis of the proposed approach is also presented.

The MCGRH was implemented using Python software. Experiments were conducted
using a computer with an Intel Core i7 processor running at 3.1 GHz using 16 GB 2133 MHz
LPDDR3 of RAM running Macintosh HD. SPSS version 28.0.0.0 was used for statistical
analysis [33].

5.1. Dataset and Parameter Settings

We used the Portland metropolitan area as a case study to apply MCGRH [20]. There
were 122 patients in the study area. The patients are represented by the centroid of the
ZIP code tabulated areas (ZCTAs). There are 104 potential facility locations, which are
community centers in the Portland metropolitan area. Figure 3 shows the patient and
potential facility locations for the case study.
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The total payloads requested by patients were 366.5 kg. It is worth mentioning that
there were four patients (ZCTA points 97028, 97049, 97064, and 98616) with a total demand
of 15.75 kg (their respective demands were 4.75, 2.25, 4, and 4.75) who could not be reached
by any facility. This is because of the battery capacity required for one trip between each of
them and any of the potential facilities, which is greater than the battery capacity of the
drone (777 W h). This means that the optimal coverage of patients that could be reached
was 350.75 kg (95.7%). U is the capacity that each facility can offer, which is calculated
based on the total demand weight of patients wi and the number of facilities to be opened
p [20], as shown in Equation (1).

As assumed in [20], the number of facilities to be opened ranges from 5 to 30. We
computed the traveling distance between a patient and a potential facility in miles using
the Euclidean distance based on the latitude and longitude of their locations. According to
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the average latitude of the dataset, 1-degree latitude (y-axis distance) = 111.13976776 km
and 1-degree longitude (x-axis distance) = 78.000735479 km. It was assumed that there were
no obstacles. The parameters we used for drones in this paper are based on reference [20]
and are shown in Table 2.

Table 2. The parameters of the drone.

Power Transfer Efficiency (η) 0.66
Lift-to-Drag Ratio (θs) 3.5

Tare Weight 10.1 kg
Maximum Payload 5 kg

Battery Capacity 777 W h

5.2. Numerical Analysis

In this study, we developed a new heuristic for solving an MCFLPD, referred to as
the MCGRH. We compared the results of MCGRH with those of the Gurobi mixed-integer
programming solver (MIP), greedy heuristic, and three-stage heuristic (3SH) methods used
in [20] to achieve the best maximum coverage within the minimum time.

In terms of coverage paired with time performance, the method that achieved the best
results in [20] was 3SH. As described in Section 2, 3SH comprises three stages. In the first
stage, a weight wi

bij
aij, which is the weight of assigning each potential demand point i ∈ I

to each facility j ∈ J, where bij < B. At this stage, the algorithm attempts to maximize the
total weights assigned to each facility. The second stage deals with the problem of assigning
drones to facilities and demand points as a maximum profit knapsack problem. In the third
stage, the solution is improved by performing a local exchange heuristic, which removes
the facility with the lowest demand and replaces it with the available ones at random.

In contrast, the MCGRH overpasses 3SH, where it attempts to work on elements that
maximize coverage with fewer processes. Thus, in MCGRH, the p facilities to be opened
are selected from the facilities with the highest demand weights for their potential patients
∑i ∈ I wi cij ∀ j ∈ J, which is achieved using a randomized-greedy approach. In addition,
the assignment of potential patients to the opened facilities is performed in a greedy manner
by selecting the nearest patient with available capacity U. This is intended to reduce the
amount of battery consumed by the drone to serve patient i, enabling as many patients as
possible to be served using the drone. In other words, because the two factors that affect
the consumed battery bij are the demand weight wi and the distance dij between patient
i and facility j, and because wi is fixed and dij is variable, selecting the facility with the
shortest distance from i gives more importance to the demand weight than the distance
when calculating the amount of consumed battery. This helps achieve the objective of
maximizing the total demand served.

Hence, the MCGRH addresses the problem of assigning drones to facilities as a
maximum-profit knapsack problem. In addition, the proposed method addresses the
problem of assigning patients to drones by prioritizing patients with the lowest consumed
battery bij, followed by the highest demand wi. These features account for the fact that
MCGRH outperformed 3SH, as shown in detail in due course.

Table 3 shows the results of all the considered methods on 22 different instances
reported in [20], as well as the MCGRH. The instances were grouped by the number of
opened facilities p followed by the number of available drones K. The table shows the
performance of the four methods as measured by time (in seconds) and coverage (i.e., the
percentage of the total patient demand that is satisfied). The Gurobi MIP is an exact and
deterministic solution method that runs until a solution is found or a limit of 7200 s is
reached. 3SH and MCGRH are not deterministic, so the table shows their statistical results
(average, minimum, and maximum) over 30 different runs of each instance. In addition, in
the last row of the table, the average time and coverage of the 22 instances are indicated
(since we are concerned with the minimum time and maximum coverage, we considered
them when computing the overall average results of the 3SH and MCGRH in the last
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row of Table 3). MCGRH achieved a coverage of 95.1%, whereas the optimal coverage
was 95.7% (as explained in Section 5.1) in less than two minutes, which outperformed the
other methods.

Table 3. Comparison of Gurobi, Greedy heuristic, 3SH and MCGRH.

p 1 |K| 2

Gurobi Greedy 3SH MCGRH

Time
(s)

Coverage
(%)

Time
(s)

Coverage
(%)

Time (s) Coverage (%) Time (s) Coverage (%)

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

5 20 7200 56.4 0.1 45.2 14.7 14.4 15 54.5 53.6 55.1 0.67 0.55 1.11 51.53 45.4 56.1
5 25 7200 61.9 0.1 50.3 15.9 15.6 16.2 59.5 58.6 60.2 0.61 0.56 0.78 57.89 54.5 62.6
5 30 7200 66.3 0.1 55.3 16.7 16.4 17.1 63.7 62.9 64.5 0.67 0.6 0.81 63.38 59.3 66.7
5 35 7200 70.2 0.1 58.9 18.3 17.6 22.8 67 66.5 67.9 0.69 0.59 1.3 68.09 64.9 71.8
5 40 7200 72.7 0.1 62.5 18.8 18.2 19.1 69.9 69.1 70.5 0.67 0.59 1.09 71.02 67.8 74.1
10 20 7200 64.4 0.2 48.2 16.6 16.1 16.9 61.4 59.8 62.6 0.70 0.67 0.84 57.36 54 61.6
10 30 7200 75 0.2 59.8 18.3 17.9 19 71.5 70.1 72.9 0.80 0.7 1.34 69.98 65.3 73.2
10 40 7200 83.8 0.2 67.1 20.1 19.2 20.8 78.4 76.3 80.4 0.85 0.69 1.35 79.15 76.3 82.1
15 30 7200 79.7 0.2 59.2 21.9 21.4 22.7 75.2 73.2 77.2 1.05 0.82 1.72 72.40 68.9 76.6
15 45 7200 90.2 0.2 73.1 24.3 23.4 25.5 83.9 80.3 86.6 0.92 0.82 1.55 86.43 83.6 88.7
15 60 7200 92.6 0.3 73.1 24.8 23.6 25.7 85 81 88.7 1.07 0.83 1.59 90.43 86.8 94.5
20 20 7200 71.2 0.3 52.8 25.1 24.6 25.6 65.8 63.2 67.5 1.04 0.93 1.19 59.32 56.1 63.9
20 40 7200 90.4 0.3 70.7 28.7 28.1 29.3 84.2 82.7 85.3 1.03 0.95 1.26 83.77 80.3 86.9
20 60 320 93.8 0.3 72.2 30.4 28.6 31.8 87.2 83.6 90.1 1.06 0.96 1.32 92.33 87.6 95.1
20 80 36 93.8 0.4 72.2 30.9 29.6 32.8 87.5 83.6 91.3 1.03 0.95 1.21 91.36 86.8 95.1
25 25 7200 79.6 0.3 53.6 33 32.1 35 71.5 69.2 73.3 1.10 1.05 1.36 67.70 64.3 71.4
25 50 337 93.8 0.4 71.4 36.6 35.7 38.3 88.9 85.2 92.2 1.21 1.11 1.36 90.94 87.6 93.7
25 75 27 93.8 0.5 71.4 37.4 36.2 39 88.2 84.2 91 1.23 1.08 1.6 92.21 87.9 94.7
25 100 43 93.8 0.5 71.4 38.1 36.9 39.5 89.5 86.1 92.2 1.24 1.07 1.84 92.16 87.9 94.7
30 30 7200 85.3 0.3 60.6 40.3 39 41.7 76.8 74.4 80.2 1.31 1.16 1.78 72.24 68.4 77.3
30 60 23 93.8 0.5 74.8 44.3 43.3 45.5 90.9 88.7 92.8 1.47 1.22 2.1 93.21 89.9 95.1
30 90 31 93.8 0.6 74.7 45.1 44.2 46.4 90.7 88.7 93 1.22 1.14 1.52 92.87 89.4 95.1

Average 4946.2 81.65 0.28 63.57 26.46 78.89 0.87 80.5

1 p = number of the opened facilities. 2 |K| = number of the available drones.

5.2.1. Coverage

Coverage is the percentage of the total accommodated patient demand. In [20], the
authors reported that the greedy algorithm had the best time performance, albeit with
very weak coverage compared to the other methods. Gurobi was the best of the three
methods in terms of coverage but was associated with the worst time performance, which
is attributable to the fact that it requires an unacceptably long running time to achieve
a feasible solution. However, 3SH achieved good coverage (96.6% of Gurobi’s solutions
on average), whereas when compared with Gurobi’s time performance, 3SH took only
approximately 27 s on average.

Figure 4 shows a comparison of the maximum coverage of the MCGRH and the other
three methods of [20], grouped by the number of opened facilities. The x-axis represents the
number of opened facilities and available drones, while the y-axis represents the percentage
coverage. The average maximum coverage obtained using each method was as follows:
Gurobi (81.65%), greedy (63.57%), 3SH (78.89%), and MCGRH (80.5%). Evidently, MCGRH
is the closest to Gurobi in terms of the average maximum coverage (approximately 98.6%
of Gurobi’s solutions on average), and it exceeded Gurobi in 11 instances (see Table 3 and
Figure 5). Because the objective is to maximize coverage, a comparison between the Gurobi
and 3SH methods is considered.
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Figure 5. Percent deviation of MCGRH from Gurobi and 3SH.

Figure 5 shows the percentage deviation of coverage between Gurobi, 3SH, and
MCGRH for all instances, where a positive deviation indicates that the MCGRH’s result
is better for that instance. In half of the instances (11 of 22), MCGRH exceeded Gurobi’s
results, whereas in 17 of 22 instances, MCGRH outperformed 3SH.

We used the Wilcoxon signed-rank test to ensure that the analysis relied on a solid
statistical basis. We applied the test using SPSS to compare the coverage obtained by
MCGRH and Gurobi, on the one hand, and MCGRH and 3SH, on the other. The null
hypotheses and results for both tests are presented below.

1. Comparison of MCGRH and Gurobi.

• Null hypothesis: The population distributions of the Gurobi algorithm and MCGRH
were identical with respect to coverage.

• Results: The results were comparable for both algorithms (11 negative and 11 positive
ranks). In addition, the p-value = 0.262, where 0.262 > 0.05; thus, the null hypothesis
was accepted.

2. Comparison of MCGRH and 3SH

• Null hypothesis: The population distributions of the 3SH and MCGRH are identical
with respect to coverage.

• Results: There were 5 negative and 17 positive ranks. Thus, most of the pairs were
positive ranks, which means that MCGRH had a larger coverage than 3SH. In addition,
the p-value = 0.008, where 0.008 < 0.05; therefore, the null hypothesis was rejected.
In other words, the results of the MCGRH were statistically significantly better than
those of the 3SH.
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For the sake of a visual comparison with the results in [20], Figures 6 and 7 show
illustrations of solutions for some instances obtained using our MCGRH.
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Finally, we calculated the average energy consumed per percent coverage for every
30 runs for each of the 22 instances using the following formula:

Energy/Coverage =
Average Battery Used× Number o f Drones Used

Coverage
(3)

Compared to Gurobi, the greedy heuristic, and 3SH, the average energy consumed
per percent of coverage of MCGRH was higher by approximately 20%, 31%, and 32%,
respectively. However, as previously mentioned, MCGRH achieved the best coverage in
the least time; therefore, it is expected that this comes at the expense of a slight increase
in the energy consumed (i.e., because more patients are being served). In fact, given that
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the same resources are used for each method, and because the objective is to maximize the
patients covered, it is more important to maximize coverage and help more patients in a
very fast time than to reduce the consumption of the drones’ batteries. This is especially
true given that the difference in energy/coverage is not large when compared with the
other methods.

5.2.2. Time Performance

Because the objective is to maximize coverage, we compared the Gurobi and 3SH
methods because they achieved greater coverage than the greedy method. As shown in
Table 3, the average time performances of the Gurobi was 4946.23 s, 3SH 26.46 s, and
MCGRH 0.87 s. Although the experiments were conducted on different computers, it
can still be observed that the MCGRH is substantially faster than the other methods.
Furthermore, given that the hardware specifications of the computer used to test the
MCGRH were lower than those of the machine used to test the Gurobi and 3SH methods,
this again attests to the remarkable time performance of the MCGRH. In fact, the MCGRH
runs extremely rapidly (less than 1 s on average). Again, we performed the Wilcoxon
signed-rank test using SPSS to compare the time performance of MCGRH and each of the
two other methods. The results are as follows:

1. Comparison of MCGRH and Gurobi.

• Null hypothesis: The population distributions of the Gurobi and MCGRH are identical
with respect to time performance.

• Results: The ranks of all pairs were negative (22 negative and 0 positive), indicat-
ing that MCGRH outperformed Gurobi in terms of time performance. In addition,
p-value = 0.001, where 0.001 < 0.05, indicating that the null hypothesis is rejected.

2. Comparison of MCGRH and 3SH.

• Null hypothesis: The population distributions of the 3SH and MCGRH are identical
with respect to time performance.

• Results: The ranks of all pairs were negative (22 negative ranks and 0 positive ranks),
indicating that MCGRH outperformed 3SH in terms of time performance. In addition,
p-value = 0.001, where 0.001 < 0.05; therefore, the null hypothesis was rejected.

6. Conclusions

The delivery of medical supplies and the provision of aid to patients using drones
can significantly contribute to improving healthcare services. This study aims to provide
high-quality solutions within a reasonable time for the maximum coverage facility location
problem with drones (MCFLPD), which is more complex than the traditional facility
location problem. State-of-the-art methods in the literature have been proposed to solve this
problem, including a Gurobi mixed-integer programming solver, which gives acceptable-
quality solutions in terms of coverage but has an unacceptably long running time to find
a feasible solution; a greedy heuristic, which is extremely fast but achieves low coverage
compared to the other methods; and a three-stage heuristic (3SH) algorithm, which achieves
around 96.6% of Gurobi’s coverage within approximately 27 s.

In this paper, we propose a new heuristic called the maximum coverage greedy ran-
domized heuristic (MCGRH) to solve MCFLPD. MCGRH is distinguished by the following:
(i) the selection of facilities to be opened at random from those that can serve the largest
number of patients with the highest demand; (ii) the assignment of patients to the nearest
open facilities that are available to serve them; and (iii) the assignment of drones to the
opened facilities that have the highest demands, as well as the assignment of patients of
those facilities to those with the lowest battery consumed. We compared MCGRH with the
state-of-the-art methods mentioned above, considering both time performance and solution
quality. We used the Wilcoxon signed-rank test for statistical comparison, with the results
indicating that the MCGRH excelled in solution quality (i.e., coverage), together with time



Appl. Sci. 2022, 12, 1403 15 of 16

performance. In particular, MCGRH produced a coverage of more than 80% (approximately
98.6% of Gurobi’s average coverage) in less than 1 s of average processing time.

In future work, we intend to improve the MCGRH to reduce the total energy consumed
while maintaining high coverage within a short processing time, besides considering
obstacle avoidance. Moreover, it is possible to explore new variants of the problem that
may reflect more realistic healthcare applications, such as making battery stations available
to recharge a drone’s battery during its trip.
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