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Abstract: High particulate matter (PM) concentrations in the cleanroom semiconductor factory have
become a significant concern as they can damage electronic devices during the manufacturing process.
PM can be predicted before becoming more concentrated based on its historical data to support
factory management in regulating the air quality in the cleanroom. In this paper, a Multi-Dense
Layer BiLSTM model is proposed to predict PM2.5 concentrations in the indoor environment of
the cleanroom. To obtain reliability, validity, and interoperability data, the datasets containing
temperature, humidity, PM0.3, PM0.5, PM1, PM2.5, PM5, and PM10 were retrieved in a standardized
manner via oneM2M-defined representational state transfer application programmable interfaces by
employing software platforms compliant with the Internet of Things (IoT) standard. Based on the
proposed model, an algorithm was built providing short-term PM2.5 concentration predictions (one
hour ahead, two hours ahead, and three hours ahead). The proposed model outperformed the RNN,
LSTM, CNN-LSTM, and Single-Dense Layer BiLSTM models in terms of MSE, MAE, and MAPE
values. The model created in this study could predict high PM2.5 concentration levels more accurately,
thus providing vital support for operation and maintenance for the semiconductor industry.

Keywords: oneM2M; particulate matter (PM); PM2.5; Multi-Dense Layer BiLSTM; cleanroom

1. Introduction

The semiconductor industry is one of the world’s most rapidly growing and evolving
industries. The global semiconductor market is estimated to be worth 333 billion dollars.
In addition, the industry has a considerable impact on the national market economy,
accounting for 10–15% of the Republic of Korea’s total exports. Market competition is
becoming increasingly vital due to the recent growth of available electronic gadgets, such
as mobile phones and tablet PCs (personal computers) [1]. Semiconductor fabrication
requires a variety of complex chemical components [2], generating various chemicals
and by-products that are almost impossible to remove from the inside of the equipment
altogether. Powders and airborne PM, the by-products of the chemical reaction of the metal
precursors used as process materials during regular operation and their release into the
workplace during process equipment and scrubber maintenance (used to remove some
particulates and gases from industrial exhaust streams), can severely damage the electronic
circuits [3].

The yield of the semiconductor industry is defined as the percentage of functional
integrated circuit (IC) devices at the end of the fabrication process. In general, there are two
types of yield losses in IC manufacturing: systematic and random yield loss. Deviations
in the device and material characteristics cause systematic yield loss. Contamination
issues and process-induced particles are frequently linked to random defect yield loss [4].
The following are a few instances of contaminations and mechanisms responsible for the
electronic chip failures in a semiconductor: particulate matter contamination, either from
organic or inorganic matter particles created by the environment or by tools, and processes,
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such as scratches, fractures, overlay flaws, and stress [5]. As a result, in industrial hygiene,
monitoring, determining, and predicting the powder by-products and airborne PM in the
cleanroom semiconductor factory are essential to avoid economic losses. This study aims
to predict the concentrations of airborne PM in the semiconductor manufacturing facilities
based on ten-day historical data gathered using oneM2M technology.

Over the years, several approaches have been developed to predict and manage PM.
Chang-Hoi et al. [6] utilized RNN incorporated with CMAQ (Community Multiscale Air
Quality) to forecast PM2.5. Ting Tsai et al. [7] employed the RNN model to predict PM2.5
concentrations, but the result of errors such as RMSE and MAE are high. Park et al. [8] used
the long short-term memory (LSTM) and artificial neural network (ANN) models to forecast
PM, which had a higher F-1 score than the individual scores of LSTM, ANN, and random
forest (RF) models. Huang et al. [9] forecasted PM2.5 in a smart city environment using
a deep neural network (APNet) based on CNN-LSTM. Li et al. [10] combined CNN and
LSTM (named CNN-LSTM) to predict PM2.5 concentrations. For improving forecasting
accuracy, the CNN-LSTM used a convolutional neural network for feature extraction and a
recurrent neural network for time series data processing.

Seong et al. [11] predicted 186 stations of PM2.5 concentrations using 2 layers of
convolutional long short-term memory two-dimensional (CONVLSTM2D) and batch nor-
malization. Castelli et al. [12] had forecasted the air quality index (AQI) containing O3, CO,
SO2, NO2, and PM2.5 based on support vector regression, but the accuracy of PM2.5 still
had to be enhanced. Zhang et al. [13] had constructed a model to forecast PM2.5 using a
combination of auto-encoder and BiLSTM neural networks. However, the results lacked
metric comparison by only mentioning the RMSE and correlation coefficient.

In our work, PM2.5 prediction was still used as a case study to demonstrate the Multi-
Dense Layer BiLSTM model in order to prove and compare among the AI methods to the
same object, as the advancement of the previous author’s research [3], can successfully
predict the time series data and even outperform several existing predicting strategies.

The following are our specific contributions:

• We used the hardware architecture, based on oneM2M technology, to achieve IoT
system compatibility in the semiconductor factory cleanroom;

• We showed that our Multi-Dense Layer BiLSTM model can accurately forecast PM2.5
from multi-size PM concentration datasets (PM0.3, PM0.5, PM1, PM2.5, PM5, and PM10);

• We created a system with a small number of parameters, making it computationally
efficient, potent, and stable;

• Our findings revealed that the Multi-Dense Layer BiLSTM approach yields the low-
est error when compared to the RNN, LSTM, CNN-LSTM, and Single-Dense Layer
BiLSTM methods.

The following is a breakdown of the paper’s structure. The overview of the system
is provided in Section 2, while the experimental setup for PM prediction is highlighted in
Section 3. The results of the experiment are evaluated and elaborated in Section 4. Finally,
in Section 5, the paper is concluded, and ideas for further research are discussed.

2. System Overview

To establish reliability and validity datasets, the authors collected the sensor data via
oneM2M standard technology. This method needs a communication interface to support
the cyber-physical system (CPS).

2.1. Communication Interface

In this paper, the authors used the RS485 Modbus RTU protocol for communication
interface using RJ-116p4c cable. RS485 to USB converter was used to convert data from the
sensor using RS485 Modbus RTU protocol to USB for the computer to read and process
the data from the sensor. The RS485 protocol data rate can reach 35 Mbit/s over a 10 m
connection and 100 Kbit/s over a 1200 m line [14]. The RS485 Modbus RTU protocol has
a number of benefits, including reliable communication, interoperability across devices
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from different manufacturers, and ease of installation and configuration, making it ideal
for edge computing [15].

The general architecture used in this study contained hardware, an IoT platform, and
an artificial intelligence (AI) platform, as shown in Figure 1. The industrial-grade sensor
collected temperature, humidity, PM0.3, PM0.5, PM1, PM2.5, PM5, and PM10 during a
three-day period from 24 September to 26 September 2021. The Mobius, an open IoT
platform, acts as the gateway, server, and database. This open IoT platform works on an
oneM2M technology standard, which is elaborated in the next section.

Figure 1. General architecture of this study.

Jupyter Notebook, based on python programming, was used as the AI platform. The
Jupyter Notebook contains a set of open standards for collaborative computing. These open
standards can be used by third-party developers to construct bespoke applications with
embedded interactive computing based on HTML and CSS on cloud computing. Jupyter
Notebook spans through visualization, multimedia, and more with its modular design. In
addition to running the code, it saves the code and output as well as markdown notes in
an editable document called a notebook. When users save a page in their browser, it is
transferred to their notebook server, which saves it as a JSON file with the a.ipynb extension
on the disk [16].

2.2. oneM2M Technology Standard

Connected devices have been around for a long time, but they took off after the phrase
“Internet of Things” (IoT) was established. As IoT devices began to proliferate, a standard
was needed to satisfy new IoT requirements without rewriting pieces that previously
had tried and verified specifications. The oneM2M-based platform was built with these
concepts in mind to facilitate IoT device and application interoperability and economies of
scale. Furthermore, oneM2M’s standard interoperability testing activities are important
aspects of a robust standard [17].

The oneM2M standards support IoT applications to discover and interact with any
IoT devices. IoT solutions can currently communicate across various silos. This is perfect
for distributed and collaborative solutions in domains like smart buildings, smart cities,
and smart manufacturing. Furthermore, oneM2M standards were created with the goal of
reducing fragmentation, increasing reusability, and lowering costs through scalability [18].
The oneM2M initiative has been working on IoT standards to address fragmentation in
the IoT landscape. It focuses on service layer interoperability rather than protocol stacks
within the network or internet layers, and hence provides optimal technical standards for
building a common horizontal IoT service platform across several domain sectors [19].

The authors used IoT based on oneM2M platforms in the cleanroom of a semiconductor
smart factory environment to obtain reliability, validity, and interoperability of data [20].
We can have a common service capability layer in terms of the end-to-end platform with
this technology.

In the oneM2M standard, message queuing telemetry transport (MQTT) plays a vital
role in collecting and sending sensor data. MQTT is a lightweight application layer protocol
for IoT devices. MQTT is a “publish” and “subscribe” protocol in which the sender can
deliver information to clients via an intermediary server known as a broker. Each published
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message has a single topic that clients used to subscribe to a broker. The sole broker defined
in the MQTT protocol standard acts as the single point of failure (PoF). Numerous brokers
are introduced into a system to increase availability. The IoT platform containing MQTT
broker is depicted in Figure 2.

Figure 2. IoT platform design and architecture with MQTT.

In addition, M2M technology facilitates work by enabling real-time replies on compli-
cated provider networks, such as those found in factories. Real-time control and command
with crucial technologies add functions and advantages to supply chain optimization and
automation. As a result, use cases should be evaluated via the standard oneM2M tech-
nology with real-time command and control [21]. Furthermore, this technology must be
incorporated into the current protocol standards. Additionally, oneM2M complies with the
international M2M and IoT standards with the goal of creating a single M2M service layer,
as shown in Figure 3. It would enable the integration of a wide range of hardware, software,
and countless devices from around the world into a system combining M2M-related fields
of business into a serviceable system, including telematics, smart transportation, health
care, utilities, industrial automation, and smart home applications.

Figure 3. The oneM2M architecture model.

The oneM2M model is a decentralized design that is relatively easy to modify, as
shown in Figure 3. Connecting nodes with diverse capabilities construct it. The device
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component of the IoT or any logical hardware and software service might be defined as an
application entity (AE) in this architecture.

The oneM2M service core, the IoT gateway, and the AE application service are all
managed by the infrastructure node (IN). It is typically set up on a cloud system platform
or server. The IN is the in-charge of the middle layer region with several middle nodes
(MNs) that serve IoT service layers and AE application services. In most cases, MNs are
created in the IoT gateway. Application service nodes (ASNs) are lightweight common
service layers and AE application services are utilized in a remote M2M-based IoT system.
In a tiny or limited IoT device system, application dedicated nodes (ADNs) are used to
offer sensor monitoring and information return [22].

For visualization of data collected from the sensor, the authors used an oneM2M
browser application. This application represents how data sensors (temperature, humidity,
PM0.3, PM0.5, PM1, PM2.5, PM5, and PM10) are stored in the MySQL database. As we
can see in Figure 4, the green blocks titled cin represent updated sensor data received
every second.

Figure 4. Real-time sensor data acquisition visualization using oneM2M browser application.

3. Methodology
3.1. Multi-Dense Layer BiLSTM

The BiLSTM is a variant of the general LSTM [23]. By processing the incoming data
sequences from two directions with two independent LSTMs, we utilized the advantages
of both prior and future contexts. The LSTM takes a variable-length sequence x = x1, x2,
. . . , xn as its general input, where xi ∈ Rd and d denotes the features in each time index i.
The LSTM preserves its internal hidden state h in each time index, resulting in a hidden
sequence of h1, h2, . . . , hn. At time index t, the hidden vector ht is modified as follows:

it = σ(Wxi xt + Whiht−1 + bi) (1)

ct = ft ⊗ ct−1 + it ⊗ tanh
(

Wxcxt + Whcht−1 + b f

)
(2)

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(3)

ot = σ(Woxt + Whoht−1 + bo) (4)

ht = ot ⊗ tanh(ct) (5)
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where c, σ, and ⊗ express the cell vector, the sigmoid function, and the element-wise
multiplication; i, f, and o indicate to the input, forget, and output gates, respectively.

Figure 5 depicts the proposed Multi-Dense Layer BiLSTM model for predicting PM2.5
concentrations. The algorithm took the PM2.5 concentrations data from the raw data, which
contain temperature, humidity, PM0.3, PM0.5, PM1, PM5, and PM10 concentrations. Later,
their values are standardized into a range of 0 to 1. The processed dataset is sent into the
model for training, and the learned model is then utilized to forecast PM2.5 levels.

Figure 5. Proposed architecture of Multi-Dense Layer BiLSTM model.

The BiLSTM layer is made up of two LSTM layers: a forward layer and a backward
layer. The input is recognized by the forward layer l f

t as ascending range, i.e., t = 1, 2, 3,
. . . , T. Backward layer lb

t , on the other hand, considers the input in descending order, i.e.,
t = T . . . , 3, 2, 1. As a result, l f

t and lb
t can be combined to generate the output yt. Because

they use the same backpropagation through time (BPTT) training mechanism as LSTM
networks, BiLSTMs are computationally inexpensive [24].

The backward LSTM layer output sequence lb
t is calculated using reversed inputs

from time t − 2 to t − n, the same as the forward LSTM layer output sequence l f
t . These

output sequences are then passed into the function, which combines them into a yt output
vector. The final output of a BiLSTM layer can be represented as a vector, Yt = [yt−n , . . . ,
yt+2], where the last element, yt+2, is the estimated PM2.5 concentration for the following
iteration, similar to the LSTM layer [25].

All the constructed LSTM networks in this study make use of the bidirectional feature.
The mathematical equations constituting the BiLSTM model are as follows:

l f
t = tan h

(
W f

xl xt + W f
ll l

f
t−1 + l f

h

)
(6)

lb
t = tan h

(
Wb

xl xt + Wb
ll l

b
t+1 + lb

h

)
(7)

yt = (W f
lyl f

t + Wb
lylb

t + by) (8)
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After the BiLSTM layer has processed the data, it is sent to a multi-dense layer with
a linear activation function to give continuous value predictions. The dense layer is an
utterly interconnected layer, i.e., all neurons in one layer are connected to those in the
following [26].

There are two dense layers used in this proposed architecture. In a neural network,
a dense layer is one that is tightly coupled to the layer before it. That is, every neuron in
the layer before it is coupled to every neuron in the layer before it. This is the most often
used layer in artificial neural network networks [27]. The authors used two units in the first
dense layer and one unit in the second dense layer. All units in the dense layers contain
the sigmoid activation function. In this study, adding more layers to the dense section
expectedly can increase the network’s robustness [28].

3.2. Sigmoid Activation Function

The sigmoid is a non-linear activation function frequently employed in feedforward
neural networks. It is a bounded differentiable actual function with positive derivatives
everywhere and a certain amount of smoothness, defined for real input values. The
relationship determines the sigmoid function:

f (x) =
(

1
(1 + exp−x)

)
(9)

The sigmoid function is found in the output layers of deep learning (DL) architectures,
and it is used to predict probability-based outputs. It has been successfully employed
in binary classification challenges, modeling logistic regression tasks, and other neural
network fields. The key advantages of sigmoid functions are that they are simple to learn
and that they are commonly utilized in external networks [29].

The sigmoid activation function was elected for this paper since it is ideally suited to
tasks that need a continuous-valued output, such as PM2.5 concentration [30].

4. Experimental Setup

The proposed Multi-Dense Layer BiLSTM model is utilized to predict PM2.5 con-
centrations that can be implemented in the cleanroom of the semiconductor factory. The
Tensorflow Keras library was used to implement the proposed system design.

4.1. Dataset and Preprocessing

The collection contains 259,200 data points from 24 September to 26 September 2021.
Temperature, humidity, PM0.3, PM0.5, PM1, PM2.5, PM5, and PM10 are among the eight
variables listed in Table 1. In this experiment, the algorithm contains linear interpolation,
which is employed to fill the data if there are any missing values. Linear interpolation
produces the best results for all percentages of missing values if compared to other methods,
such as the mean method [31]. The authors found no missing data from raw data, which
indicates that this is the advantage of the oneM2M system to gather the data [32]. We utilize
Equation (9) to normalize the data before inputting it into the proposed method [33]:

xnormalized =
x− xmin

xmax−xmin
(10)

where xmin denotes minimum data, xmax is minimum data, and x is the original data. It is
critical to create supervised time series data. The input matrices and output matrices are
shown below in their many configurations.
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For 1 h ahead prediction:

Input matrix =


xn(t=0) xn(t=1) xn(t=2) . . . xn(t=119)
xn(t=1) xn(t=2) xn(t=3) . . . xn(t=120)

. . . . . . . . . . . . . . .
xn(t=T−119) xn(t=T−118) xn(t=T−117) . . . xn(t=T)



Output matrix =


xn(t=120) xn(t=121) xn(t=122) . . . xn(t=179)
xn(t=121) xn(t=122) xn(t=123) . . . xn(t=180)

. . . . . . . . . . . . . . .
xn(t=T+1) xn(t=T+2) xn(t=T+3) . . . xn(t+60)


For 2 h ahead prediction:

Input matrix =


xn(t=0) xn(t=1) xn(t=2) . . . xn(t=239)
xn(t=1) xn(t=2) xn(t=3) . . . xn(t=240)

. . . . . . . . . . . . . . .
xn(t=T−239) xn(t=T−238) xn(t=T−237) . . . xn(t=T)



Output matrix =


xn(t=240) xn(t=241) xn(t=242) . . . xn(t=359)
xn(t=241) xn(t=242) xn(t=243) . . . xn(t=360)

. . . . . . . . . . . . . . .
xn(t=T+1) xn(t=T+2) xn(t=T+3) . . . xn(t=T+120)


For 3 h ahead prediction:

Input matrix =


xn(t=0) xn(t=1) xn(t=2) . . . xn(t=479)
xn(t=1) xn(t=2) xn(t=3) . . . xn(t=480)

. . . . . . . . . . . . . . .
xn(t=T−479) xn(t=T−478) xn(t=T−477) . . . xn(t=T)



Output matrix =


xn(t=480) xn(t=481) xn(t=482) . . . xn(t=839)
xn(t=481) xn(t=482) xn(t=483) . . . xn(t=840)

. . . . . . . . . . . . . . .
xn(t=T+1) xn(t=T+2) xn(t=T+3) . . . xn(t+360)



Table 1. Variables consisted in the dataset.

Categories Input Variables Unit

Temperature TEMP ◦C
Humidity HUMID %RH

Air pollutant variables PM0.3 µg/m3

Air pollutant variables PM0.5 µg/m3

Air pollutant variables PM1 µg/m3

Air pollutant variables PM2.5 µg/m3

Air pollutant variables PM5 µg/m3

Air pollutant variables PM10 µg/m3

4.2. Hyperparameters Setting

In this study, the authors evaluated the sequence learning models for short and long-
term predictions; experiments were conducted for different time scales, such as one hour,
two hours, and three hours ahead. Table 2 elaborates the hyperparameter setting for
our proposed model, Multi-Dense Layer BiLSTM. The model’s hyperparameters were
determined to achieve the best results. To ensure the consistency of the results, the authors
use three kinds of epoch values, 20, 35, and 50. The choice of 80% for training data and 20%
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for testing data is because this is empirically the best partition into the training and the
testing sets [34].

Table 2. The list of hyperparameters values for the Multi-Dense Layer BiLSTM Method.

Hyperparameter RNN LSTM CNN-LSTM Single-Dense
Layer BiLSTM

Multi-Dense
Layer BiLSTM

Model nodes 2 RNN nodes 64 LSTM nodes 128 LSTM nodes 64 BiLSTM
nodes

64 BiLSTM
nodes

Epoch 20/35/50 20/35/50 20/35/50 20/35/50 20/35/50

Batch size 16 64 16 16 16

Interpolate method linear linear N/A linear linear

Train data
(% dataset) 64 64% 64% 80% 80%

Validation data
(% dataset) 16% 16% 16% N/A N/A

Test data
(% dataset) 20% 20% 20% 20% 20%

Optimizer ADAM SGD ADAM ADAM ADAM

Activation Linear Linear ReLU Linear Sigmoid

Learning rate 0.01 0.01 0.001 0.001 0.001

Dense layer N/A N/A 3 1 2

4.3. Performance Criteria

We have predicted PM2.5 concentrations for the three-day dataset; the experiments
used three parameters to assess the efficacy of the proposed model: mean square error
(MSE) (8), mean absolute error (MAE) (9), and mean absolute percentage error (MAPE) (10)
as metrics to appraise the achievement of the Multi-Dense Layer BiLSTM model:

MSE =
1
n ∑n

i=1(yi−ŷi)
2. (11)

MAE =
1
n ∑n

i=1|yi−ŷi| (12)

MAPE =
1
n ∑n

i=1

∣∣∣∣yi−ŷi
yi

∣∣∣∣ (13)

where yi refers to the real value and ŷi refers to the forecasted value, and n expresses the
sample size. Higher forecasting accuracy is associated with lower MSE, MAE, and MAPE
values [35].

5. Result and Discussion

The proposed Multi-Dense Layer BiLSTM model was used to predict PM2.5 concen-
trations one hour, two hours, and three hours ahead of the three-day observation, totaling
259,200 s. To test the validity of predictions and support preventive maintenance over a
longer timeframe, we set the time forecast into hourly, 2 h, and 3 h.

The proposed Multi-Dense Layer BiLSTM retains low MSE, MAE, and MAPE levels at
varied sampling rates, meaning that forecasting accuracy may be assured. Table 3 shows
that when the number of epochs in the RNN, LSTM, CNN-LSTM, and Single-Dense Layer
BiLSTM algorithms increased, so did the MSE, MAE, and MAPE values, indicating that
the three approaches were overfitting. The MSE, MAE, and MAPE values of our approach
model, on the other hand, dropped as the prediction time length was increased. These
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findings acknowledge that, compared to other models, our proposed model predicts PM2.5
concentrations 1 h, 2 h, and 3 h ahead of time and has reached the most preciseness.

Table 3. The best results from all compared models for PM2.5 prediction with 20, 35, and 50 epochs.

Model
Prediction

Time
Length

MSE MAE MAPE

20
Epoch

35
Epoch

50
Epoch

20
Epoch

35
Epoch

50
Epoch

20
Epoch

35
Epoch

50
Epoch

RNN
1 h 0.1072 0.1141 0.1001 0.2415 0.2371 0.2199 29.8106 31.0264 27.7334
2 h 0.1012 0.1138 0.1165 0.1778 0.1986 0.2097 23.89 27.4217 29.8114
3 h 0.0833 0.0908 0.072 0.2501 0.2337 0.2132 54.1121 56.2735 52.1554

LSTM
1 h 0.0058 0.0048 0.0045 0.0626 0.0548 0.055 11.4597 8.8899 9.1937
2 h 0.0187 0.0771 0.0217 0.125 0.1985 0.1325 25.617 68.8899 27.6512
3 h 0.0619 0.0724 0.066 0.1703 0.2023 0.1765 60.5662 67.6347 63.2913

CNN-LSTM
1 h 5.838 3.907 3.69 2.305 1.706 1.676 6.061 3.613 4.332
2 h 3.871 3.992 3.871 1.659 1.739 1.659 4.864 4.948 4.864
3 h 8.434 8.434 8.434 2.598 2.598 2.598 7.64 7.64 7.64

Single-Dense
Layer BiLSTM

1 h 0.0016 0.0017 0.0016 0.0029 0.0034 0.3266 0.3385 0.3434 0.3047
2 h 0.0015 0.0027 0.0014 0.318 0.0042 0.3105 0.3046 0.4193 0.2814
3 h 0.0053 0.0047 0.0063 0.0067 0.0064 0.0073 0.673 0.6433 0.7322

Multi-Dense
Layer BiLSTM

1 h 0.0009 0.0014 0.0011 0.0023 0.0028 0.0027 0.2258 0.2849 0.2701
2 h 0.0014 0.0008 0.0009 0.0027 0.002 0.0021 0.2713 0.1991 0.2058
3 h 0.001 0.0018 0.0006 0.0022 0.0035 0.0019 0.223 0.3507 0.1873

Figure 6a–f display the results of predicting PM2.5 concentration one hour ahead,
using the Multi-Dense Layer BiLSTM algorithm. From three kinds of epochs experiments,
the optimum result between train and validation loss is revealed before the 10th epoch. The
blue line in Figure 6a,c,f with the log scale indicates train loss. In contrast, the orange line
reflecting validation loss is shown to have the same trend, resulting in the proposed model
having the lowest MSE, MAE, and MAPE in 1 h ahead prediction, as mentioned in Table 3.
From Figure 6b,d,f, the test data, and prediction data are united very closely. These outputs
demonstrate that the proposed model has the best fit to predict PM2.5 concentrations.
Compared to the other four models, the results of prediction by the proposed model were
the closest to the actual value.

The loss function patterns of the proposed model to estimate PM2.5 concentration for
the following two hours are shown in Appendix A, Figure A1a–f. Especially in Figure A1e,
the blue and orange lines were closer in epoch 7th, then separated wider until epoch 50th,
with relatively having the same trend between these two lines. The test data and prediction
data have practically merged in Figure A1b,d,f. These findings suggest that the proposed
model is the most accurate in predicting PM2.5 concentrations for 2 h ahead, as mentioned
in Table 3.

Similar to the previous experiments one h ahead and two hours ahead, Figure A2a–f
depicts the fitting patterns of three hours ahead prediction by the proposed model has
attained the best fit. All models were run for 20, 35, and 50 epochs; then, our proposed
model, in which the results of prediction are represented by the orange line, came closest
to the actual value, which is represented by the blue line. Notably, in Figure A2e, the line
of validation loss got a spike in epoch 15th, then it continued to have the same trend with
train loss until epoch 50th.

When the number of epochs is increased from 20 to 35, and then 50 epochs, the MSE,
MAE, and MAPE values from the proposed model tend to decrease to the lowest error
compared to other methods. These results demonstrate that Multi-Dense Layer BiLSTM
has the best fit pattern than the other four models. The authors took a sample to combine
the fitting trends from all models for one hour ahead prediction, with each model run by
20 epochs, which are shown in Figure 7.
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Figure 6. Result of loss function using the proposed model for 1 h ahead prediction (a,b) 20 epochs.
(c,d) 35 epochs. (e,f) 50 epochs.

In the zoomed Figure 7, the authors took sample lines from all compared models from
25 to 35 s, indicating that the proposed model represented by the orange line has the closest
distance to the real data represented by the blue line. The proposed model and single-dense
layer BiLSTM represented by the green line have a close connection. This result shows that
the proposed model, which uses multi-dense layers, could empower network stability [28].

From Figure 7, we can also see that the CNN-LSTM model, represented by the red line,
has the furthest distance from the real data. This result is suitable to the values mentioned
in Table 3. This is understandable given that CNN-LSTM is essentially slower due to its
operations and necessitates a lengthy process [36].
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Figure 7. Comparison of all models to predict PM2.5 concentrations for one hour ahead.

6. Conclusions

PM2.5 concentrations can have a significant impact on the semiconductor plant prod-
uct quality. Therefore, a robust framework is required to monitor, analyze, and predict
air quality with additional visualization services. It is imperative to develop an accurate
prediction method to ensure awareness regarding the prospective air quality in the clean
rooms among the personnel working at semiconductor manufacturing sites.

In this study, we built PM monitoring infrastructure using an industrial-grade sensor
to meet the quality and compatibility standards of the industrial sector. In particular,
open-source software platforms compliant with oneM2M standard technology were used
to provide a standardized approach to access the obtained PM datasets, allowing us to
construct globally applicable and access-independent PM apps using oneM2M-defined
REST APIs.

Furthermore, for one hour, two hours, and three hours forecasts, the proposed tech-
nique, Multi-Dense Layer BiLSTM, was shown to have the lowest errors in terms of MSE,
MAE, and MAPE as compared to the RNN, LSTM, CNN-LSTM, and Single-Dense Layer
BiLSTM models. The findings can also be used by policymakers in semiconductor factories
to control the air quality of the cleanroom using HVAC based on this proposed model of
PM2.5 prediction.

Despite the excellent results, there are a few difficulties that we would like to address
in future work, such as the large memory and computing time required by our model in
the case of big datasets.

To further improve the prediction, cumulative airborne characteristics of the cleanroom
must be analyzed. Further steps include constructing integrated predictive, preventive,
and prescriptive maintenance based on the PM prediction with suitable control function
services in cleanroom semiconductor manufacturing.
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Abbreviations

ADAM Adaptive Momentum Estimation
ADN Application Dedicated Nodes
AE Application Entity
ANN Artificial Neural Network
API Application Programming Interface
ASN Application Service Node
BiLSTM Bidirectional Long Short-Term Memory
BPTT Backpropagation Through Time
CMAQ Community Multiscale Air Quality
CNN-LSTM Convolutional Neural Network—Long Short-Term Memory
CONVLSTM2D Convolutional Long Short-Term Memory Two-Dimensional
CPS Cyber-Physical System
DL Deep Learning
IN Infrastructure Node
HVAC Heating Ventilation and Air Conditioning
IoT Internet of Things
JSON JavaScript Object Notation
LSTM Long Short-Term Memory
M2M Machine to machine
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ML Machine Learning
MN Middle Node
MQTT Message Queue Telemetry Transport
MSE Mean Square Error
PM Particulate Matter
PM0.3 Particulate Matter of 0.3 µm
PM0.5 Particulate Matter of 0.5 µm
PM1.0 Particulate Matter of 1.0 µm
PM2.5 Particulate Matter of 2.5 µm
PM5 Particulate Matter of 5 µm
PM10 Particulate Matter of 10 µm
RDBMS Relational Database Management System
REST Representational State Transfer
RNN Recurrent Neural Network
RTU Remote Terminal Unit
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Appendix A

Figure A1. Result of loss function using the proposed model for 2 h ahead prediction (a,b) 20 epochs.
(c,d) 35 epochs. (e,f) 50 epochs.
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Figure A2. The accuracy of prediction using the proposed model for 3 h ahead prediction
(a,b) 20 epochs. (c,d) 35 epochs. (e,f) 50 epochs.
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