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Abstract: The use of digital technologies to detect, position, and quantify pests quickly and accurately
is very important in precision agriculture. Imagery acquisition using air-borne drones in combination
with the deep learning technique is a new and viable solution to replace human labor such as visual
interpretation, which consumes a lot of time and effort. In this study, we developed a method for
automatic detecting an important maize pest—Spodoptera frugiperda—by its gnawing holes on maize
leaves based on convolution neural network. We validated the split-attention mechanism in the
classical network structure ResNet50, which improves the accuracy and robustness, and verified
the feasibility of two kinds of gnawing holes as the identification features of Spodoptera frugiperda
invasion and the degree. In order to verify the robustness of this detection method against plant
morphological changes, images at the jointing stage and heading stage were used for training and
testing, respectively. The performance of the models trained with the jointing stage images has been
achieved the validation accuracy of ResNeSt50, ResNet50, EfficientNet, and RegNet at 98.77%, 97.59%,
97.89%, and 98.07%, with a heading stage test accuracy of 89.39%, 81.88%, 86.21%, and 84.21%.

Keywords: Spodoptera frugiperda; deep learning; convolutional neural network; corn insect

1. Introduction

Spodoptera frugiperda, originating from the American continent, has invaded Europe,
Asia, and Africa [1]. As a migratory pest, Spodoptera frugiperda has a strong survival ability
and a rapid reproduction rate, colonizing the above continents in a short time and causing
great damage to corn, rice, and other main food crops [2–5].

At present, the main standard method to control this pest is pesticides, including
(a) detecting the occurrence and status of pests by field sampling investigation, which
relies on agronomists or trained surveyors [3], and (b) spraying pesticides evenly in the
corresponding area [6,7]. It is simple and easy to indiscriminatingly spray, but the process
of obtaining the information is time consuming and laborious, which depends on the sub-
jectivity of surveyors. Uniform spraying would cause pesticide waste and environmental
pollution [8,9]. In this context, there is an urgent need for a low-cost, high-efficiency, and
high-precision method to quickly and effectively obtain field information, including the
occurrence location, extent, and overall distribution of insect pests [10].

There have been several research studies focusing on the identification of pests and
diseases affecting plant leaves. Most of the image data come from ground-based sensors
such as mobile phones and digital cameras [11–13], and a small part of this is collected by
unmanned aerial vehicles (UAV), which belong to remote sensing (RS) technology [14–16].
RS has been frequently adopted as a rapid, non-destructive, and cost-effective means for
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plant disease and pest detection that can be adapted to different scenarios and different
objects [17–19]. All of the abbreviations in the introduction are found in Table 1.

Table 1. Abbreviations.

CNN Convolutional Neural Networks UAV Unmanned Aerial Vehicle

RS Remote Sensing RGB R (red), G (green), B (blue)

Compared to satellite remote sensing and aerial remote sensing, UAVs have great
advantages in terms of cost, operation, carrying, etc. [19], and they have been widely used
in crop classification, growth monitoring, yield estimation, and other aspects, especially for
large fields [20].

On the other hand, deep learning—originating from machine learning—has gradually
gained popularity because of its ability to automatically extract representative features
from a large number of input images [21,22]. Konstantinos et al. developed CNN models to
perform plant disease detection and diagnosis using simple leaves images of healthy and
diseased plants through deep learning methodologies [23]. Chen et al. used the UNet-based
BLSNet to automatic identify and segment the diseased region of Rice bacterial leaf streak
from the camera photos [24]. The appearance of the attention mechanism also further
improves the performance of the network [22,25].

The following are studies based on UAV imagery combined with machine learning or
deep learning: Tetila et al. detected soybean foliar diseases subjected to biological stress
based on the simple linear iterative clustering segmentation method through foliar physical
properties using RGB imagery captured by the low-cost unmanned aerial vehicle model
DJI Phantom 3 [26]. Harvey et al. used an unmanned aerial vehicle (UAV) to acquire
high-resolution images in the field, and they built an automated, high-throughput system
based on a convolutional neural network (CNN) for the detection of northern leaf blight
of maize plants [27]. Jin et al. proposed a computerized system based on CNN to process
images captured by UAVs at low altitudes, which can detect Fusarium wilt of radish with
high accuracy [28]. Ryo et al. used CNN to implement a detection method of virus-infected
plants in a potato seed production field, with UAV RGB images being captured at an
altitude of 5–10 m from the ground [7].

Compared with disease studies, insect pests are more flexible. There are two primary
approaches to insect identification [29]: (i) direct, focusing on the ontology of the insects,
and (ii) indirect, which focus on the damage caused by the insects [6]. For example,
Liu et al. used a field insect light trap to obtain images and combined the CNN and
attention mechanism to construct a direct classification model for insect identification [30].
Zhang focused on the significant change in the plant’s leaf area index caused by Spodoptera
frugiperda to indirectly monitor the infestation [31]. On the other hand, using the camera
to closely capture pest images is also a widely used method, such as Li et al. integrating
Convolutional Neural Network (CNN) and non-maximum inhibition for positioning and
counting aphids in rice images obtained by a close view camera, achieving 0.93 accuracy
and 0.885 mAP by optimizing key parameters and feature extraction network [13].

The above methods may have defects in accuracy or cannot be applied to large area
practice. Thanks to the development of UAV technology, the pest identification based on
UAV images is worth further research [32]. Ana et al. carry small aircraft RGB camera
drones to obtain the vineyard plant image, and the application of geometric vision and
computer vision technology, combined with landform factors on the influence of pests
on the vineyard of the quantitative analysis for the farm digital management provides
accurate low-cost information, which helps in the implementation and improvement of
farm management and decision-making processes [33]. Farian et al. also used the corn
leaves damaged by Spodoptera frugiperda and applied VGG16 and InceptionV3 to detect the
infected corn leaves captured by the UAV (UAV) remote sensing technology while using
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the angular detection method in computer vision to strengthen the feature representation
and improve the detection accuracy [34].

This paper presents a CNN-based deep learning system for the automatic detection of
maize leaves infected by Spodoptera frugiperda; from RGB UAV remote sensing images at
high spatial resolution. UAV remote sensing images have excellent potential for agricultural
data acquisition, while deep learning has agricultural data processing potential. Through
the combination, this study is based on a multi-stage pest detection classification model
applied to actual maize production environmental characteristics based on the ResNest
model. The model has the following capabilities: (1) Collecting corn images from the actual
field agricultural production conditions for the automatic detection of leaves infected by
Spodoptera frugiperda; (2) According to the feeding characteristics of corn grass, Accurately
and quickly determining the pest stage of the infected leaves, providing a reliable reference
for the formulation and implementation of prevention and control measures; (3) The
potential and generalization ability of indirect pest detection based on UAV remote sensing
images are verified. This provides a reference for the automated detection of pest invasion
status in the field. The remainder of this paper is organized as follows: In Section 2, we
describe the study area, data collection, and methods. Section 3 presents results, and
Section 4 provides a discussion. Finally, Section 5 summarizes this work and highlights
future works.

2. Materials and Methods
2.1. Study Area

The UAV RGB imagery of the maize pest Spodoptera frugiperda was captured at the
Experimental Station (117.552616, 34.309942) of the China University of Mining and Technol-
ogy, Xuzhou city, Jiangsu Province, China. Image are shown in Figure 1. The experimental
site was invaded by the grass moth because of a later maize planting cycle than the sur-
rounding fields. When we started the data collection, the larvae in the field were in a
transition phase from low to medium age.
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Figure 1. (a) The study area located in Xuzhou and the experimental field; (b) images of the experi-
mental field obtained on 8, 9, and 24 September 2020 using a low-altitude UAV equipped with an
RGB sensor. Each of the colors represents a different experiment date. Each drone image has its
own coordinate.

2.2. UAV Image Collection

The image acquisition device was a DJI Mavic air2 equipped with a half-inch CMOS
sensor, which can achieve an effective pixel rate of 48 million. What is more, it is an ultra-
small drone, weighing just 570 g, which is capable of capturing high-resolution images
(standard red–green–blue or RGB photos) of corn at ultra-low altitudes.
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The data were collected three times in September 2020 during the critical growth
period of maize across the jointing stage to the heading stage, and the specific time and
resolution are shown in Table 2. In the jointing stage, corn was collected for the first time,
and in the heading stage, it was collected for the second and third time. Between these
two periods, maize grows rapidly, and its morphology changes greatly, especially the
appearance of stamen changes the overall morphology of the maize plant to a great extent,
which can be applied to the generalized type test of model. That is the reason we set the
interval. The specific differences between the two stages are shown in Figure 2Part A below,
and maize leaf categories are shown in the Figure 2Part B.

Table 2. Date and quantity of data collection.

Date #Images Stage Image Resolution

8 September 2020 295 Jointing 4000 × 3000
19 September 2020 249 Heading 6000 × 8000

24 September 2020 84
272 Heading 6000 × 8000

4000 × 3000
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Figure 2. (Part A) The picture on the left shows corn in the jointing stage, the right picture shows
corn in the heading stage; (Part B) The red box shows severely infected corn leaves, the blue box
shows slightly infected corn leaves, and the purple boxes show corn leaves in healthy condition.
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The flight speed was controlled at 1.5 m/s and the flight altitude was from 2 to 5 m
from the ground, which was very close to the corn canopy. Moreover, the shooting angle of
the flight path along the ridges of the field was 90◦, with more efficient harvesting of corn
canopy information. The specific information of the images is shown in Table 2, including
the date, number, and image resolution.

2.3. Image Preprocessing

The data processing included two main steps: Cropping and Classing.
Cropping: Due to the size of the images, we tailored them from the sizes in Table 2 to

200 × 200 to speed up training and to reduce the pressure on the graphics memory. We
used the OpenCV-Python tool in Python language to read and crop images in batches. For
visual effect, Figure 3 shows the conversion process of an image from 1 × 3000 × 4000 to
25 × 200 × 200.
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Figure 3. An image cropped from 1 × 3000 × 4000 to 300 × 200 × 200.

Classing: After cropping, the main body of the image is basically composed of corn
leaves, and part of the image is land and weeds. By combining the edge detection tool
in Opencv2-Python library and RGB channel calculation, the image containing only land
and weeds is removed. According to the habits of Spodoptera frugiperda and specific rep-
resentation on the image, we divided the rest of the images into 3 categories by visual
interpretation, as shown in Figure 4 below.

(Condition 1): Healthy leaves: Green healthy leaves, complete without damage.
(Condition 2): Translucent silver window (TSW), the first instar and part of the second

instar of Spodoptera frugiperda only feed on one side of corn leaves, creating a translucent
silver windowpane.

(Condition 3): Irregular wormhole (IW), the rest of the instars of Spodoptera frugiperda
cause significant irregular pores, and some of the leaves infected in the undeveloped period
show symmetry in the holes.

(Condition 4): Other objects, the picture contains only land and weeds (drop).
For pest control, the earlier the intervention, the fewer losses and pesticides used,

so the first translucent silver windowpane is the most important object. However, in the
image, most of the leaves were presented as healthy. In order to balance the number of
positive and negative samples, we selected the number of healthy leaves in condition 1
according to the number of infected leaves in conditions 2 and 3, and we removed the
leaves in condition 4 at the same time.

After the above processing, we finally obtained more than 5000 maize images in the
joint stage, including 2043 healthy leaves, 1866 condition 1 images, and 1430 condition
2 images. The quantities are shown in Table 3. The above data are used for training and
validation of the models. During the training, the ratio of training to verification was 9:1.



Appl. Sci. 2022, 12, 2592 6 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 16 
 

 
Figure 3. An image cropped from 1 × 3000 × 4000 to 300 × 200 × 200. 

Classing: After cropping, the main body of the image is basically composed of corn 
leaves, and part of the image is land and weeds. By combining the edge detection tool in 
Opencv2-Python library and RGB channel calculation, the image containing only land and 
weeds is removed. According to the habits of Spodoptera frugiperda and specific represen-
tation on the image, we divided the rest of the images into 3 categories by visual interpre-
tation, as shown in Figure 4 below. 

 
Figure 4. Classing: Four categories, two stages. 

(Condition 1): Healthy leaves: Green healthy leaves, complete without damage. 

Figure 4. Classing: Four categories, two stages.

Table 3. Number of processed images.

Stage Health TSW IW Sum

Jointing 2043 1904 1744 5691
Heading 532 417 596 1545

To test the robustness of the model detection ability, 1545 images in the heading stage
were used, including 532 in condition 1 and 417 in condition 2. This part of the image does
not participate in training and verification at all, and it was used as an independent test set
for testing the model after training.

2.4. Augmentation

The training of a deep learning model requires a very large amount of data, so we
used data augmentation to amplify the data [35]. Data enhancement technology can
enhance images and reduce over-fitting by flipping, mirroring, and contrast transformation
without changing the original form of an image [36]. In the classification task, the image
geometric transformation, color space enhancement, random erasure, and feature space
enhancement operation can change the image status without changing the image category
so as to improve the quantity and quality of data, play the effect of reducing the distance
between the training data and the test data, and reduce the overfitting in the model training
process [37,38].

For example, the contrast change can change the brightness of the image to a certain
extent and enhance the sensitivity of the image to the illumination change. In this study,
we used a variety of image enhancement methods, as shown in Figure 5 below.
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2.5. Convolutional Neural Network

After a long period of development since AlexNet [39], convolutional neural net-
works, composed of a convolution layer, a pooling layer, and a fully connected layer, have
evolved into series of models that can automate the extraction of features through training
iterations [40,41]. ResNet [42], through the application of residual blocks, has solved the
problem of network degradation and parameter disappearance with a continuous increase
in neural network layers, making an indelible contribution to the progress of deep learning,
called Deep Convolutional Neural Network (DCNN). DCNN can automatically extract the
features of convolutional check images with different specifications to obtain higher data
classification accuracy, and it has become the most common identification method [43].

Based on ResNet, the integration of different methods leads to the development of var-
ious network structures, such as grouping convolution [44], self-attention mechanism [45],
and selective attention mechanism [46]. Therefore, in this study, the feasibility of the feeding
symptoms method based on maize Spodoptera frugiperda was verified by using several kinds
of ResNet related networks, including ResNet, ResNeS [47], SE-Net, and SK-Net. Although
the residual structure has been widely applied with its simple structure and convenient
modular design, its performance is not satisfactory in downstream applications, which
is affected by factors such as receptive field size and channel interaction. Recently, the
successful application of the channel and attention mechanism has introduced new possibil-
ities for its improvement. ResNext first introduced the idea of grouping convolution. The
SE-Net introduces a channel-attention mechanism for feature construction by adaptively
recalibrating the channel feature response. SK-Net extracted the channel information from
the feature map through the construction of the grouped channels. Therefore, according to
the idea of taking the channel as the operation unit and dividing the input data into more
fine-grained weighted subgroups or subchannels based on the global context, it is able to
build a channel-based split attention structure. During training, each subgroup is able to
perform different mapping abstractions on the input channel data of its own part so as to
build different feature representations. In the model, the module is named a distraction



Appl. Sci. 2022, 12, 2592 8 of 15

block. Thanks to the simple and modular structure, the distraction blocks can perform
multiple reuse and stacking and then construct the universal structure bodies similar to
the same residue model. Therefore, the block can be simply described as replacing the
original residual part of the attention operations with channels as units and thus giving the
corresponding weight to the identity.

At the same time, to increase the comparison, other classic network models such as
EfficientNet [48] and RegNet [49] are also selected. The networks used in this study were
consistent with the architecture of ResNet50, and the original block was replaced with a
split-attention block, as shown in the Figure 6 below.
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2.6. Transfer Learning

Transfer learning can transplants the weights obtained through the pre-training of
large data sets to the network. Fine tuning based on these weights can accelerate the
network training speed and reduce the amount of data required for training [50,51]. In this
paper, the ImageNet data set [52] was used as the source data to pre-train the model.

3. Results
3.1. Experimental Setup

In this experiment, we used Pytorch 1.4 as the framework, which is an open-source
package in deep learning based on the python programming language. The selected
optimizer was Stochastic Gradient Descent (SGD) with the momentum of 0.9, the initial
learning rate was 0.002, which decreases with loss, the batch size was 32, and the loss
function was CrossEntropy. The training was performed on a machine with the graphics
processor of NVIDIA GTX2080s and 32 GB of memory. We trained and tested the models
with the data set consisting of the corn leaf in the jointing stage, and to valid the robust
ability, we tested the models with the heading stage data set. Figure 7 illustrates the
processes involved in obtaining the images used for the experiments.
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3.2. Evaluation Parameters

Model performance was assessed using six parameters: Accuracy, Sensitivity, Speci-
ficity, Precision, F1 Score, and Kappa.

Accuracy is used as the main method to calculate the accuracy of a model, and the
classification ability of the model is represented by the proportion of the correct number
of samples in the total number of samples. The specific formula is as follows, and in the
formula, T (True) and F (False) represent whether the prediction is correct, and P (Positive)
and N (Negative) represent the category of the model prediction; TP and TN is the sum of
True Predictions, and FP and FN are the opposite:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity represents the model’s recognition ability for positive samples, consisting
of TP and FN:

Sensitivity =
TP

TP + FN
(2)

Specificity is defined to show true negative assessment ability, consisting of TN and FP:

Speci f icity =
TN

TN + FP
(3)

Precision shows the accuracy of all model-identified positive samples, consisting of
TN and FP:

Precision =
TP

TP + FP
(4)

F1 Score is an aggregative indicator based on the harmonic mean of precision and recall.

F1 score =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(5)

Kappa coefficient is a consistency test confusion matrix-based indicator with values
between −1 and 1; closer to 1 indicates the overall effect of the classification. In the formula,
ai and bi represent the true number and the predicted number of the i category, respectively,
and the sum means the number of all data.

Kappa =
p0 − p1

1 − p1

p0 = Accuracy (6)

p1 =
a1 × b1 + a3 × b3 + a3 × b3

sum2
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3.3. Experimental Results

In this study, we compared the performance of four models in the data set, and the
results of each model are shown in Figure 8 below. The accuracy for ResNeSt50, ResNet50,
EfficientNet, and RegNet is 98.77%, 97.59%, 97.89%, and 98.07%. It can be seen from the
data that all the four network structures can obtain high reconnaissance accuracy in this
classification problem. Among them, the accuracy of ResNet50 with split attention is the
highest. At the same time, with the addition of transfer learning, all networks basically
reach the steady state in about 20 epochs, which means in the production environment, we
can complete the training and validation of the model in a relatively short time.
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Figure 8. Accuracy and loss of the ResNest50 during training and validation.

An image was randomly selected from the test data set (clipping completed), and
the model operation was carried out. The infected image blocks in the calculation results
were given different colors according to their severity, and then, they were spliced together
for display. A blue box represents a slight silver window, while a red box represents an
irregular wormhole (see Figure 9).
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are the enlarged image of the infected area.

4. Discussion

In this study, we proposed the deep learning model to detect the invasion of Spodoptera
frugiperda by the features of the damaged leaves. At the same time, four different neural
network structures are used to verify the feasibility of the proposed method. In addition,
in order to verify the ability of this feature against maize morphological change, the
four models were trained on the images at the jointing stage and tested on the images
at the heading stage. The appearance of stamen and the fall of stamen in corn leaves
images at the heading stage has a certain influence on the overall structure and color of
the image. However, the neural network based on features of the damaged leaves still
has good accuracy. Accuracy, Sensitivity, Specificity, Precision, F1 score, and Kappa were
used to demonstrate the recognition ability of maize leaves with holes (see Table 4) (TSW:
Translucent silver window, IW: Irregular wormhole).

Table 4. Test results—based on images at the heading stage.

Model Class Health TSW IW Accuracy Sensitivity Specificity Precision F1 Score Kappa

ResNeSt50
Health 473 47 12

89.39%
0.89 0.97 0.94 0.91

0.84TSW 7 398 12
0.950.86 0.90

0.97
0.97
0.96

0.86
IW 22 64 510 0.90

ResNet50
Health 390 37 105

81.88%
0.73 0.97 0.94 0.82

0.72TSW 14 349 54 0.84
0.88

0.91
0.82

0.79
0.77

0.81
IW 13 57 526 0.82

EfficientNet
Health 456 39 37

86.21%
0.86 0.95 0.91 0.88

0.79TSW 18 377 22 0.90
0.84

0.90
0.93

0.77
0.89

0.83
IW 25 72 499 0.86

RegNet
Health 419 30 83

84.21%
0.79 0.97 0.94 0.86

0.76TSW 15 342 60 0.82 0.93 0.82 0.82
IW 10 46 540 0.91 0.84 0.79 0.84

It can be seen from the table that the models based on four different network structures
all have a good ability to identify the infected leaves from the corn images at the heading
stage. However, compared with the original valid accuracy, the current accuracy has a
degree of decline, respectively 89.39%, 81.88%, 86.21%, and 84.21%. The split-attention
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models outperformed the origin ResNet50 structures and the classical network model on
the performance in terms of Accuracy, Precision, etc. ReNest50 also achieves the best results
on the Kappa coefficients and F1 Score. What is more, we can see the differences between
these networks more clearly in the CAM (Class Activation Map based on the average
gradient) in Figure 10 below. Compared with the results of other network structures, the
split-attention network can identify the target more accurately and closely.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 16 
 

It can be seen from the table that the models based on four different network struc-
tures all have a good ability to identify the infected leaves from the corn images at the 
heading stage. However, compared with the original valid accuracy, the current accuracy 
has a degree of decline, respectively 89.39%, 81.88%, 86.21%, and 84.21%. The split-atten-
tion models outperformed the origin ResNet50 structures and the classical network model 
on the performance in terms of Accuracy, Precision, etc. ReNest50 also achieves the best 
results on the Kappa coefficients and F1 Score. What is more, we can see the differences 
between these networks more clearly in the CAM (Class Activation Map based on the 
average gradient) in Figure 10 below. Compared with the results of other network struc-
tures, the split-attention network can identify the target more accurately and closely. 

 
Figure 10. Attention map base on grad CAM. 

5. Conclusions and Future Directions 
This study aimed to detect maize images that included leaves infected by Spodoptera 

frugiperda in the early stages. Four different models including ResNeSt50, ResNet50, Effi-
cientNet, and RegNet were used to verify the feasibility of using the above features for 
recognition and explore the split-attention mechanism to improve the accuracy and ro-
bustness of the model. The ResNeSt50 network achieved a high accuracy of 98.77% in the 
validation data set based on the jointing stage and of 89.39% in the test data set based on 
the heading stage. The model demonstrated its ability to identify infected maize leaves at 
various stages and allowed to classify them according to the degree of infection. In the 
process of model construction, methods such as data enhancement and transfer learning 
are adopted to speed up model construction, reduce overfitting, and improve robustness. 
Accurate treatment can carry out according to an image’s coordinates the grade and dis-
tribution of infected leaves, which can significantly reduce the use of pesticides and assist 
in the implementation of biological control. 

Although the model can accurately and quickly identify and judge the maize leaves 
present in the image for insect pests, the following problems still need to be further stud-
ied and explored in practical application: (1) under the condition of positive projections, 

Figure 10. Attention map base on grad CAM.

5. Conclusions and Future Directions

This study aimed to detect maize images that included leaves infected by Spodoptera
frugiperda in the early stages. Four different models including ResNeSt50, ResNet50,
EfficientNet, and RegNet were used to verify the feasibility of using the above features
for recognition and explore the split-attention mechanism to improve the accuracy and
robustness of the model. The ResNeSt50 network achieved a high accuracy of 98.77%
in the validation data set based on the jointing stage and of 89.39% in the test data set
based on the heading stage. The model demonstrated its ability to identify infected maize
leaves at various stages and allowed to classify them according to the degree of infection.
In the process of model construction, methods such as data enhancement and transfer
learning are adopted to speed up model construction, reduce overfitting, and improve
robustness. Accurate treatment can carry out according to an image’s coordinates the grade
and distribution of infected leaves, which can significantly reduce the use of pesticides and
assist in the implementation of biological control.

Although the model can accurately and quickly identify and judge the maize leaves
present in the image for insect pests, the following problems still need to be further studied
and explored in practical application: (1) under the condition of positive projections, so that
some pest leaves may be ignored due to occlusion; (2) the image acquisition parameters
such as height, angle, and resolution and actual field planting conditions; (3) the overall
statistical analysis of field pest distribution and subsequent application should be further
explored with agronomic knowledge. In future research, we will use the model of Spodoptera
frugiperda based on more accurate network architecture for real-time field corn image
recognition. In addition, according to the optimal resolution combination obtained, we
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will conduct a new round of data collection in this year’s maize planting period to further
verify the method. At the same time, we will collect more data to build a model that can
identify more pests and diseases faster and more accurately.
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