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Abstract: This paper presents an enhanced generalized extended state observer (EGESO) based
sliding mode control (SMC) technique for dealing with the disturbance attenuation problem for a
class of non-integral chain systems with mismatched uncertainty. In the proposed control law, the
robust SMC with reaching phase elimination is applied in the proposed control law, which uses the
estimated states of a system. The stability analysis is thoroughly examined for both EGESO and SMC.
The efficacy of the proposed controller is verified using specific examples, and later it is applied on a
single-link flexible manipulator. Through simulation and experimentation analysis, it is observed
that the proposed controller is giving a robust transient response as compared to existing GESO
based controllers.

Keywords: generalized extended state observer (GESO); mismatched system; sliding mode controller;
non-integral chain form; real time experimentation

1. Introduction

One of the eminent problems in modern control theory is the precise modeling of
systems for robust control design. The second major challenge in robust control design
is tackling unmodeled internal nonlinearities or unmeasurable external disturbances that
may reduce the efficiency of the closed-loop system [1–4]. Implementing disturbance
estimation techniques, which can eliminate these uncertainties and modeling errors, is
always helpful in controller design due to the increase in the importance of precise control.
Various disturbance observer-based control (DOBC) techniques [5–11] have been developed
in the past few years. The survey paper [10] will provide a complete overview of the DOBC
study. As per [10], disturbance observer (DOB) [5], unknown input observer (UIO) [11],
and extended state observer (ESO) [8] are the most widely researched and applied among
these disturbance estimation approaches.

Although many researchers have utilized DOBC on various systems, satisfying match-
ing conditions, very few studies addressed systems with mismatched uncertainties [12–15].
ESO based control (ESOBC) only requires the relative order of system and approximate
model information [16–18]. Originally ESOBC design was in the form of a typical chain of
integrators with a matching condition considered [19], which restricts the ESOBC appli-
cability to the mismatched system with non-integral chain form of systems [16]. Recent
studies [13,14] suggested the use of GESO for such systems. The above survey motivates
us to augment states observer quality of EGESO [14] with robust sliding mode controller
to improve the performance of systems with mismatched uncertainty. This technique
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reduces the number of sensors required for plant states to be measured and makes the
plant cost-effective.

An SMC is one of the famous, robust, nonlinear control techniques for uncertain
systems because of its simple design procedure [20]. SMC was previously used for aircraft,
robotic manipulators, batteries, and photo-voltaic systems [21], marine vehicles, and pro-
cess control applications [22,23]. The designing of sliding mode control requires a sliding
function to reach the desired behavior of a sliding surface and a discontinuous controller
that pushes the system trajectories towards the sliding (switching) manifold in a finite time
and stays there for the future [24–26]. An SMC is sensitive to lumped uncertainty before it
reaches the sliding surface, so it is necessary to eliminate this reaching phase to make the
system insensitive to uncertainties [12,27].

The ESO-based SMC [28–32] approach has been utilized previously but lacked in
addressing issues like chattering in SMC, reaching phase elimination, non-integral chain
form, mismatched system, and proper disturbance estimation. To address some of these
issues, many researchers [33–36] used a single-link flexible manipulator (SLFM) model as
an application, but it fails to address all the issues and to achieve the desired performance.
Due to the intrinsic underactuated nature of SLFM, designing a controller for such systems
is a challenging task.

In this paper, the EGESO based SMC, along with reaching phase elimination, is
proposed for SLFM along with the mismatched uncertainties and succeeded in reducing
the tip chattering (α) of the flexible arm in real-time experimentation. The proposed
controller is found to be effective in set-point tracking, handling mismatched uncertainties,
and reducing the chattering effect in comparison to [13,14,30].

The remainder of the paper is structured as follows. Section 2 reviews the requisite
preliminaries for problem statement identification. Section 3 defines the proposed control
law along with the design of an EGESO and a modified stable sliding surface, with the
elimination of reaching phase property, and EGESO stability is also indicated here. The pro-
posed closed-loop system control law’s stability is described in Section 4. The model
description and dynamic equations with system matrices are shown in Section 5. Section 6
demonstrates the reliability of the proposed controller with numerical simulation and
experimental results and a comparison of the performance indices. Then the conclusion
ends the paper.

2. Preliminaries and Problem Statement

A class non-integral chain form of an uncertain non-linear system with nth order and
mismatched disturbances is considered in [13] as:{

ẋ = Ax + Buu + B f d(x, w(t), t),
y = Cx,

(1)

where x = [x1 · · · xn]T , u ∈ R, y ∈ R, and w ∈ R are the state vector, input, controlled
output, and external disturbances respectively. A ∈ Rn×n, Bu ∈ Rn×1, B f ∈ Rn×1, d(·) ∈ R
may be mismatched uncertain disturbance function of x and w and C ∈ R(1×n).

Remark 1. The generalized term for lumped disturbance d(x, w(t), t) in Equation (1), is assumed
to be bounded. This uncertainty function d(x, w(t), t) includes unmodeled dynamics, external
noise, and parametric uncertainty, which may be challenging for a simple feedback controller.

Remark 2. The matching condition with respect to disturbance matrix B f is given by Bu=λB f ,
λ ∈ R [13]. Equation (1) describes a more specific class of systems because the system (1) is not
only restricted to an integral chain form and it can also be subject to mismatched uncertainties [37].

The GESO for system (1) with state feedback controller and disturbance compensation
gain law was proposed in [13], whereas the enhanced GESO based controller for the same
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class of system is given in [14].

The control law provided by [13] is stated as,

u = Kx x̂ + K f d̂ (2)

where
K f = −[C(A + BuKx)

−1Bu]
−1C(A + BuKx)

−1B f (3)

disturbance compensation gain is denoted as K f , and state feedback gain is represented as
Kx. x̂ and d̂, are the estimations of x, d, respectively, and are obtained by following GESO
structure: [ ˙̂x

˙̂x(n+1)

]
=

[
A(n×n) B f
0(1×n) 0

][ ˙̂x
˙̂x(n+1)

]
+

[
Bu
0

]
u + L0(y− [C 01×1]x̂) (4)

where x̂ =
[
x̂1 x̂2 · · · x̂n

]T are the estimates of the state variable
[
x1 x2 · · · xn

]T ,
L0 is observer gain matrix with dimension (n + 1)× 1, which has to be design, and x̂(n+1)
is an estimation of lumped disturbance d. The GESO simultaneously provides an estimate
of the states and the uncertainties, as the uncertainties are part of the states of the extended
order system [13].

Remark 3. The lumped disturbances assumed to be bounded and they must have constant steady
state value as t → ∞ i.e., limt→∞ ḋ((x, w(t), t)) = 0, means limt→∞ d((x, w(t), t)) = Cd,
where Cd is a constant value. Under this assumption and control structure given from (2) to
(4), the EGESO based control gives stable bounded response.
Here Remark 3 is completed, whereas the enhanced generalized observer-based control law proposed
by [14] stipulates as,

u = Kx x̂g + ug

(
η̂, d̂, ˆ̇d, · · · , d̂(kd)

)
(5)

where Kx is selected so that Ā u A + BuKx will be Hurwitz, x̂g is estimated EGESO states which

consist of estimation of original states along with extended state and it is given as [x̂ d̂ ˆ̇d · · · d̂(kd)]T ,
ug is a function of combined term which consists of η̂, d̂, ˆ̇d, and d̂(kd) which are the dynamic
component, estimation of lumped disturbance, estimation of disturbance derivative, and estimation
of disturbance kth

d order derivative respectively. According to [14], η̂ is estimated using Equation (6)
and it is given as,

ζ̇ = φζ + Γ d̂,
η̂ = Hζ

}
(6)

where φ ∈ RP×P (Hurwitz), Γ ∈ RP, H ∈ R1×P, p = mtot
um , and the detailed calculation of ug

function is discussed in [14]. This additional ug function in Equation (5) helps to reject disturbances
much more effectively as compared to Equation (2). The above given preliminaries are related to
paper [13,14], based on which the problem statement has been defined, and the newly proposed
control law is designed.

In this paper sliding mode, controller is introduced instead of state feedback controller,
with EGESO to strengthen transient response of a system. The proposed scheme is shown
in Figure 1 and control law is indicated by dotted box. The limitation of constant steady
state disturbance for control law (2) is eliminated by proposed EGESO based sliding mode
controller. The minimum values of performance indices obtained through proposed control
law indicate its superiority over (5). The estimated value of lumped disturbance is used in
such a way that the effect of disturbances from output can be compensated without the
need to know actual disturbance present in the system.
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Figure 1. Block diagram of the proposed control scheme.

3. Proposed Control Scheme

A block diagram of the proposed control scheme has a structure given in Figure 1.

3.1. Criteria for EGESO

The appropriate criteria are made here just for designing extended state observer as
per the paper proposed by [14]:

1. Ā u A + BuKx, where A and Bu are any general system and control matrices respec-
tively. See numerical examples in results section for more understanding.

2. ou,j ∈ C, j = 1, . . . , mu , with ou,j 6= ou,j+1, ∀j, denotes zeros in the matrix triple of
(Ā, Bu, C), where C is output matrix. For more information, see numerical examples
in the results section.

3. nu,j ∈ N denotes the multiplicity of ou,j.
4. The zeros ou,j, and their respective multiplicities nu,j, are split into: minimum phase

zero, oum ,j, num ,j, j = 1,. . . , mum ; non-minimum phase zero, ounm ,j, nunm ,j, j = 1, . . . , munm ;
and zeros at the imaginary axis, ou0,j, nu0,j, j = 1,. . . , mu0 ; satisfying mu = mum +munm +
mu0 .

5. The total number of zeros in the matrix triple (Ā, Bu, C) is indicated by mtot
u =

∑mu
i=1 nu,i. Furthermore, in the same way: mtot

um = ∑
mum
i=1 num ,i, mtot

unm = ∑
munm
i=1 nunm ,i,

and mtot
u0

= ∑
mu0
i=1 nu0,i are the total number of minimum phase zeros, non-minimum

phase zeros, and zeros at the imaginary axis, respectively.
6. The matrix triple (Ā, B f , C) uses the same notation as defined in (2)–(5), replacing the

subindexes ‘u’ by ‘ f ’, where B f is a disturbance matrix. See numerical examples in
results section for more understanding.

3.2. Design of Enhanced Generalized Extended State Observer

This sub-section is intended to design mismatched disturbance and states estimation
method. The lumped disturbances shown by matrix B f are effectively estimated by (7).
The EGESO is defined as

˙̂xg = Ax̂g + Bgu + Lg(y− Cg x̂g)
ŷ = Cg x̂g

}
(7)

where Lg ∈ R(n+2)×1 is the observer gain matrix which needs to be designed, and
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Ag =

 A B f 0n×kd
0kd×n 0kd×1 Ikd×kd
01×n 01×1 01×kd

, Bg =

 Bu
0(kd×1)

01×1

, Cg =

 C
01×1
01×kd

T

,

xg =
[

x d ḋ · · · d(kd)
]T

.

(8)

are the generalized extended observer states, Ag is new GESO system matrix, Bg is GESO

control matrix, Cg is new GESO output matrix, kd = max{0, mtot
f − mtot

u } and x̂, d̂, ˆ̇d, · · · ,
d̂(kd) are estimations of x, d, ḋ, · · · , d(kd) respectively.

Assumption 1. The matrix pair (A, Bu) is controllable and the pair (Ā, C) is observable. Fur-
thermore, the observability of matrix pair (Ā, C) is a necessary condition for the observability of
(Ag, Cg), as given in [13].

Assumption 2. The matrix (Ā, Bu, C) does not have zeros at the imaginary axis.

Assumption 3. d(kd+1) is bounded.

Here we define estimation error of the ESO as e0 = xg − x̂g with xg defined in (8),
by considering the observer dynamics as given in Equation (7). The following statement
indicates throughout proof for boundedness of error e0,

Proposition 1. Under Assumptions 1–3, the boundedness of error e0 is guaranteed if Lg in (7) is
chosen such that (Ag − LgCg) is Hurwitz.

Proof. By considering the system in Equation (1), the boundation of e0 is given by the
following proof. 

ẋ = Ax + Buu + B f xd,0

xd,0 = d
ẋd,0 = xd,1 = ḋ
...
ẋd,kd−1 = xd,kd

= dkd

ẋd,kd
= d(kd+1)

(9)

where xd,kd
= dkd , value of kd varies from 0 to positive integer, and it is given as kd =

max{0, mtot
f − mtot

u }. Disturbance terms can be expressed as [xd,0, xd,1, · · · , xd,kd
]T =

[d, ḋ, · · · , dkd ]T . Using dynamics given in Equation (9), we are estimating disturbance and
their derivatives from Equation (10). Expressing Equation (9) in matrix form leads to,

ẋg = Agxg + Bgu + Bg, f dkd+1 (10)

with xg, Ag, Bg defined in (8) and Bg, f = [01×(n+kd)
, 1]T .

By differentiating e0 , xg − x̂g and inserting Equations (7) and (10) in it, we get

ė0 , (Ag − LgCg)(xg − x̂g) + Bg, f dkd+1 (11)

which is bounded for any bounded f kd+1, since (Ag − LgCg) is Hurwitz [38]. The ESO
stability proof is finished here.
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3.3. Design of Stable Sliding Surface

This sub-section deals with designing a stable modified sliding surface (σm) to elimi-
nate mismatched disturbance of the system (1). Equation (23) shows that modified sigma’s
(σm) dynamics do not depend on signum function, and hence, a considerable amount of
chattering effect is removed from the traditional sliding mode controller. The estimated
disturbance is used to design a stable sliding surface, and the control input is derived for
tracking the system on the input trajectory.

A similar type of mismatched system as depicted in (1) is considered with second
order form, 

ẋ1 = x2 + f (x) + ex1 + w,
ẋ2 = b(x) · u,
y = x1.

(12)

where x = [x1, x2]
T are the system states, b(x) is invertible and not zero, and f (x) is the

system disturbance. d(x, t) = d = f (x) + ex1 + w is considered as lumped disturbance.
where external disturbance w = 3 acts on a system at time t = 6 s.

The stable sliding mode surface σ is chosen as,

σ = c1x1 + x2 + d̂ (13)

where c1 is a user defined positive constant, d̂ is the lumped disturbance estimation.
By differentiating Equation (13) and incorporating (12) leads to

σ̇ = c1x2 + c1d + b(x)u + ˙̂d (14)

and control u is given by,
u = ueq + un (15)

putting Equation (15) in (14), Equation (14) modifies to

σ̇ = c1x2 + c1d + b(x)un + b(x)ueq +
˙̂d (16)

Equivalent control law, ueq is calculated from system nominal or known parameters.
The remaining unknown terms have either lumped uncertainty or disturbance will be taken
care of by un, and it is given by Equations (17) and (18) respectively,

ueq = −b(x)−1(c1x2 + ksσ + ˙̂d) (17)

where ks is positive constant chosen by designer.

un = −b(x)−1(c1d̂) (18)

by substituting both (17) and (18) in (16), we get

σ̇ = d̃− ksσ (19)

where d̃ is disturbance estimation error and it is given by d̃ = d− d̂.

3.4. Control Law Using Estimated States

From (11), x1 = x̂1, x2 = x̂2, and so on till xn = x̂n and d = x̂(n+1). A modified sliding
surface using the estimated state is given as,

σm = c1 x̂1 + x̂2 + d̂ (20)
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The control law is derived using similar steps from (14)–(18) on Equation (20),

ueq = −b(x)−1(c1 x̂2 + ksσm + ˙̂d) (21)

un = −b(x)−1(c1d̂) (22)

After incorporating (21) and (22) in σ̇m it leads to,

σ̇m = −ksσm + d̃ (23)

where d̃ is disturbance estimation error and it is given by d̃ = d− d̂.

3.5. Reaching Phase Elimination

A study of reaching phase elimination is presented in [24]. Subsequently, due to
the initial condition of states, it may be possible to get a high extensive control signal
requirement and also to have insensitivity of lumped disturbances; reaching phase can be
eliminated and it is designed as,

?
σm = σm − g(x, t) = σm − σm(0)e−αt (24)

where g(x, t) = σm(0)e−αt and at time t = 0, g(x, 0) = σm(0) =⇒ ?
σm(0) = 0, whereas,

at t→ ∞, g(x, ∞) = 0 =⇒ ?
σm(∞) = σm.

The proposed control law given in (13) is modified as per reaching phase elimination
rule (24) for studied examples. The importance of reaching phase elimination can be
observed in the result section, in which LESOSMC controller results are compared with the
proposed controller.

4. Stability

The stability of Equation (20) is given in this section. The EGESO stability is already
presented in Equations (9)–(11), which proves that error dynamics of original and estimated
states are going to zero, and it remains in bounds of µ.

Proposition 2. The ultimate boundedness of the sliding surface σm is found by defining the
following Lyapunov function.

Proof.
Vs(σm) =

1
2

σ2
m (25)

By differentiating Equation (25) it leads to,

V̇s(σm) = σmσ̇m (26)

From the dynamics of σm in Equation (23), we get

V̇s(σm) = σm

(
−ksσm + d− d̂

)
= σm

(
−ksσm + d̃

) (27)

V̇s(σm) ≤ −|σm|
(
ks|σm| − |d̃|

)
(28)

Using the bounds of d̃m found from GESO estimation, we obtain that

V̇s(σm) ≤ −|σm|(ks|σm| − µ) (29)
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From Equation (29), for stability we must Ks|σm| > |µ|. Thus, sliding surface is
ultimately bounded by the bounds given by

|σm| ≤
µ

ks
(30)

From Equation (30) it is noted that the bounds of σm may have any value and it
depends on the value of ks and therefore designer has to choose the value of ks as per
performance requirement; this proves the asymptotic stability of an entire system.

5. Simulation and Experimental Results

A comparative study has been carried out to show the efficacy of the proposed con-
troller. In Example 1, EGESO based SMC is compared with other control techniques [13,14].
The proposed controller is also applied to Example 2, an uncertain, unstable system with
minimum phase zero, and the results are compared with other techniques. Finally, the
proposed controller is validated with other controllers on SLFM actuated by DC motor.
Mismatched disturbances are introduced in all cases and removed actively from the output
with the help of the proposed control law.

5.1. Study Example 1

A second order nonlinear system with mismatching condition is considered for
study [13]. 

ẋ1 = x2 + ex1 + ω(t)
ẋ2 = −2x1 − x2 + u(t)
y = x1

(31)

being d(x, ω(t), t) , ex1 + ω(t) with ω(t) = 0, 0 ≤ t < 5 s and ω(t) = 3, t ≥ 5 s. The sys-
tem matrices are:

A =

[
0 1
−2 −1

]
, Bu =

[
0
1

]
, B f =

[
1
0

]
, C =

[
1 0

]
(32)

The modified sliding surface with reaching phase elimination as per (20) and (24) is consid-
ered as

?
σm = σ− σ(0)e−αst

= c1 x̂1 + x̂2 + x̂3 − (c1 + x̂3)e−αst (33)

where x̂3 is an estimation of disturbance d. Equivalent control law ueq and disturbance
caring term un is obtained as

ueq = −[c1 x̂2 − 2x̂1 − x̂2 + αsc1e−αst − ˙̂dαse−αst]− ks
?
σm − ˙̂d (34)

un = −[c1d + d̂αse−αst] (35)

where the sliding surface coefficient ks = 5, control gain c1 = 20, observer poles kept
at s = −5 (same, as placed in [14]), αs = 4.5, step size of simulation = 0.001 s, solver
used in simulation is ode4 (Runge-Kutta), saturation limit for control signal considered
as +30 to −40. It should be noted that the sliding surface coefficient ks should satisfy the
Equation (30) which was generally considered at least 10 times greater than that of bounds
µ. Whereas, c1 is dependent on the location of the pole to be placed in such a way that
the sliding surface will always be stable. This system is a non-minimum phase and it is
observed that the proposed controller gives better performance even after adding constant
disturbance from t ≥ 5 s as shown in Figure 2.
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Figure 2. Response of output and control signal for Example 1.

If the control law is designed with σ instead of
?
σm, then sliding surface starts initially

from 20, whereas with reaching phase elimination it started from 0, which provides less
control efforts at initial stage and better performance as shown in Figure 3.

0 2 4 6 8 10 12
-20

-10

0

10

20

30

LESOSMC without Reaching Phase Ellimination
Proposed without Reaching Phase Ellimination
Proposed with Reaching Phase Ellimination

Figure 3. Sliding surface response for Example 1.

The error dynamics of actual and estimated states are given in Figure 4. The quick and
perfect convergence of estimated states towards original states provides less error bound
µ. As this is an example of regulating type, the set point is zero. The performance indices
for this system are shown in Table 1. From the performance indices, it is clarified that the
proposed controller provides less error than other techniques in all cases.
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Figure 4. Error dynamics of proposed controller with reaching phase elimination for Example 1.

Table 1. Comparison of performance indices for Example 1.

Controller Set-Point (r) Error Indices

Output (y)
IAE
(10−2)

ISE
(10−2)

ITAE
ITSE
(10−2)

Control Efforts (u)
in ITAE

GESOBC error = y− 0 311.5 256.1 13.47 1030 280.5
EGESOBC error = y− 0 175.5 103.9 5.827 254.4 284.4
LESOSMC error = y− 0 179.4 101.8 6.910 322.3 355.5
Proposed scheme error = y− 0 96.66 47.43 2.736 71.81 259.4

5.2. Study Example 2

A third order uncertain unstable system having an internal minimum-phase zero is
considered for study [14]: 

ẋ1 = 3x1 − 1.5x2 + 0.5x3 + 2u(t),
ẋ2 = 2x1,
ẋ3 = x2 + tanh(x3) + w(t)
y = 0.25x2 + 0.75x3

(36)

being d(x, w(t)) , tanh(x3)+w(t), with w(t) = 0, 0 ≤ t < 5 s and w(t) = 5(t− 5)e−
(t−5)

2 .
The system matrices are:

A =

3 −1.5 0.5
2 0 0
0 1 0

, Bu =

2
0
0

, B f =

0
0
1

, C =
[
0 0.25 0.75

]
.

The proposed sliding surface designed with reaching phase elimination for this case is
obtained as

?
σm = σ− σ(0)e−αst

= c1y + ẏ− 0.75(d)e−αst (37)

where d can be replaced by estimated state x̂4. Equivalent control law ueq and disturbance
caring term un is obtained as

ueq = −[(0.25c1 + 0.75) · 2x̂2 + 0.75c1 x̂2 + 0.5(3x̂1 − 1.5x̂2 + 0.5x̂3)]− ks
?
σm (38)

un = −[0.75c1 x̂4 + 0.75 ˙̂x4] (39)

where the sliding surface coefficient is ks = 20, control gain is c1 = 50, observer poles are
kept at s = −5 (same as placed in [14]), αs = 2, step size of simulation is 0.001 s, the solver
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used in simulation is ode4 (Runge–Kutta), and saturation is not considered in control signal
for this example. The efficacy of the proposed controller is better as compared to others as
shown in Figure 5. The sliding surface response is shown in Figure 6 and it is observed that
sliding surface starts exactly from 0 value.
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Figure 5. Response of output and control signal for Example 2.
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Figure 6. Sliding surface response for Example 2.

The error dynamics of actual and observed states are shown in Figure 7, and it is
verified that it is approaching towards zero, whereas real disturbance and its estimation
are also presented in Figure 7. The performance indices for this example are shown in
Table 2. It is clear from the performance indices that less error is provided by the proposed
controller than by other compared techniques in all aspects.
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Figure 7. Error dynamics of proposed controller with reaching phase elimination for Example 2.

Table 2. Comparison of performance indices for Example 2.

Controller Set-Point (r) Error Indices

Output (y)
IAE
(10−3)

ISE
(10−3)

ITAE
(10−2)

ITSE
(10−3)

Control Efforts (u)
in ITAE

GESOBC error = y− 0 712.9 67.52 569.8 456.7 246.5
EGESOBC error = y− 0 233.3 14.50 113.7 67.89 248.2
LESOSMC error = y− 0 113.3 4.173 66.9 25.97 455.3
Proposed scheme error = y− 0 35.95 0.3193 19.60 1.314 238.1

5.3. Experimental Model

The elastic rotary attachment is a perfect test for modeling a dynamic relation to a
robot or a spacecraft. The model emphasizes the effects on robot control systems of flexible
link connections. Figure 8 shows a schematic diagram of the SLFM. Because of the flexible
structure of the link, the end-point is shifted, as shown in the diagram, whenever it is
actuated by an angle theta (θ) at the servomotor end. Illustrations of various parameters
are given in Table 3. The link’s flexibility is modeled as a linear torsional motion.

�

DL

�

DC Motor
shaft

Flexible link

Endpoint

Flexib
le lin

k le
ngth

Figure 8. Flexible link manipulator schematic diagram.
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Table 3. Nomenclature used for parameter.

Parameter Description Unit

α Arm end-point deflection degree
θ Servo motor gear angle degree
L Flexible link length cm
Tl Load torque Nm
D Link end-point deflection (Arc length) cm
Beq Viscous damping coefficient
Ksti f f Total stiffness of model Nm/deg
Jlink Moment of inertia of link Kg-m2

Jeq Equivalent moment of inertia of the model Kg-m2

5.3.1. System Model Dynamics

Dynamic equations of a system were derived using the formulation of Euler–Lagrange.
Considering that the end-point deflection angle is minimal, this is estimated by α = D

L ,
where D is the link end-point displacement, and the length of the link is L. For modeling
the flexible link, the 2nd order rotary system model is considered in this experimentation.
The one end of the link turns around, and the other stays fixed. The simplified, flexible
link manipulator model is obtained in [39], and by computing Lagrangian and later using
the Euler–Lagrange equation, the flexible link manipulator dynamic equations are given
by (40) and (41).

θ̈ =
Tl
Jeq
−

Beq θ̇

Jeq
+

Ksti f f α

Jeq
(40)

α̈ = −Ksti f f

(
1
Jeq

+
1

Jlink

)
α +

Beq

Jeq
θ̇ − Tl

Jeq
(41)

Defining states as x1 = θ, x2 = α, x3 = θ̇, x4 = α̇, and Vm = u, the states representation of
Equations (40) and (41) are described as per [33] given as (42).

ẋ1 = x3
ẋ2 = x4

ẋ3 = 936.39x2 − 41.19x3 + 72.4593u
ẋ4 = −1372.6x2 + 41.19x3 − 72.4593u

 (42)

The control problem is to synthesize EGESO based sliding mode law for controlling
the servo motor deflection (θ) as well as end-point deflection (α), which is considered as a
mismatched uncertainty in the first channel of (42). The experimental setup is shown in
Figure 9.

5.3.2. Simulation Results for SLFM

The proposed EGESO based sliding mode controller is applied to 4th order uncertain
system with matched uncertainty considered in 3rd channel as given in (42). Indeed, it is
found that the disturbance does not affect the SLFM system in the same channel as the
control action, which demands a complex closed-loop control [40]. State x3 with matched
disturbance added into it becomes ẋ3 = 936.39x2 − 41.19x3 + 72.4593u + d(t) and ẋ1 = x3,
where d(t) , 9 deg from 11 ≤ t < 12 s and d(t) , 0 deg from 12 ≤ t < 14 s and the
disturbance matrix B f becomes [0 0 1 0]T .

EGESO is used to estimate all four states and extended lumped disturbance. The slid-
ing surface design for this system, considering all initial conditions of x̂(0) are zero, is
obtained as

?
σm = σ− σ(0)e−αst

= cs(x̂− r) + x̂5 − (cs x̂(0)− cs · r + x̂5)e−αst (43)
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where x̂5 is an estimation of disturbance d(t), x̂ = [x̂1 x̂2 x̂3 x̂4]
T , r is a set point for servo

motor gear angle θ and gain matrix cs = [5 −24.3847 1.0 −0.2]. Equivalent control law ueq
and disturbance caring term un is obtained as

ueq =− (csB)−1 · (cs · Ax̂− αscsre−αst + ˙̂x5e−αst + ks · (
?
σm) + ˙̂x5) (44)

un =− (csB)−1 · (cs · B f x̂5 − αs x̂5e−αst) (45)

where the sliding surface coefficient ks = 30, observer gain obtained as [51.81 −27.2945
−146.3584 −245.1937 234.7045 743.9036], αs = 4.5, step size of simulation = 0.001 s, solver
used in simulation is ode4 (Runge–Kutta). The proposed controller response is compared
with other methods, and set-point tracking of θ and arm end-point deflection angle (α) are
observed as shown in Figure 10. It is found that the proposed controller is not giving any
overshoot as compared to the other two methods, so its effect on α seems to be very less.

Figure 9. Flexible link experimental setup.

The proposed controller provides less control signal at the initial stage to provide
smooth output θ. It works better after external disturbances are added into the system at
time 11 ≤ t < 12 s. Figure 11 shows the control input for simulation results. The sliding
surface response is shown in Figure 12 and it is observed that it is approaching zero.

The actual and estimated states are θ, θ̇, α, α̇ given in Figure 13. It is observed that GESO
properly measures the estimated states, whereas the extended state estimates disturbance
acts on the system immediately. The estimation of disturbance and error in disturbance
estimation (error dynamics) are shown in Figure 14.

From the performance indices shown in Table 4, it is clarified that the proposed
controller provides a minor error compared to other techniques in all cases. It is ob-
served that the proposed scheme improves the control performance by reducing efforts
of dc motor to 12.47%, 0.78%, and 65.80% as compared with GESO based method [13],
EGESO based method [14], and Linear extended state observer-based sliding mode control
(LESOSMC) [30] method respectively.
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Figure 10. Simulation result of output tracking θ and arm end-point deflection α.

0 2 4 6 8 10 12 14
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

GESOBC

EGESOBC

LESOSMC

Proposed Scheme

0.5 1 1.5 2

-1

-0.5

0

0.5

11 11.5 12 12.5 13

-0.2

-0.1

0

0.1

Figure 11. Simulation result of control signal for controlling θ.

5.3.3. Experimentation Result for SLFM

The standard flexible link manipulator provided by [39] is fitted with a strain gauge
sensor resulting in an analog signal proportional to the deflection of the arm end-point
and servo motor sensor, which provides an angular position of arm as described in
Figures 8 and 9. In this experimentation, only one sensor output is measured, which
is a servomotor angular orientation (θ), and remaining states (α, θ̇, α̇) are measured by
EGESO along with disturbances. MATLAB [41] software is used for simulation purpose
considering ode4 (Runge–Kutta) solver for differential calculations with a sample time of
0.001 s.
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Figure 12. Simulation result of sliding surface σ.
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Figure 13. Simulation result of actual and estimated states after reach phase elimination.

In order to stress the effect of the difference in real-time control efforts, multilevel fixed
set-points trajectory with disturbances is adopted. The servo motor gear angle θ for the
selected trajectory is shown in Figure 15. On the zoomed portion, the proposed controller
offers a smooth response without overshoot as compared to other techniques, which leads
to less chattering in θ. Furthermore, it was also considered to have the desired requirement
of less arm end-point deflection (α), and it is observed that the proposed scheme works
effectively to satisfy the desired requirement in Figure 16.
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Figure 14. Simulation result of error dynamics.

Table 4. Comparison of performance indices for simulation results of SLFM.

Controller Set-Point (r) Radian Error Indices

Output (y)
IAE
(10−2)

ISE
(10−3)

ITAE
(10−2)

ITSE
(10−3)

Control Efforts (u)
in ITAE

GESOBC error = y − 0.523 rad 29.50 88.51 54.59 37.66 1.885
EGESOBC error = y − 0.523 rad 28.69 91.29 60.27 34.91 1.663
LESOSMC error = y − 0.523 rad 34.22 91.02 89.72 47.24 4.825
Proposed scheme error = y − 0.523 rad 25.11 78.97 42.06 23.29 1.650
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Figure 15. Experimental result of output tracking θ.

Disturbance of small impulse added manually at time t = 35 s, and it is observed that
the proposed controller is not giving much overshoot compared to other techniques.

The motor (actuator) response for controlling servo motor gear angle θ is shown in
Figure 17. Compared to other techniques, the amplitude order of the proposed control
signal is very low.

The sliding surface response is shown in Figure 18 and it is observed that chattering in
sliding surface is of very low order, which is nearly approaching zero.
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Figure 16. Experimental result of arm end-point deflection α.
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Figure 17. Experimental result of control signal for controlling θ.
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Figure 18. Experimental result of sliding surface σ.

6. Conclusions

In this paper, an EGESO based SMC is designed and applied to SLFM model. The pro-
posed controller shows better transient performance with fewer overshoots than other
existing GESOBC techniques, based on performance criteria. In the experimental case,
an integral time absolute error (ITAE) has values 42.06, 54.59, 60.27 for the proposed control
law, GESOBC, and EGESOBC, respectively. It is observed that ITAE for the proposed
controller is 30.21% less than EGESOBC and 22.95% less than GESOBC; this shows the
efficacy of the proposed controller. Due to the inclusion of reaching phase elimination in the
proposed control method, the control efforts are significantly reduced. Finally, the proposed
scheme could be extended to deal with high-frequency disturbances systems.
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