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Abstract: For bedridden elderly people, pressure ulcer is the most common and serious complication
and could be prevented by regular repositioning. However, due to a shortage of long-term care
workers, repositioning might not be implemented as often as required. Posture monitoring by using
modern health/medical caring technology can potentially solve this problem. We propose a RGB-D
camera system to recognize the posture of the bedridden elderly patients based on the analysis of 3D
human skeleton which consists of articulated joints. Since practically most bedridden patients were
covered with a blanket, only four 3D joints were used in our system. After the recognition of the
posture, a warning message will be sent to the caregiver for assistance if the patient stays in the same
posture for more than a predetermined period (e.g., two hours). Experimental results indicate that
our proposed method is capable of achieving a high accuracy in posture recognition (above 95%). To
the best of our knowledge, this application of using human skeleton analysis for patient care is novel.
The proposed scheme is promising for clinical applications and will undertake an intensive test in
health care facilities in the near future after redesigning a proper RGB-D (Red-Green-Blue-Depth)
camera system. In addition, a desktop computer can be used for multi-point monitoring to reduce
cost, since real-time processing is not required in this application.

Keywords: 3D human skeleton; posture recognition; patient care; pressure ulcer prevention

1. Introduction

With a growing number of elderly people with disability and chronic diseases [1], long-
term care of bedridden elderly people remains a big challenge due to various complications,
such as muscular wasting, joint stiffness, nutritional imbalance, and skin problems [2].
One of the most serious complications is pressure ulcers, which are injuries to skin and
underlying tissue resulting from prolonged pressure on the skin [3]. The care burden
of pressure ulcers is tremendous, and, thus, prevention of pressure ulcers is the most
important measure [4]. A systematic review [5] discussed many methods of pressure ulcer
prevention and suggested that a non-contact monitoring method is preferred considering
the comfort of the patient.

To reduce the occurrence of pressure ulcers, frequent redistribution of the pressure
on bedridden patients by regular repositioning is essential [6]. It is commonly recom-
mended to set a repositioning schedule for changing the position of patients every two
hours [7]. However, due to a shortage of long-term care workers, repositioning might not
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be implemented as often as required. Posture monitoring by using modern health/medical
caring technology can potentially solve this problem. In this paper, we present a novel
approach based on a remote RGB-D camera to continuously detect and monitor the posture
of bedridden elders. The main goal is to notify the caregivers to reposition the patients
if they have been staying in the same posture for a long time. In this way, we achieve
the following goals: (1) evaluation of the care quality (enough release of pressure) and
(2) long-term record of patient’s posture variations.

In our system design, a RGB-D (depth) camera is used to overcome the challenge of
posture recognition using incomplete skeletons, since elderly people in bed are usually
covered with a blanket and only the head and partial shoulders are visible. Recognition of
lying postures (left-side, right-side, and supine) solely from traditional RGB information
might be difficult and inaccurate. The adoption of depth information from the RGB-D
camera will be helpful in determining the 3D skeleton and, hence, the lying postures.

2. Related Works

Conventional research of in-bed behavior analysis includes body movement during
sleep, sleep apnea, and sleeping postures. For sleeping posture recognition or behavior
analysis, wearable devices [8,9] were attached to the human body or a mattress. However,
they often make the patients uncomfortable and affect sleeping quality. Another way is to
install pressure sensors on the mattress for sleep monitoring [10] (such as detecting events
of normal breathing, apnea, and body motion).

To ensure less inconvenience or interference, image-based approaches were often
developed. The RGB, depth [11], and near- or far-infrared (NIR or FIR) images [12] can be
used for different purposes. Among them, thermo imaging [13] is free of privacy issues
but often expensive. Depth cameras based on ToF (time of flight) principle also suffer from
higher cost and cluttered noise from environmental lighting. In a compromise between
the performance, cost, and privacy for elderly patients, we choose to use a RGB-D camera
which is capable of capturing color and depth information (e.g., the Microsoft Kinect, Intel
RealSense, etc.).

Recently, machine learning (ML) approaches for disease diagnosis (e.g., Parkin-
son’s [14] and ovarian cancers [15]) have gained increasing attention. They often used hand-
crafted features sophisticatedly defined by a system designer or deep-learning (DL) features
automatically trained from the dataset. For health care purposes, electronic health records
(EHR) are also used to predict the risk of fall for the elderly using a ML approach [16].

In sleep monitoring, Chang et al. [17] used a Kinect depth sensor to detect and rec-
ognize patient movements, motion patterns, and pose positions by gross body motion
estimation [18] and in-bed pose analysis. Spatial and temporal features from depth im-
age sequence were aggregated for analysis on a condition of no blanket covering on the
body, which seems unreasonable for immobile and elderly patients. Grimm et al. [19] also
used Kinect V2 depth image to form a bed-aligned map (BAM) [20] (each cell covering
10 cm × 10 cm) and realized sleeping position classification through convolutional neural
networks (CNNs). Li et al. [21] proposed to build a vertical distance map from the Kinect
depth image to classify among ten sleeping postures, where a multi-stream CNN archi-
tecture considering different resolutions was used. In [21,22], though the subjects covered
with blankets were also considered, their goal was sleep quality assessment.

In contrast to image-based methods, some other studies used skeleton-based algo-
rithms for posture/action recognition. Lee et al. [23] proposed to use 3D skeleton from
Kinect V2 for sleep pattern monitoring. However, the subjects for the test were not covered
with blankets, so that 3D skeletons could be constructed from the depth images. Recently,
deep-learning algorithms were developed to estimate human skeleton (a set of articulated
3D joints) from a single RGB image [24–27] to avoid the influence of inaccurate depths
and for outdoor use. This kind of 2D skeleton and 3D skeleton was used in [28,29] for fall
detection and gesture recognition, respectively.
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In view of the prior works, Table 1 compares research on different goals for posture
classification to better reflect the goal and condition considered in the proposed work.

Table 1. A comparison between sleep quality assessment and our pressure ulcer prevention.

Goals Subjects Blanket Covering Sleeping Poses

Sleep quality
assessment Healthy Might be

Several and complicated (like
fetus/log/yearner positions

in [21,27])

Pressure ulcer
prevention Usually immobile

Usually yes, in
air-conditioned

environment

Usually 3 (supine, left-,
right-oriented) which are

hardly differentiable

A collaboration between National Chung Cheng University (CCU) and Ditmanson
Medical Foundation Chiayi Christian Hospital was conducted to use a RGB-D camera for
capturing the color plus depth images and carry out recognition into three sleep postures for
immobile patients. A warning message will be sent to the caregivers to remind them about
repositioning the patients if they stay in unchanged postures for a long time (e.g., two hours)
or lose a specified posture due to body motions. By referring to [30,31], three lying postures
are defined: supine, left, and right. Left or right side lying is performed by inserting pillows
under the right or left side back. Since the three postures after blanket covering tend to be
visually similar to the supine position, this fine-grained pose classification problem seems
to be challenging. In this paper, we propose a 3D skeleton-based system to classify the
three postures considering blanket covering (maybe up to the shoulders), with two legs
occluded and two hands possibly visible.

3. Proposed Method

Considering the above two observations (blanket covering and tiny difference between
postures), a partial 3D skeleton which contains four joints only (i.e., nose, neck, left shoulder,
and right shoulder) is to be estimated, as illustrated in Figure 1. The 3D skeleton is not
estimated directly from the depth image. Instead, first a 2D skeleton is estimated from RGB
information and then combined with the depth cues to form a 3D skeleton. For posture
classification, a machine learning approach that accepts various kinds of information
(including 2D skeleton, 3D skeleton, depth information, etc.) as hand-crafted features will
be used.

Figure 1. The framework of the proposed scheme.
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3.1. System Setup

Figure 2 shows our system setup, where an Intel Realsense RGB-D camera was
mounted above the bed at a height of 174 cm with a viewing angle of 10 degrees with
respect to the nadir point. Practically, the camera can be mounted on a track above the bed,
with a suitable height and tilting angle, so as not to interrupt the working of the caregivers.

Figure 2. (a) The system setup; (b) the camera tilting angle.

3.2. 3D Skeleton Estimation

Dissimilar from Microsoft Kinect, the 2D skeleton is estimated from the RGB image and
then fused with corresponding depth information to form a 3D skeleton. This two-stage
method is preferable for RGB-D cameras other than Microsoft Kinect which did not provide a
toolbox for skeleton estimation, and, thus, it has wider applications. This was contributed by
recent developments on deep-learning neural networks which make the estimation of 2D/3D
human skeleton joints from complex backgrounds a reality [32].

We use the OpenPose [25] tool, which is advantageous in speed performance and robust-
ness to joint occlusions. OpenPose is not restricted to the detection of a full skeleton, but all
visible or perhaps some occluded joints can be detected. However, only four joints (nose, neck,
left shoulder, right shoulder) will be used for posture classification in the proposed system.
Figure 3 illustrates for OpenPose (a) the complete skeleton model and (b) an example of 2D
skeleton extracted for a sleeping person covered with blanket.

Figure 3. (a) A complete skeleton model used by OpenPose which contains 18 joints. (b) An example of
2D skeleton extracted for sleeping person (with blanket) by using OpenPose.
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After aligning the RGB and depth images via parameters provided by the manu-
facturer, depth information for joints detected by OpenPose can be retrieved to form a
3D skeleton. To stably obtain the depths for the four joints (especially the left and right
shoulders), trilateral filtering [33] is performed to the depth values near the detected joints.
A trilateral filter consists of three Gaussian kernels as adaptive weights considering depth
similarity, luminance similarity, and the distance between the neighboring pixels and the
center pixel. It is used to smooth out the variations of depths in a 33 × 33 window centered
at the selected joints. In this way, we obtain the coordinates (u, v) of the 2D joints and
their corresponding depths zc, which is one kind of the feature input used in our proposed
classifier and is called “2D skeleton plus depth (u, v, zc)”.

With the aid of a calibrated camera, we convert the “2D skeleton plus depth” into a
“3D skeleton” via the aid of camera intrinsic parameters, i.e., each joint is represented as
the (xc, yc, zc) coordinates in the camera coordinate system with a known (u, v, zc).

3.3. Posture Classification

Instead of accepting the RGB/depth images and extracting hand-crafted [17,19,20] or
deep-learned [13,21,22] features from them for classification, we adopt a hybrid method
for posture classification of bedridden patients. The 3D descriptions (either (xc, yc, zc)
or (u, v, zc)) of the four selected skeleton joints are treated as hand-crafted features for
classification. We use Xgboost [34] as our classifier, where the input is a vector containing
12 elements presenting the four joints. The lying postures to be classified include left-side,
right-side, and supine.

4. Experimental Results

The Intel Realsense RGB-D D435 camera was chosen for experiments. The same
resolution 1280 × 720 @ 30 Hz for both the RGB and the depth parts are output for
alignment and processing.

4.1. Dataset Collection

Considering the bedridden elderly were weak in health and not suitable for collecting
the diverse postures, a total of 20 volunteers (including 15 males and five females) partici-
pated in the first-stage experiment for dataset collection and initial training. The volunteers
were requested to perform the demanded lying postures, which were supervised by the
nursing officer. On-site RGB-D video recording of a limited number of elderly patients was
then conducted for cross-testing and classifier refinement.

Since the elderly patients were mobility-compromised and suffered from muscle
atrophy, the repositioning for them was realized by placing pillows on specified locations
which are very different from those defined in fetus/log/yearner positions in [21,23]. To
meet practical situations, we made some arrangements in collecting the dataset which were
considered as the changing factors and are listed in Table 2. As a result, 162 samples were
recorded (54 samples for each posture with blanket covering) for each volunteer subject.
Figure 4 illustrates some captured samples for left-side posture in the dataset.

Table 2. Changing factors in collecting the posture dataset.

Kind of Body Posture Right-Side, Left-Side, or Supine (3 Cases): Achieved
with/without the Pillow Under the Back

Variations of each body posture

1. For left- or right-side posture: low, medium, or high
level of body sideward orientation (controlled by
pillow number and location) (3 cases)

2. For supine posture: slightly-left, -right, or -centered
displacement of the body (3 cases)

Inclined angle of the bedhead 0-degree, 20-degree, and 40-degree (3 cases)
Head orientations Left-side, right-side, or supine (3 cases)
Bed-side support Pillow support: upper or lower position (2 cases)
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Figure 4. Some samples of left-side lying at different levels of sideward orientation; (a) two pillows
under the right back (without covering), (b) two pillows under the right back (with covering), (c) one
pillow under the right back (without covering), (d) one pillow under the right back (with covering),
(e) the head orientation is not consistent with the body posture, (f) the bedhead is inclined at 40 degrees.

We also collected clinic data of two bedridden elderly patients, including one man and one
woman. For the man, his postures include left, right, and supine with 431, 532, and 562 samples,
respectively. However, for the woman, only left and right lying with 504 and 552 samples were
collected, since the supine posture was not clinically allowed for her.

Both of the experiments for volunteers and clinic patients were conducted by the
Institutional Review Board (IRB) of Ditmanson Medical Foundation Chiayi Christian
Hospital, Taiwan.

4.2. Experimental Settings

The performance of the proposed technique is evaluated using settings in Table 3. In
Settings 1–5, the selected joints are used as input, while in Settings 6–7, the RGB images are
used instead for comparison. Settings 1–5 present the ablation study, where clinical data
were gradually added to the initial training and testing sets composed of volunteer data
only and fully replaced them all. In Setting 1, the training and testing sets include only the
volunteers, and the leave-one-person-out strategy [35] is adopted. In Setting 2, the training
set includes all the volunteers, while the testing set includes all the clinical data. In Setting
3, in addition to the volunteer samples, partial clinical data were used during training, and
the remaining samples were used for testing. More clinical data were used for training in
Setting 4. Similarly, in Setting 5, the volunteer samples were excluded for training. For
Settings 3–5, equal and random selections were conducted among the three postures.

Table 3. Different Settings 1~7 for training and testing sets in our ablation experiments.

Skeleton-Based Posture Classification

Training Data Testing Data

Setting 1 19 volunteers One volunteer (leave-one-person-out [35])

Setting 2 20 volunteer (3154 samples)
(left, supine, right) = (1053, 1054, 1047)

All clinical data (2581 samples):
male (left, supine, right) = (431, 532, 562)

female (left, right) = (504, 552)

Setting 3

1. 20 volunteer (3154 samples):(left, supine,
right) = (1053, 1054, 1047)
2. Partial clinical data (108 samples):male
(left, supine, right) = (18, 36, 18)female (left,
right) = (18, 18)

The remaining clinical data (2473 samples):
male (left, supine, right) = (413, 496, 544)

female (left, right) = (486, 534)

Setting 4

1. 20 volunteer (3154 samples):(left, supine,
right) = (1053, 1054, 1047)
2. Partial clinical data (1116 samples):male
(left, supine, right) = (186, 372, 186) female
(left, right) = (186, 186)

The remaining clinical data (1465 samples):
male (left, supine, right) = (245, 160, 376)

female (left, right) = (318, 366)
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Table 3. Cont.

Skeleton-Based Posture Classification

Training Data Testing Data

Setting 5

Partial clinical data (1116 samples):
(left, supine, right) = (372, 372, 372)

male (left, supine, right) = (186, 372, 186)
female (left, right) = (186, 186)

The remaining clinical data (1465 samples):
male (left, supine, right) = (245, 160, 376)

female (left, right) = (318, 366)

RGB image-based posture classification

Training set Testing set

Setting 6 19 volunteers (without blanket) One volunteer (without blanket)

Setting 7 19 volunteers (with blanket) One volunteer (with blanket)

To verify the effectiveness of the proposed skeleton-based technique, Settings 6 and 7
were considered, and the input for posture classification is the associated RGB images for
20 volunteers. Setting 6 is for volunteers covered without blankets, and Setting 7 is with
blankets. Similar to Setting 1, the leave-one-person-out strategy is adopted. Meanwhile,
Alexnet [36] was used as the classifier, a deep learning-based architecture consisting of five
convolution and two dense layers.

4.3. Results
4.3.1. Comparison with RGB Image-Based Classification

Table 4 summarizes the accuracy (TP/(TP+FP) [35], TP: True Positive, FP: False Pos-
itive) and the confusion matrix (ground truth vs. prediction) for Settings 1, 6, and 7. In
Setting 1, two kinds of input are considered, including 2D skeleton plus depth and 3D
skeleton, while the input is RGB image in Setting 6 and Setting 7. First, it shows that
Setting 6 performs better than Setting 7, implying that body occlusion will degrade the
classification accuracy. Second, in our proposed technique, even only four joints were used
in consideration of blanket covering, the classification accuracies are 95.4% and 95.62%,
respectively, for “2D skeleton plus depth” and “3D skeleton” input, which are higher than
those in Setting 6 (RGB image-based, without blanket). To further improve the perfor-
mances, the nose-centered coordinates for joints were used instead of the absolute image
or camera coordinates, which indeed shows improvements in accuracy (up to 96.92% for
“3D skeleton” in Table 4). This meets our statistics about the nose-distances (with respect
to the camera) that a variation between left/right and supine postures for the volunteers
(1399.5 mm for left-sided, 1404.2 mm for supine, and 1399.1 mm for right-sided) exists,
and removal of this variation by subtracting nose coordinates from joint coordinates (thus,
coordinates of the nose joint will become (0,0,0)) is helpful to the classification accuracy.
The average nose-distances for the volunteer, male patient, and female patient are also
analyzed as: 1400.9 mm, 1530.4 mm, and 1493.4 mm, respectively. There is an even larger
variation in nose-distances between different target persons (obviously between the volun-
teers and the patients, in a range of 93 mm to 130 mm). The sources of variations are mostly
due to difference in environment settings (such as the camera position and tilting angle).
Although we try to make the environment in the laboratory and the hospital as similar as
possible, they are always different in aspects of illumination, the height, and the orientation
of the camera. In subsequent experiments, only the results based on nose-centered joint
coordinates are shown so as to save space.

4.3.2. Domain Adaptation

As mentioned earlier, we collected data from 20 volunteers and two clinic patients.
Although the volunteers imitated the postures of the bedridden patients, there were some
inevitable dissimilarities. In this situation, volunteers and real patients belong to two
different domains and the domain adaptation performance will be evaluated here. In
Setting 2, the training set contains only the volunteers, while the testing set contains all the
clinical data. Table 5 shows the results for individual male and female patients, when nose-
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centered coordinates of joints are adopted. It reveals that the training set involving only the
volunteer samples is not capable of transfer learning when the testing set contains the clinic
samples. This poor performance is obvious for the male patient, due to the caregiver’s
improper arrangement or small depth difference between left and right shoulders (thus
incurring a reverse ordinal relationship between them). Table 6 shows the average depth
differences between the left and the right shoulder joints (diff = depth_R—depth_L) of
three postures for the volunteer, the male patient, and the female patient. For left-sided, the
pillow is put under the right side of the back and the right shoulder is closer to the camera,
and, hence, the right shoulder depth is smaller than that of the left shoulder. Therefore, the
diff value is negative for left-sided and positive for right-sided. Table 6 shows that diffs for
the volunteer are −131 and 118 mm for left-sided and right-sided, respectively. However,
the diffs for the male patient are −16 and 29 mm for left-sided and right-sided, respectively.
The diffs for the male patient are much smaller than those of the volunteers. For the female
patient, diffs are −86 and 115 mm for left-sided and right-sided, respectively. The diffs for
the female patient are closer to those of the volunteers. This explains why the recognition
accuracy of the female patient is better than that of the male patient.

To increase the robustness and the adaptation of the proposed technique, in Setting 3,
not only the volunteer samples but also partial clinic samples were used during the training
stage. The accuracy and the associated confusion matrix are summarized in Table 7.
Compared to Table 5, it indicates that the performance is improved by adding partial clinical
samples for training. For the male patient and the female patient, the accuracy is 66.71%
and 86.02%, respectively, for “2D skeleton plus depth”. In Setting 4, the training set includes
more clinical data, and the performance is listed in Table 8. The accuracy is improved,
as expected, since more characteristics of the clinical data are learned during training. It
means that the impact due to the gap between the clinical data and the volunteers will
be eliminated once the system is trained with more and more clinical data. Specifically,
the accuracy for the male patient was boosted from 66.71% to 94.52% for “2D skeleton
plus depth”. Besides, the accuracies for the female patient are 97.34% and 96.55% for “2D
skeleton plus depth” and “3D skeleton”, respectively. For the input of 2D skeleton plus
depth, the accuracy is higher than the highest accuracy (i.e., 96.92%) achievable in Table 4,
where only volunteer samples are used. This reflects that the proposed technique is able to
overcome the domain-diversities situation.

Table 4. Accuracy and confusion matrix (all numbers in terms of %) for different settings.

Setting 1
(2D Skeleton Plus Depth)

Setting 1
(3D Skeleton) Setting 6

Pred. Pred. Pred.

GT left supine right GT left supine right GT left supine right
left 95.82 3.99 0.19 left 95.63 4.27 0.09 left 88.52 11.48 0

supine 1.52 94.78 3.70 supine 1.90 94.97 3.13 supine 0.83 90.19 8.98
right 0 4.39 95.61 right 1.0 3.63 96.27 right 0.09 16.67 83.24

Accuracy: 95.40 Accuracy: 95.62 Accuracy: 87.31

Setting 1
(2D skeleton plus depth,

nose-centered joints)

Setting 1
(3D skeleton,

nose-centered joints)
Setting 7

Pred. Pred. Pred.

GT left supine right GT left supine right GT left supine right
left 95.73 4.18 0.09 left 96.39 3.51 0.10 left 86.48 13.52 0

supine 2.09 95.63 2.28 supine 1.71 96.30 1.99 supine 5.28 84.44 10.28
right 0.09 2.30 97.61 right 0 1.91 98.09 right 0 21.94 78.06

Accuracy: 96.32 Accuracy: 96.92 Accuracy: 82.99
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Table 5. Accuracy and confusion matrix (all numbers in terms of %) for Setting 2.

Male Patient—Nose-Centered Joints
(2D Skeleton Plus Depth)

Male Patient—Nose-Centered Joints
(3D Skeleton)

Pred. Pred.

GT left supine right GT left supine right
left 29.00 69.61 1.39 left 31.78 64.27 3.95

supine 11.84 75.94 12.22 supine 7.90 78.00 41.10
right 16.73 51.07 32.20 right 16.73 63.88 19.39

Accuracy: 46.55 Accuracy: 43.34

Female patient—nose-centered joints
(2D skeleton plus depth)

Female patient—nose-centered joints
(3D skeleton)

Pred. Pred.

GT left supine right GT left supine right
left 78.37 12.30 9.33 left 78.37 12.30 9.33

right 17.75 3.99 78.26 right 17.75 3.99 78.26
Accuracy: 78.31 Accuracy: 73.39

Table 6. The depth difference between the right shoulder and the left shoulder (in mm).

diff Left-Sided Supine Right-Sided

Volunteer −131.16 −7.21 118.82
Male patient −16.92 11.134 29.90

Female patient −86.17 X 115.40

Table 7. Accuracy and confusion matrix (all numbers in terms of %) for Setting 3.

Male Patient—Nose-Centered Joints
(2D Skeleton Plus Depth)

Male Patient—Nose-Centered Joints
(3D Skeleton)

Pred. Pred.

GT left supine right GT left supine right
left 53.51 45.76 0.73 left 57.38 40.44 2.18

supine 9.68 84.27 6.05 supine 9.48 83.67 6.85
right 8.27 24.45 67.28 right 5.70 33.27 61.03

Accuracy: 66.71 Accuracy: 67.05

Female patient—nose-centered joints
(2D skeleton plus depth)

Female patient—nose-centered joints
(3D skeleton)

Pred. Pred.

GT left supine right GT left supine right
left 88.68 7.20 4.12 left 86.42 7.82 5.76

right 12.17 4.31 83.52 right 13.48 4.31 82.21
Accuracy: 86.02 Accuracy: 82.47

Table 8. Accuracy and confusion matrix (all numbers in terms of %) for Setting 4.

Male Patient—Nose-Centered Joints
(2D Skeleton Plus Depth)

Male Patient—Nose-Centered Joints
(3D Skeleton)

Pred. Pred.

GT left supine right GT left supine right
left 90.20 9.39 0.41 left 90.20 9.39 0.41

supine 0.063 0.975 0.062 supine 1.25 98.13 0.62
right 0.82 1.64 97.54 right 2.13 6.12 91.75

Accuracy: 94.52 Accuracy: 93.89
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Table 8. Cont.

Female patient—nose-centered joints
(2D skeleton plus depth)

Female patient—nose-centered joints
(3D skeleton)

Pred. Pred.

GT left supine right GT left supine right
left 99.06 0.94 0 left 95.91 2.83 1.26

right 0.82 1.64 97.54 right 0.82 1.91 97.27
Accuracy: 97.34 Accuracy: 96.55

Table 9 shows the performance for Setting 5, where both the training and testing data
are from the clinic samples. The accuracies for both patients are higher than 96% and
competitive to the highest accuracy (i.e., 96.92%) in Table 4. Particularly, the accuracy for
the female patient is 99.71% for both “2D skeleton plus depth” and “3D skeleton”.

Table 9. Accuracy and confusion matrix (all numbers in terms of %) for Setting 5.

Male Patient—Nose-Centered Joints
(2D Skeleton Plus Depth)

Male Patient—Nose-Centered Joints
(3D Skeleton)

Pred. Pred.

GT left supine right GT left supine right
left 95.10 4.90 0 left 95.51 4.08 0.41

supine 0.62 98.76 0.62 supine 2.5 97.5 0
right 1.86 0 98.14 right 2.39 1.33 96.28

Accuracy: 97.31 Accuracy: 96.29

Female patient—nose-centered joints
(2D skeleton plus depth)

Female patient—nose-centered joints
(3D skeleton)

Pred. Pred.

GT left supine right GT left supine right
left 100 0 0 left 99.37 0.63 0

right 0.27 0.27 99.46 right 0 0 100
Accuracy: 99.71 Accuracy: 99.71

4.4. The Performance of 2D Skeleton Estimation

Our proposed technique relies on the success of 2D skeleton extraction and alignment
of corresponding joint depths to form 3D skeletons for classification. Though the OpenPose
tool is featured for its capability in incomplete skeleton extraction in the cases where some
joints are occluded by blankets, some failures are still possible and need to be excluded,
for example: (c1) fewer than four specified joints are detected; and (c2) the detected four
specified joints do not conform to reasonable bone-length relationships.

For the volunteers, in total 3154 out of 3280 individually captured frames (96.16%)
were successful in 3D skeleton extraction, since they follow the guidance of the professional
caregivers to perform the demanded sleep postures. By contrast, lying postures of the
clinic elderly patients were captured continuously at a 3–6 Hz rate. Table 10 summarizes
the collection of the clinic samples in several visits, where only 3401 out of 7548 samples
(45.06%) were successfully processed due to long burst failures.

Figure 5 shows some typical failure examples in skeleton generation due to: (a) and (b), the
blanket fully covers the shoulders; (c), the scarf has a similar color to that of the pillow; (d) the
patient was woken and scratched her face for a while. All of the above situations result in a
long burst failure as mentioned earlier. On the contrary, Figure 6 shows examples where 3D
skeletons are extracted successfully.
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Table 10. Statistics of our clinic video data collection.

Patient
Time Periods for

Video
Capturing (Mins)

No. of
Captured
Frames

No. of
Successful

3D Skeleton
Extraction

Success Rate (%)

visit 1 male 423 2534 813 32.08
visit 1 female 337 2020 280 13.86
visit 2 female 211 633 493 77.88
visit 3 male 369 1107 661 48.24
visit 4 male 255 763 759 99.48
visit 4 female 164 491 395 80.45

Total 1759 7548 3401 45.06

Figure 5. Some failed cases in clinics: incorrect skeleton in (a,c); no skeleton in (b,d).

Figure 6. Successful cases in clinics: (a,b) cases 1 and 2 for the male patient, (c,d) cases 1 and 2 for the
female patient.

5. Remarks and Conclusions

In this paper, a 3D skeleton-based lying posture classification technique for bedridden
patients with blanket covering was proposed and shown to have high recognition rates
(from 94.52% to 99.71% for Settings 4 and 5) for applications, outperforming another scheme
based on direct feature extraction from RGB images. The blanket covering problem has
been overcome successfully. However, there are some interfering factors:
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(1) caregivers’ ways of bed sheets covering (e.g., a scarf/towel with a similar color which
prevents correct OpenPose operation, nearly full covering of the patients’ shoulders
by blankets);

(2) little differences in body orientations of the left-side, right-side, and supine postures.

We still need to avoid them so as to have a robust performance in clinics.
For clinic considerations, the monitoring system can be designed to send an alert for

caregivers when any of the following conditions arises:

(1) The patient’s sleep postures have been properly recognized, and the same postures
have remained for a long time;

(2) The patient’s 3D skeleton cannot be properly extracted for a long time;
(3) The patient’s recognized posture changes earlier than the schedule time (patients

turns by themselves to the posture that was the most comfortable but not allowed
yet);

(4) The patient’s recognized postures oscillate between several states (this might be due
to patient’s body motion or small orientations of the left- or right-side postures).

After designing a RGB-D camera system which was installed with the avoidance
of interfering with the caregiver’s work, the proposed scheme can be undertaken in an
intensive test in hospitals. A desktop computer can also be responsible for multi-point
monitoring to reduce the average cost, since real-time processing is not required in this
application (less than 1 s per RGB-D frame was spent for OpenPose).
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