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Abstract: The advantage of the piezocone penetration test is a guarantee of continuous data, which
are a source of reliable interpretation of the target soil layer. Much research has been carried out for
several decades, and several classification charts have been developed to classify in situ soil from
the cone penetration test result. Even though most present classification charts or methods were
developed on the basis of data which were compiled over many countries, they should be verified
to be feasible for local country. However, unfortunately, revision of those charts is quite difficult
or almost impossible even though a chart provides misclassified soil class. In this research, a new
method for developing soil classification model is proposed by using soft computing theory—fuzzy
C-mean clustering and neuro-fuzzy theory—as a function of 5173 piezocone penetration test (PCPT)
results and soil boring logs compiled from 17 local sites around Korea. Feasibility of the proposed
soil classification model was verified from the viewpoint of accuracy of the classification result by
comparing the classification results not only for data which were used for developing the model but
also new data, which were not included in developing the model with real boring logs, other fuzzy
computing classification models, and Robertson’s charts. The biggest advantage of the proposed
method is that it is easy to make the piezocone soil classification system more accurate by updating
new data.

Keywords: piezocone; soil classification; fuzzy C-means clustering; neuro-fuzzy

1. Introduction

Underground information is a main factor to be considered during the construction
and design phases. In particular, stratigraphy is essential for economical design of a foun-
dation because most construction projects are carried out at the deposit layer on bedrock.
Boring logs from subsurface exploration at a constant interval along the project area are
the only source of data. They are drawn from some resources such as the penetration rate,
soil color, and driller’s experience, which is dependent upon their career and, thus, may
could not always reflect the nature of the ground. Therefore, penetration tests, such as the
cone penetration test (CPT), piezocone penetration test (PCPT), and standard penetration
test (SPT), have been used together. PCPT has an advantage in the view of continuity and
standardization, even when evaluating interbedded thin layers from thick deposit layers.
Research on soil classification from CPT results was commenced by Begemann [1]. Further-
more, Douglas and Olsen [2] developed a new soil classification chart using electric cone
penetration test results. After introducing the piezocone which can measure pore pressure
readings, many researchers including Robertson et al. [3], Robertson [4], and Jefferies and
Davis [5] developed various types of soil classification charts and/or techniques. However,
most classification charts provide only soil behavior type, while local engineers who are
familiar with Unified Soil Classification System (USCS) have trouble with understanding
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relevant results. In addition, the adopted charts and methods sometimes give different
soil classification results for the same input parameters, and even two charts developed by
one researcher may lead to different soil types. To complement the weakness of the chart
type soil classification method, and considering the fuzziness of the ground, there has been
progress in studies on soft computing. Pradhan [6] developed fuzzy membership functions
on the basis of Robertson et al.’s chart [3], and Zhang and Tumay [7] suggested a fuzzy
soil classification method according to Douglas and Olsen’s chart [2]. On the other hand,
Hegazy and Mayne [8] introduced a clustering method as a function of normalized cone
resistance, Q, and pore pressure ratio, B;. Clustering methods can give soil classifications
between upper and lower soil data but not the soil type of each soil datum. On the other
hand, soil classification by fuzzy theory can provide soil type to each soil datum and has
the advantage of simply being updated for newly acquired soil data. However, it also
has a problem that the classification result is highly dependent on the fuzzy membership
function. As described before, Pradhan [6] and Zhang and Tumay [7] developed fuzzy
membership functions on the basis of charts such as those proposed by Robertson et al.,
and Douglas and Olson, respectively. Therefore, these fuzzy classifications seemingly
remain unable to reflect local soil type. Recently, machine learning has been used to classify
soils from CPT data [9-13] and to successfully estimate soil and design parameters [9,13].
Rauter and Tschuchnigg [14] suggested a machine learning classifier based on a support
vector machine, artificial neural network, and random forest to predict soil classes accord-
ing to Oberhollenzer et al. [15] and soil behavior types according to Robertson [16-18].
They showed that machine learning algorithms can classify soils on the basis of grain size
distribution and the updated soil behavior classification from Robertson (i.e., SBT, SBTn,
ModSBTn). However, since they used cone tip resistance g, sleeve friction fs, total vertical
stress 0, and static pore pressure 1, as input variables, their model can still be improved
by adopting pore pressure parameters such as Bj.

In this study, a new soil classification method was developed using the neuro-fuzzy
technique, in which the membership function was developed by a neural network and not
adjusted by the trial-and-error method to present classification charts. Moreover, input
variables and relevant soil types were determined on the basis of proximity between
compiled soil data using the fuzzy C-mean clustering (FCM) method and not by the
developer’s experience. To show the feasibility of the proposed model, new PCPT results
which were not included in the soil database were classified using the proposed neuro-
fuzzy model and compared with Robertson et al.’s chart classification, Pradhan’s fuzzy
classification, Zhang and Tumay’s fuzzy classification, and the Unified Soil Classification
System (USCS).

2. Soil Classification Method for CPT and PCPT
2.1. Soil Classification Charts

Figure 1 shows Robertson et al. [3]’s classification charts as a function of g;, R fr and
By. Their definitions are as follows:

qr = qc+ (1 —a)uy, (1)

Ry = f % 100(%), @)
_ (ubt - uo)

B; = @ —7w)’ 3)

where g; is the corrected cone tip resistance, g, is the measured cone tip resistance, uy; is
the penetration-induced pore pressure measured behind the cone tip, a is the unequal area
ratio, R £ is the friction ratio, f; is the sleeve friction, B is the pore pressure ratio, u, is the
static pore pressure before cone penetration, and oy, is the total stress. Robertson’s charts
have been widely used, and their feasibility was verified by several researchers.
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Zone  Soil Behaviour Type

Sensitive fine grained
Organic material

Clay
Silty clay to clay
Clayey silt to silty clay
Sandy silt to clayey silt
Silty sand to sandy silt
Sand to silty sand
Sand
Gravelly sand to sand
Very stiff fine grained*
Sand to clayey sand*

q(MPa)
a(Mpa)
cENoarLN

* overconsoildated or cemented

R (%)

Figure 1. Soil classification charts by Robertson et al. [3].

2.2. Soil Classification Using Fuzzy Theory

Natural phenomena are known not to be decided in absolute terms such as 0 or
1. Zadeh [19] introduced “soft computing”, the concept of fuzzy theory to describe nature’s
ambiguousness. This theory can present intermediate values using the fuzzy membership
function. Various soft computing methods have been suggested after Zadeh [19], and stud-
ies on soil classification from CPT and PCPT using soft computing are summarized below.

2.2.1. Pradhan’s Study

Pradhan [6] suggested a soil classification method using fuzzy theory. He developed
fuzzy membership functions for input variables g, F;(= fs/q:), and B; according to Robert-
son et al. [2]. However, soil types were only classified into “clay”, “silt”, and “sand”. The
maximum grade for membership functions was limited to 0.8 when considering uncertainty
in soil classification. Figure 2 shows the membership functions of three soil sets in terms of
qt, B, and F; respectively. The reader is referred to Pradhan [6] for the detailed expression
of fuzzy membership functions.
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Figure 2. Fuzzy membership functions of soil sets for three parameters, q;, F;, and Bj.

Three soil fuzzy sets for clay, silt, and sand were named CL, SI, and SA, as defined in
Equation (4). picr, psy, and ps4 represent the summation of membership function values
from each chart for clay, silt, and sand, respectively.

Clayey soil : CL =Y pucr(a;)/a;i(i=1,2,3),
Silty soil : SI = ZVSI(ai)/ai(i = 1,2,3),
Sandy soil : SA =Y usal(a;)/a;(i=1,2,3),

4)

where a; = qt, ap = F,, and a3 = By.

2.2.2. Zhang and Tumay’s Study

Zhang and Tumay [7] grouped soil into three types, i.e., HPC (highly probable
clay), HPM (highly probable mixed soil), and HPS (highly probable sand) on the ba-
sis of the Unified Soil Classification System (USCS) and used q. and Ry as input variables.
They suggested new fuzzy membership functions yc(U), un(U), and us(U) as shown in
Figure 3, with an intermediate soil classification index (U) empirically based on Douglas
and Olsen [2]’s chart.
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Figure 3. Fuzzy membership functions developed by Zhang and Tumay [7].

Since Pradhan [6] and Zhang and Tumay [7] developed fuzzy membership functions
using a trial-and-error method according to the charts of Robertson et al. [3] and Douglas
and Olsen [2], respectively, their method may result in very similar results to the soil
classification result presented in the original chart. To overcome this, in this study, fuzzy
memberships were determined using a neural network process.

3. Fuzzy Clustering and Neuro-Fuzzy Modeling
3.1. Database

The database for this study was built from 17 local sites of South Korea, as shown in
Figure 4, along the coastal line, and six sites were used for verification of the model. The
closed circle indicates the location where training data for training the fuzzy membership
function were extracted, and the open square indicates the location where the verification
data for verifying the completed fuzzy soil classification system were obtained. Table 1
summarizes the site location, number of PCPTs, and soil type classified by USCS. The
measured values from piezocone penetration tests—qc, fs, uy—were averaged within the
interval of 5 to 10 cm and picked up at the same depth where SPT and undisturbed samples
were taken. The database contained 5173 data points in total. Table 2 shows the classification
results of the database into six categories following USCS. A huge number of clayey soil
(CH, CL) samples were, included while the number of silty soil and sandy soil samples was
relatively small due to the difficulty in soil sampling with a thin wall tube sampler.

Figure 4. Seventeen local sites for this study.
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Table 1. Included number of PCPTs and USCS classes for each site.

Sites Nos Soil Type by USCS
Pyeongtaek 2 CL, SP, SW
Gyeonggi Siheung 3 CL, SM, SP
Ilsan 1 SM, SP
Incheon 3 CL, ML
Chungnam Seocheon 4 CL, SM, SP
Asan 1 CL, SM
Yeongam 1 CH, SP, SW
Jeonnam Gwangyang 1 CL, CH, ML, SP
Jeonbuk Kunjang 9 CH, CL, ML
Yangsan 4 CL, SM
Tongyeong 2 CH
Hadong 2 CL, CH, MH, SP
Gyeongnam Ulsan 2 SM, SP-SC
Yongwon 4 CH
Cheonseong 4 CH
Gaduk 4 CH
Kangwon Naegok 2 CL, MH, SP, SW
Table 2. Number of soil data points and corresponding PCPT data range.

USCS Nos. q, (MPa) f; (MPa) uy; (MPa)
CH 2746 0.108 to 1.250 0.0001 to 0.030 0.051 to 0.683
CL 1861 0.028 to 6.520 0.0001 to 0.052 0.002 to 1.088
MH 36 0.608 to 1.640 0.003 to 0.028 0.018 to 0.255
ML 284 0.436 to 6.818 0.004 to 0.096 —0.092 to 0.562

SM, SP-SC 148 0.217 to 160.328 0.006 to 5.740 —0.960 to 3.256

SP, SW 98 1.232 to 36.263 0.005 to 0.857 —0.168 to 0.528

3.2. FCM (Fuzzy C-Means) Clustering Algorithm

Before developing the neuro-fuzzy model for PCPT-based soil classification, a group-
ing procedure was carried out to establish the unique structure between soil behavior
type and PCPT input parameters, as well as to determine the appropriate number of soil
types in the database and the input variables. Generally, some techniques exist to find
structures in the database and divide them into small groups. An unsupervised learning
strategy, clustering, can be used for that purpose, with the FCM (fuzzy C-means) algorithm
being most widely used. This algorithm searches for fuzzy divisions F = {F;, F,- - -, F. } to
minimize the function, as expressed in Equation (6), when a dataset composed of n items is
divided into c clusters.

Tn(WV:X) =Y Y ()" | X~ Vil1%, ©6)
i=1k=1

where V = {V1,Vp, - - -, V. } is the set of ¢ central vectors, and || X — V|| is the geometric
distance between data X and the center of the ith cluster. In addition, y; is the grade of
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cluster F; including data X; and satisfies Equation (7) in the element of the fuzzy partition
matrix U = [p;;] with the size of (¢ x n).

C
pik € 0,1, Y pa =1 )
=1

The procedure of the FCM clustering algorithm is summarized below.

Assume partition number ¢ (2 < ¢ < 1) and fuzziness of partition m.

Select initial values of fuzzy partition matrix, U(t). Random values are assumed for
satisfying Equation (6).

® Calculate the center of cluster V using Equation (8).

®O

.C ()" X
vt = s1i=1,--c ®)

®» Recompose fuzzy partition matrix using Equation (9).

1
]’llk c ‘Xk V“Z ]/(Wl—l)’l ’ /C/k 7 N (9)
E(_‘ )
=T

® Complete the procedure if |U(t + 1) — U(t)| < J. Otherwise, repeat phase (@). Here, §
is assumed to be 1073.
® Repeat phases@®to®and decide optimized partition number, as well as ¢ and m values.

To determine the substructure of the compiled database and optimized input parameters,
the success rate of any clusters and input parameters was evaluated after combining PCPT
parameters, hydrostatic pressure, and total vertical stress, as shown in Table 3. First, the
database was divided into 3-6 clusters to determine the optimized clusters of soil type
according to combined parameters. Outputs were clay (CH, CL), silt (MH, ML), and sand (SM,
SP, SP-SC, SW) for three clusters, clay (CH, CL), silt (MH, ML), sand with fine grained soil
(SM, SP-SC), and relatively coarse sand (SP, SW) for four clusters, clay (CH, CL), silt with high
liquid limit (MH), silt with low liquid limit (ML), sand with fine grained soil (SM, SP-5C), and
coarse sand (SP, SW) for five clusters, and CH, CL, MH, ML, sand with fine grained soil (SM,
SP-SC), and coarse sand (SP, SW) for six clusters. A total of 5 (input parameters) x 4 (clusters)
were considered. The success rates of FCM clustering were evaluated as presented in Table 3.
When all data points were concentrated in a specific cluster and appropriate clustering was
not possible, is the success rate was regarded as “bad”. According to the results, the maximum
success rate was 74% when g, R¢, and B; were used as input parameters and three output
clusters were selected. Furthermore, the m value representing the fuzziness of the partition
was optimized, as given in Figure 5. Success rates were increased to m = 4 and seemed to
converge after m = 4. Thus, m = 4 was adopted for this study.

Table 3. Success rate of FCM clustering for selected input parameters and specified clusters.

Success Rate (%)

Input Parameters

Three Clusters Four Clusters Five Clusters Six Clusters
e, fs, Upt 71 61 46 Bad
qt, Ry, By 74 60 48 42
G, fs, Du* 70 60 69 42
qts fsr Upt, Tvo 71 53 Bad 52
Gt fsr Upt, Ry, By, 0o 70 58 48 Bad

*Au = up — .
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Figure 5. Change in success rate with respect to m value.

3.3. Neuro-Fuzzy Algorithm

After the FCM clustering described in Section 3.2, a neuro-fuzzy model was developed
on the basis of the optimum number of clusters (three, i.e., clay, silt, and sand) and input
variables (q:, R¢, By). The fuzzy technique has the advantage of presenting data or events
which cannot be numerically expressed, whereas the selection of the fuzzy membership
function for inference is not always objective and precise. The decisions of fuzzy member-
ship functions by Pradhan [6] and Zhang and Tumay [7] were dependent upon subjective
trial-and-error methods or experimental methods. Thus, any revision or supplement con-
sidering local characteristics may not be easily considered even though it is necessary.
However, the neuro-fuzzy method combining a neutral network and the fuzzy method has
the merits of both techniques and is expected to overcome the previously mentioned defects.
The neural network has the advantage of facing variations of data, but the input data are
in numeric form. On the other hand, the fuzzy technique allows presenting numeric data
using a membership function. Thus, the techniques are complementary. Moreover, the
neuro-fuzzy technique can objectively decide membership functions and can be easily
updated if needed through determining the optimized membership functions using the
neural network algorithm. Figure 6 shows a schematic diagram of the ANFIS neuro-fuzzy
model with two input parameters.

bershi
membership (12) (10) (11)
functlion

A 1,4 (X)

Figure 6. Procedure of ANFIS neuro-fuzzy model.

The general neuro-fuzzy model uses membership functions in the input and output
phases. In this case, more time is required to complete calculation and convergence. Thus,
the ANFIS (adaptive network-based fuzzy inference system) adopts a first-order function
in the output instead of a membership function. The relevant procedure of the ANFIS
model is summarized below.
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@®  Theneuro-fuzzy output shown in Figure 6 is defined as a first-order function as shown
in Equation (10) if two input parameters are assumed. Here, p, g, and r are constants to
be decided after neural network training, while x and y are input parameters, which

are PCPT indices.
fA=px+qy+r,
f2 = pax+qay + 12, (10)
f=hHA+h

@ Total outputs in the system considering weighting factors w; and w, are given by
Equation (11). Weighting factors are calculated using Equation (12) after evaluating
each fuzzy membership function for given input parameters. Here, y 41 corresponds
to the finalized fuzzy membership function of x, while yp; corresponds to the finalized
fuzzy membership function y.

_ wihit+wfs
wy+wy,

f

W1 = UAIUBL, W2 = HA2UB2- (12)

(11)

® The training procedure is completed after optimizing the parameters (p, 4, and r)
of the first-order function and of membership functions to minimize output error, e,
defined by output f; and estimation Tj.

e= Y (- T (13)

Commercial soft computing package, Matlab was used to complete the training pro-
cedure when the least square error in Equation (13) was within the target error value,
€ = 0.01 or when the maximum training loop attained 200. If any of the predetermined
conditions were not satisfied, is the outcome was regarded as “bad”. Figure 7 shows the
commonly used candidate membership functions for the input process—i.e., triangular,
Gaussian, bell-shapes, and sigmoidal (S-shaped) membership functions.

Membershi Membershi
ohip Shape hip Shape
function function

1.00
0.75
Triangular Gauss o
0.25
0.00

0 = 4 6 8 10 0 2 4 6 8 10
1.00 1.00
0.75 - 0.75
Bell o Sigmoidal o
0.25 0.25

0.00 0.00 X .
0 2 4 6 8 10 o 2 4 8 8 40

Figure 7. Shapes of fuzzy membership functions for input parameters.

Tables 4-7 show the various neuro-fuzzy analysis results to find the best combination
of fuzzy membership functions for input variables. The success rate for each class, which is
defined by the match with the soil type in the database, and the averaged success rates per
each combination are presented. As shown in the tables, the success rate generally ranged
from 70% to 79%. Among the results, the maximum success rate was 79.09% when the tri-
angular membership function, Gaussian membership function, and sigmoidal membership
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function were selected as the membership functions for g¢, Ry, and B, respectively. The
optimized shapes of each membership function after training are shown in Figure 8.

Table 4. Success rate when using a triangular membership function for g;.

Selected Fuzzy Membership Functions

Success Rate (%)

q; (MPa) Ry By Clay Silt Sand Average

Triangular Triangular 99.88 60.31 75.61 78.60

Triangular Gaussian 99.43 57.19 72.76 76.46

Triangular Bell 99.58 55.31 76.83 77.24

Triangular Sigmoidal 99.63 57.81 75.61 77.68

Gaussian Triangular 99.85 55.06 80.49 78.80

Gaussian Gaussian 99.43 57.19 73.58 76.73

Gaussian Bell 99.63 54.38 77.24 77.08

Triangular Gaussian Sigmoidal 99.58 57.19 80.49 79.09

Bell Triangular 99.38 58.44 73.98 77.27

Bell Gaussian 99.48 55.94 75.61 77.01

Bell Bell 99.63 54.06 78.46 77.38

Bell Sigmoidal 99.60 55.94 80.89 78.81

Sigmoidal Triangular 99.43 57.5 73.98 76.97

Sigmoidal Gaussian 99.48 56.25 75.61 7711

Sigmoidal Bell 99.58 53.13 7724 76.65

Sigmoidal Sigmoidal 99.58 55.31 80.89 78.59

Table 5. Success rate when using a Gaussian membership function for g;.
Selected Fuzzy Membership Functions Success Rate (%)

q: (MPa) Ry By Clay Silt Sand Average

Triangular Triangular 99.60 57.19 73.98 76.92

Triangular Gaussian 99.65 56.25 73.98 76.63

Triangular Bell 99.43 51.25 72.36 74.35

Triangular Sigmoidal 99.48 57.19 71.95 76.21

Gaussian Triangular Bad Bad Bad Bad

Gaussian Gaussian 99.65 57.50 76.42 77.86

Gaussian Bell 99.43 52.50 76.02 75.98

Gauss Gaussian Sigmoidal 99.48 55.63 78.05 77.72

Bell Triangular 99.13 54.69 72.36 75.39

Bell Gaussian 99.65 57.50 76.83 77.99

Bell Bell 99.43 52.50 74.80 75.58

Bell Sigmoidal 99.50 55.63 78.05 77.73

Sigmoidal Triangular 99.13 55.63 67.07 73.94

Sigmoidal Gaussian 99.58 55.63 76.02 77.08

Sigmoidal Bell 99.48 51.88 72.76 74.71

Sigmoidal Sigmoidal 99.50 55.31 76.42 77.08
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Table 6. Success rate when using a bell-shaped membership function for g;.

Selected Fuzzy Membership Functions Success Rate (%)

q+ (MPa) Ry By Clay Silt Sand Average

Triangular Triangular 98.93 53.13 63.41 71.82

Triangular Gaussian 99.60 55.00 72.76 75.79

Triangular Bell 99.50 53.13 73.58 75.40

Triangular Sigmoidal 99.43 57.19 69.51 75.38

Gaussian Triangular Bad Bad Bad Bad

Gaussian Gaussian 99.73 57.50 77.64 78.29

Gaussian Bell 99.58 55.31 78.46 77.78

Bell Gaussian Sigmoidal 99.45 55.31 77.24 77.33

Bell Triangular 99.80 54.06 80.89 78.25

Bell Gaussian 99.60 55.94 75.61 77.05

Bell Bell 99.50 54.69 75.61 76.60

Bell Sigmoidal 99.48 54.38 76.42 76.76

Sigmoidal Triangular 98.98 55.63 65.04 73.22

Sigmoidal Gaussian 99.58 54.06 76.83 76.82

Sigmoidal Bell 99.45 50.31 71.14 73.63

Sigmoidal Sigmoidal 99.48 54.69 72.36 75.51

Table 7. Success rate when using a sigmoidal membership function for g;.

Selected Fuzzy Membership Functions Success Rate (%)

q+ (MPa) Fr By Clay Silt Sand Average

Triangular Triangular 99.50 59.38 74.39 77.76

Triangular Gaussian 99.63 52.81 73.17 75.20

Triangular Bell 99.58 47.81 75.20 74.20

Triangular Sigmoidal 99.53 53.75 75.20 76.16

Gaussian Triangular 99.50 60.31 76.42 78.74

Gaussian Gaussian 99.60 53.44 74.80 75.95

Gaussian Bell 99.58 51.88 76.42 75.96

Sigmoidal Gaussian Sigmoidal 99.55 52.81 76.83 76.40

Bell Triangular 99.53 59.06 78.46 79.02

Bell Gaussian 99.55 53.44 74.39 75.79

Bell Bell 99.58 52.50 74.80 75.63

Bell Sigmoidal 99.55 52.81 75.61 75.99

Sigmoidal Triangular 99.55 59.06 78.05 78.89

Sigmoidal Gaussian 99.60 52.50 77.24 76.45

Sigmoidal Bell 99.55 53.75 74.80 76.03

Sigmoidal Sigmoidal 99.55 52.81 73.98 75.45
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Figure 8. Optimized Shapes of fuzzy membership functions after training.

4. Verification of Suggested Neuro-Fuzzy Model

Verifications were performed with additional PCPT results which were not included in the
training data, and the prediction results were compared to relevant boring logs. Piezocone tests
for verification were carried out at Busan, Gyeongnam, and Jeonnam along the southern coast of
Korea, Ulsan on the eastern coast of Korea, and Incheon on the western coast of Korea, as shown
in Figure 4. Representative soil layers were three sites for clay, one for silt, and one for sand. For
comparison, predictions from Pradhan’s [6] and Zhang and Tumay’s [7] methods using fuzzy
theory and Robertson et al.’s chart [3] are also presented with the results of the newly suggested
neuro-fuzzy model in this study. Soil classification results by Robertson et al. [3] were mainly
related to soil behavior type, and their zones on the two charts were revised for the simplicity,
i.e,, clay for zone 3, silt for zones 4 and 5, sand for zones 8 and 9, and silt or sand for zones 6 and
7. Other zones not mentioned here are seldom found in South Korea (Kim et al., [20]). Indices
for the results were as follows: 1 for clay, 2 for silt, and 3 for sand. In addition, zones 6 and 7 on
Robertson’s charts were marked as 2.5 and 0 for unclassified types.

4.1. Busan New Port Site

This site is located on the sea, and two PCPT penetrations were carried out. Soil layers
were clay and a mixture of clay, sand, and gravel from the top of seabed. Thin silt lenses
were found at the upper part of the deposit due to variations in seawater level. Laboratory
test results from the undisturbed sample revealed the clay layer as highly compressible
“CH”. Water contents ranged from 51.5% to 75.3%, liquid limits ranged from 67.8% to
101.9%, and plastic limits ranged from 27.4% to 34.8%. Piezocone test results, boring logs,
passing #200 sieve, water contents, and Atterberg limits are shown in Figures 9 and 10.
From the results, Pradhan’s method misclassified upper clay to some depth as silt, while
Zhang and Tumay’s method gave a better prediction of the narrow silt layer between clay
at GL-16-17 m in Figure 9, but failed to predict the lower clay layer in Figure 10 as silt.
Robertson’s g; — B, chart also provided satisfactory prediction when compared to boring
logs, but had unclassified zones at the upper clay in both cases. On the other hand, the
proposed neuro-fuzzy model from this study successfully classified the interbedded silt
layer in Figure 9 and the clay layer in Figure 10. From the results, it was found that the
proposed model provided more consistent classification with boring logs than others.
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Figure 9. Verification results at Busan new port site-1.
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Figure 10. Verification results at Busan new port site-2.

4.2. Yangsan Site

According to the boring log, silty sand was distributed from surface to G.L-2.4 m and
was layered by clay to G.L-11.7 m. A silt layer was interbedded in the clay layer at GL-5 m.
A piezocone test was performed up to G.L-10.0 m. USCS results from undisturbed samples
showed upper silty sand “CH” or “CL”. Water contents ranged from 38.6% to 72.7%,
liquid limits ranged from 36.0% to 68.6%, and plastic limits ranged from 17.0% to 26.9%.
The classification results from every method are shown in Figure 11. Zhang and Tumay’s
method misclassified the silt layer and interbedded silt layer as clay due to the negative
pore pressure measured at these layers. Kim et al. [20] reported this phenomenon whereby
the precision of Zhang and Tumay’s method is relatively low when negative pore pressure
is measured because it does not incorporate the pore pressure index. Pradhan’s method
predicted the upper silty sand and mid-silty layer well, but failed to classify some upper
clay right below the silty sand (circled zone) into silt. Robertson et al.’s estimation showed
an unexpected result that it gave mainly unclassified points in the B, chart. However, the
proposed method succeeded in classifying the upper silty sand and mid-silty layer, as well
as the clay layer.
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Figure 11. Verification results at Yangsan site.

4.3. Busan New Port Support Area Site

An 8 m thick intentional sand embankment above the clay layer was performed as a
preloading for the purpose of accelerating consolidation as shown in Figure 12. Piezocone
tests were performed to identify the bottom of the sand layer during the consolidation.
Embanked sand was classified as “SM” from USCS. According to the results, Zhang and
Tumay’s method and the proposed neuro-fuzzy model yielded good agreement with the
boring log. However, Robertson et al.’s classification from the B, chart gave unclassified
points from 3 m to 7 m, as seen for the Yangsan site. Pradhan’s method also revealed low
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applicability when the pore pressure by PCPT was similar to hydrostatic pressure because
its membership functions were derived from Robertson et al.’s charts.
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Figure 12. Verification results at Pusan new port support area site.

4.4. Jeonnam Dojang Port Site

This site is located on the southwestern coast of Korea on the sea. The top of the
seabed was covered by silty sand up to G.L-1.8 m and layered by clay up to the depth of
G.L-9.8 m as shown in Figure 13. A mixture of gravel and sand was distributed below clay.
A casing tube was initially driven to G.L-0.5 m, and a piezocone test was carried out up
to G.L-10 m. Soil classification results according to USCS from undisturbed samples in
the clay layer were mainly “CH” or “CL”. Water contents ranged from 29.59% to 65.27%,
liquid limits ranged from 36.1% to 76.2%, and plastic limits ranged from 20.8% to 30.8%.
Zhang and Tumay’s method misclassified top silty sand mainly as clay because it did not
consider negative pore pressure, as explained previously. Furthermore, Pradhan’s method
misclassified the upper part of “CH” or “CL” by USCS as silt. However, the neuro-fuzzy
model classified clay and silty sand except at about 1 m thickness, but this may have
occurred during the ground investigation considering the 1 m interval of SPT. The two
charts proposed by Robertson et al. [3] failed to correctly detect silty sand. Moreover, the Ry
chart and B, chart gave different soil types in silty sand, which could confuse engineers.
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Figure 13. Verification results at Jeonnam Dojang new port site.

4.5. Incheon Trade Center Site

Incheon is located on the northwestern coast of Korea, where strong tidal action
exists. The maximum tide difference is almost 9 m, and fine-grained soil is almost “ML”.
According to the boring log, fill reclaimed up to G.L-8.5 m and was layered by clayey silt
up to G.L-19 m. Sandy silt and silty sand existed below the clayey silt. A piezocone test
was performed to a depth of G.L-18.6 m through a fill into a casing tube. Soil classification
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results according to USCS from undisturbed samples in the clayey silt layer were mainly
“ML” due to tidal action, except for “CL” at around G.L-17 m to 18 m. Water contents
ranged from 28.2% to 32.8%, liquid limits ranged from 34.2% to 38.9%, and plastic limits
ranged from 21.9% to 29.5%. According to the results shown in Figure 14, Zhang and
Tumay’s method uniformly estimated all layers as silt and sand. The B; chart proposed by
Robertson et al. [3] also classified clayey silt into silt or sand. Some misclassification was
observed when considering the classification of USCS as “ML” or partially “CL”. Pradhan’s
method estimated the mixture of clay, silt, and sand with depth and did not show any
difference in detecting the thin clay layer at GL-17 m. The suggested neuro-fuzzy model
also classified the clayey silt layer into mainly silt and succeeded in detecting the thin clay
layer at around 17 m with “CL”.
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Figure 14. Verification results at Incheon trade center site.

4.6. Ulsan Southern Breakwater Site

This site is located on the southeastern coast of Korea, where the seawater depth is
approximately 30 m. Clay was distributed to G.L-17.0 m and layered by sand or gravel.
A casing tube was initially driven to G.L-3.7 m, and a piezocone test was carried out to
G.L-16.7 m. The soil classification results of clay layer according to USCS from undisturbed
samples were mainly “CH” through all depths, except for “CL” at G.L-16.0 to 16.8 m.
Water contents of “CH” ranged from 70.1% to 90.8%, liquid limits ranged from 76.7% to
96.4%, and plastic limits ranged from 31.9% to 36.4%, whereas the water content of “CL”
was about 38.1%, with a liquid limit of 41.2% and plastic limit of 21.9%. According to
the classification results shown in Figure 15, all methods correctly classified the clay layer.
However, Zhang and Tumay’s method seemed to misclassify sand/gravel into silt since it
did not appropriately reflect the variation of pore pressure, as mentioned above.

ft(MPa) #200 passing(%)

(0:Unclassified, 1:CLAY, 1.5:CLAY or SILT, 2:SILT, 2.5:SILT or SAND, 3:SAND) ¢ 29 40 60 80 100

Depth(G.L,-m)

® wn
o L
= PL

0
8
o
o ] o = o]
Ao ]
§ 8 8! Bo|l B8

e
Sand, Gravel T T

a» o

18
00061.2182.43.0
at(MPa)

0.00.20.40.60.81.0 1 2 3 1 2 3 1 2 3 1 2 30 1 2 3 0 20 40 60 80100

upt(MPa) This study  Pradhan Tumay  Robertson(Fg) Robertson(B,) Atterberg Limits

Figure 15. Verification results at Ulsan southern breakwater site.
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5. Conclusions

A new soil classification system using FCM clustering and the neuro-fuzzy tech-
nique with piezocone test results was developed, and the main findings are summarized
as follows:

(1) FCM clustering of the local database suggested that three input parameters of g¢, Ry,
and B, combined with three soil groups, i.e., clay, silt, and sand presented the highest
success rate of 74.0%, and the m value representing the partition was optimized as 4.

(2) The neuro-fuzzy model was developed on the basis of the FCM clustering results
with three input parameters g;, Rf, and B, and three output classes, i.e., clay, silt, and
sand. The training procedure was performed with a total of 5173 data points using
various combinations of fuzzy membership functions. As a result, a maximum success
rate of 79.09% was shown when the triangular membership function for g;, Gaussian
membership function for Ry, and sigmoidal membership function for B; were applied.

(3) Zhang and Tumay’s method revealed low applicability when the penetration pore
pressure by piezocone was negative or the same as the hydrostatic pressure since this
method does not consider the pore pressure as an input parameter. The two charts
presented by Robertson et al. sometimes failed to classify the upper reclaimed sand
layer and interbedded sand or silt layer. Since Pradhan’s method was adjusted to
best match Robertson’s diagram, both methods tended to yield essentially similar
soil classification results. However, since Pradhan’s method expressed a single soil
classification using the overlapping fuzzy membership in Robertson’s two diagrams
and limited the maximum value of the fuzzy membership to 0.8, the soil classification
result from Pradhan did not always match that of Robertson et al.

(4) The suggested neuro-fuzzy model matched well with boring logs and provided a
better agreement with the classification in Korea. In addition, it has strong advantages
in terms of revising or updating the model when the database is supplemented with
new data.
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