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Abstract: Bearings are one of the most common causes of failure for rotating electric machines.
Intelligent condition-based monitoring (CbM) can be used to predict rolling element bearing fault
modes using non-invasive and inexpensive sensing. Strategically placed accelerometers can acquire
bearing vibration signals, which contain salient prognostic information regarding the state of health.
Machine learning (ML) algorithms are currently being investigated to accurately predict the health of
machines and equipment in real time. This is highly advantageous towards reducing unscheduled
maintenance, increasing the operational lifetime, as well as mitigation of the associated health risks
caused by catastrophic machine failure. Motivated by this, a robust CbM system is presented for
rotating machines that is suitable for various industrial applications. Novel non-linear methods
for both feature engineering (one-third octave bands) and wear-state modelling (exponential) are
investigated. The paper compares two main types of feature extraction, which are derived from Short-
Time Fourier Transform (STFT) and Envelope Analysis (EA). In addition, two types of supervised
learning, Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN) are explored. The work
is tested and validated on the PRONOSTIA platform dataset, with remaining useful life (RUL)
classification results of up to 74.3% and a mean absolute error of 0.08 achieved.

Keywords: mechanical bearings; signal processing; fault detection; feature extraction; frequency
domain analysis; machine learning; condition-based monitoring; rotating machine; Support Vector
Machine (SVM); k-Nearest Neighbour (k-NN)

1. Introduction

Electric machines are a vital component for major industries, such as manufacturing,
mining, agriculture, energy and transport sectors. It is fair to say that all of these sectors
are currently undergoing major growth and technological innovation. These machines are
typically required to operate under harsh environmental conditions and demanding drive
cycles, which gives rise to premature degradation and the occurrence of catastrophic failure
modes [1,2]. It is imperative for the future viability and sustainability of these sectors
that we have efficient, robust and highly reliable electric machines. Sudden catastrophic
machine breakdown results in acute manufacturing downtime, dramatic reductions in
productivity and health and safety concerns. Moreover, performing critical maintenance is
both labour-intensive and costly. Faults can be difficult to diagnose and troubleshoot for
maintenance teams [3–5].

Broadly, electric machines can be broken down into the bearings, stator, rotor and other
elements as shown in Figure 1a. The statistics of failure for three classes, low voltage,
medium voltage and high voltage, are presented in Figure 1b. Bearings are the dominant
failure mode at low and medium voltages, followed closely in the latter class by stator
fault modes. The final class, high voltage, is dominated by stator fault modes, as seen in
Figure 1b. Research studies have shown bearings to be responsible for up to 75% of low-
voltage electric machines breakdowns and up to 41% of all rotating machine failures [2,6–9].
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Figure 1. (a) The main components of an electric machine, (b) percentage occurrences of failure
modes from the statistical data presented in [2,6] and (c) typical degradation trend and remaining
useful life of an operating machine.

Condition-based monitoring has received considerable attention over the past
years [2,10–12]; hence, a rich literature exists at present. The areas of detection and diag-
nosis of fault modes has received the most attention with mature industrial technologies
available. More recently, advanced methods of prognosis are being investigated, and these
focus on the more challenging problem of predicting the Remaining Useful Life (RUL) of
the machines or sub-components [13–15]. This is illustrated in Figure 1c. Knowing the RUL
of a component ensures that the state of health of a machine is known and that suitable
maintenance can be performed at the optimal times. The maximum usable life is achieved
without the threat of total machine breakdown occurring [16–19].

Typically, machine-learning (ML) methods for CbM focus on three key aspects: sig-
nal sensing modalities, feature engineering and supervised learning algorithms. Sens-
ing modalities for CbM methods that have been explored in recent years include acous-
tic emission (noise) [5,20–22], air gap torque monitoring [23,24], motor current signal
analysis (MCSA) [25,26], oil and debris-monitoring [27,28], thermography [29,30], speed
fluctuations monitoring [31], induced voltage, magnetic flux monitoring and vibration
signals [4,5,11,16].

The Short-Time Fourier Transform (STFT) feature extraction method has been exten-
sively used to extract useful time-frequency features, which reported to achieve high levels
of classification accuracy [32–35]. Envelope Analysis (EA) has also been used extensively
for prognostic and diagnostic purposes as the method is simple yet versatile, making it
applicable to many different types of mechanical fault monitoring processes [21,22,36–38].
Other methods of time-frequency feature extraction, which have shown good promise for
bearing prognostic use cases are Wavelet Transformation (WT) [39–42] and Empirical Mode
Decomposition (EMD) [43–48], both of which were reported to achieve highly accurate
performance scores.

In the area of supervised learning, two of the most versatile, simple and effective
ML techniques that have been extensively used for bearing condition monitoring are k-
Nearest Neighbour (k-NN) [49–51] and Support Vector Machines (SVM) [52–55]. More
recently, advanced deep-learning techniques have been applied for prognostic purposes,
and these use multiple traditional methods combined and neural networks to perform RUL
classification [40,45,48,56–59].

In [59], an RUL prediction method was proposed based on a long short-term memory
(LSTM) neural network framework and deep features, which were learned adaptively from
the two health states. Benali [48] proposed a method to characterize and classify seven
different bearing classes using statistical features, EMD energy entropy and an artificial
neural network (ANN). Li [56] used a combination of two supervised ML techniques; a
regression model and multi-layer ANN to predict the RUL of rolling element bearings.

Here, in this paper, a novel ML method for RUL is proposed, using non-linear signal
processing techniques to perform feature engineering based on STFT and EA with One-
third octave band feature compression. The rationale for using Fourier and EA-based
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feature extraction was as a result of detailed vibration signal analysis conducted on the
bearing signals from the dataset. This motivated the incorporation of non-linear feature
compression of the multidimensional feature space using Octave bands as the prognostic
information signatures are highly concentrated in the lower portion of the spectra.

These features form part of the ML method recipes alongside twelve different super-
vised learning algorithms based on k-NN and SVM to determine the optimal choice for
RUL classification. SVM and k-NN algorithms were chosen because of their robustness for
supervised learning problems, in particular problems with datasets of limited size, which
greatly limits the suitability of applying other more advanced deep-learning approaches,
e.g., ANN and LSTM. The work also highlights the importance of using non-linear wear-
state models to track the degradation severity levels; this has been shown to greatly improve
the performance of the ML classifiers overall for this RUL task. The time frequency analysis
conducted on the vibration signals also motivated the investigation of non-linear wear state
models as the bearing degradation typically does not follow linear trends.

The remainder of this paper is organised as follows. Section 2 presents a graphical and
statistical analysis of the vibration signals. The proposed ML method is detailed in Section 3.
The experimental procedure is illustrated in Section 4. In Section 5, the results from the
proposed CbM system are presented. Section 6 presents the major trends and findings from
the results and statistical analysis, and the limitations of this work are discussed. Finally,
Section 7 concludes the work and highlights future research avenues to explore.

2. Vibration Signal Analysis

The typical degradation of bearings is a gradual and slowly evolving process. Or-
dinarily, it would take many years to acquire signals characterising the entire process,
starting with a new bearing and progressing to a fully degraded bearing at the end of its
life cycle. Typically, applied experiments are performed in the laboratory under controlled
conditions to acquire bearing data. These accelerated ageing experiments can involve
artificially inducing faults by strategically drilling small holes or etching the surface of the
bearings, applying excessive loads and operating speeds, or elevating the temperature and
humidity, as reported in [60,61].

2.1. Dataset

The proposed condition monitoring methods described in this research were tested and
validated using the award winning FEMTO-ST Institute 2012 PHM Challenge dataset [62],
which has found widespread use in this field [63–65]. This complete dataset comprises
of vibration signals from the accelerated degradation of 17 bearings, performed at three
different operating speed and load conditions: (1800 rpm and 4000 N), (1650 rpm and
4200 N) and (1500 rpm and 5000 N) [62]. This dataset provides realistic fault modes
achieved under accelerated ageing conditions as opposed to data generated from artificial
fault modes, e.g., drilled holes, machined narrow cuts or indentation lines to emulate the
occurrence of hairline cracks.

Accordingly, for each test case, the details on the specific type of failure mode or
element (e.g., ball, inner race or outer race or cage) is not known or provided. This work is
more concerned with monitoring degradation rather than diagnosis of the specific failure
mode. The test setup was composed of three main parts: a rotating part, a degradation
generation (loading) part and a sensing measurement part. The bearing’s vibration ampli-
tudes were recorded by two miniature accelerometer sensors, Dytran, Model 3035B, placed
orthogonally to one another on the vertical and horizontal axis of the bearing under test.
This sensor pair was placed radially on the external race of the bearing. The acceleration
measures were sampled by the analogue to digital converter (ADC) at 25.6 kHz [62].

Each recording consists of bursts of 2560 samples (0.1 s duration), which were obtained
every 10 s throughout the test bearings’ lifetimes up until the point of failure. Failure for
these test bearings was defined to be the point where the amplitude of the vibration signals
surpassed the reference acceleration threshold value of 20 g. This threshold was carefully
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chosen as it also avoided any considerable propagation that could severely damage the
test-bed mounts and fixtures [62].

2.2. Signal Analysis

The testing and validation of the proposed wear state estimation system was focused
towards the first operating condition, with speeds of 1800 rpm and an applied force of
4000 N, for seven bearing test cases. The duration of each test case varied in length with
the longest test case reaching almost 8 h and the shortest lasting only 2 h and 25 min
as illustrated in Table 1 and Figure 2. Since the run-to-failure test was conducted with no
artificial mechanical tampering of the constituent bearings, it can be expected that a spread
of different fault types would have occurred in the bearings, involving the rolling elements,
the cage and the inner-race and outer-race parts.

Figure 2. Moving average (MA) plots of 7 vibration signals are shown in the form of acceleration
level (dB) across time (s), for condition 1 of the bearing dataset [62]. The MA interval is 512 points
and a reference level of 1 µm/s2 was used, as per [66].

Table 1. Timing characteristics of datasets.

Sample Bearing (S.) Lifetime Duration (Hour|Min|Sec)

S. 01 7 h 47 m 00 s
S. 02 2 h 25 m 00 s
S. 03 5 h 00 m 10 s
S. 04 3 h 09 m 40 s
S. 05 6 h 23 m 30 s
S. 06 6 h 23 m 29 s
S. 07 4 h 10 m 11 s

Figure 3 demonstrates examples of typical time domain vibration signals where
different fault types occur. The signal depicted in the three top panels show a very gradual
increase in the vibration amplitude for bearing S. 01 before the fault occurs. The fault in
bearing S. 04, depicted in the three lower panels, manifests itself as a sudden change in the
vibration amplitude about three quarters through the lifetime. This indicates the occurrence
of a very different, abrupt fault mode, such as the rapid formation of a catastrophic crack,
a part snapping or sudden deformation due to heat induced by friction.

These two examples, that of the slowly evolved degradation mode and the rapid
formation fault mode, go some way to demonstrate the inherent degree of complexity and
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challenges that exist in developing robust condition-monitoring systems using machine-
learning methods. It is difficult to ascertain trends and patterns in the time domain
signals for the vibration amplitudes alone. Hence, a conversion to the frequency domain is
necessary to observe spectral signatures and trends throughout the duration of the test to
failure. Accordingly, a Short-Time Fourier Transform (STFT) process was applied to each
bearing test case with the parameters set to produce a multivariate spectral description of
the data.

Table 2 details the STFT algorithm parameters used in this work. The concept of STFT
analysis is fundamental for describing any quasi-stationary (slowly time varying) signal.
In general, one can define the STFT in terms of the output of an arbitrary bank of filters.
The amplitude spectrum of each frequency component of the signal was converted to a
decibel scale.

Figure 2 illustrates the variance of mean STFT spectral component energies for each
time sample for all 7 of the bearing test cases, using the first 50 time samples of each as their
reference baseline value. The natural degradation trend of a bearing does not represent a
gradual, linear pattern as represented in Figure 2.

All seven bearings test cases vary in the number of time samples as no two experiments
were equal in duration, however, the avalanche-like pattern of degradation is apparent in
all cases. This sudden effect makes the RUL estimation more difficult as the wear states
leading to this stage share a great deal of the same feature values, and some do not vary
from their initial baseline values until roughly 75% of their usable lifetime has passed.

Figure 3. Plots (a,d) illustrate the time series vibration signals of bearings S. 01 and S. 04, respectively.
Panes (b,e) show the variance of the total frequency amplitude values of each signal acquisition
over time. The shaded error bar illustrates the mean ± one standard deviation. Panes (c,f) show the
variance of the frequency variance of bearing S. 01 and S. 04 throughout the entire ageing process.
The shaded error bar illustrates the mean frequency spectral amplitudes ± one standard deviation.
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Table 2. STFT parameters.

Sampling Frequency ( f s) 25,600 Hz
Window Length (Lw) 1024

Hop Size (Lh) 256 (75%)
No. of FFT Points (n f f t) 1024

Window Type (w) Blackman
Amplitudes dB

3. Proposed ML Method

This study investigated and compared a variety of algorithm options for bearing
wear-state classification. The proposed method begins by taking raw accelerometer data
and concludes with assigning a predicted wear state class. A number of intermediate steps
are involved. This section describes each method stage and describes how each stage can
branch into alternative steps as illustrated in Figure 4.

Figure 4. (a) STFT feature extraction approach with feature compression and (b) the three feature
extraction approaches investigated for Envelope Analysis (EA).

3.1. Feature Extraction

The proposed method begins with a feature extraction step and two feature extraction
methods were performed for comparison. The two techniques of extracting classification
features from the raw time-series data were: (1) applying a STFT to the discrete-time signals
and (2) calculating the signal envelopes of each discrete-time signal.

3.1.1. Discrete-Time Signal Analysis

The non-stationary time series data recorded from the 2012 PHM Data Challenge
bearing dataset are presented as a 2-D vector. The vibration amplitude sampled at 25.6 kHz
by the Dytran Model 3035B accelerometer was transferred from the discrete-time domain to
the frequency domain using the Short-Time Fourier transform (STFT) parameters detailed
in Table 2.

The Short-Time Fourier transform (STFT) can be defined as a sequence of Fourier
transforms of a windowed input signal. STFT is used to extract time-localized frequency
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information, for situations in which frequency components of a signal vary drastically
over time, such as non-stationary bearing vibration signals [67]. The STFT, shown in
Equation (1), involves calculating a windowed Fast Fourier transform (FFT) of the discrete
time samples, with each window overlapping the previous by a factor of 75% to obtain the
complex feature vector signatures across time. The average value of these absolute complex
feature vectors for each sample is calculated to extract a spectral feature vector consisting
of 512 spectral points (bins).

The spectral points are spaced at 25 Hz intervals and represent the spectral amplitudes
content over a range of 0 to 12,800 Hz (Nyquist frequency). This frequency range is
determined by specifying the number of Discrete Fourier transform (DFT) points calculated
for each window and by the sampling frequency of the DFT. The sampling frequency was
matched to the frequency of the accelerometers sampled the bearing signals at, 25.6 kHz,
and the number of DFT points calculated for each window was 1024 points (the same value
as the length of the sample window g(n)).

F
{

x[n]
}
= X[m, f ] =

∞

∑
n=−∞

x[n]g[n−mR]e−j2π f n (1)

where F
{

x[n]
}

is the DFT of windowed data centred about time mR, g(n) is a window
function, and R is the hop size between successive DFTs.

The STFT has been favoured as a feature extraction method to obtain useful features
for both RUL estimations and fault classification and achieved extremely high results as
seen in [34,35,68,69].

3.1.2. Envelope Analysis

An Envelope Analysis (EA) approach, involving the extraction of the signal envelope
of the discrete-time vibration signals, was also used as an alternative method to extract time-
frequency features. Two different filtering approaches were applied to the non-stationary
signals, linear and non-linear. The linear filtering process uses equidistant frequency
spacing, whilst the non-linear option involves applying the one-third octave band scale
to the vibration signal in the time domain. This produced 25 representations of the signal
for both the linear and the non-linear cases for classification performance comparison. The
filter employed was a 25 Finite Impulse Response (FIR) sixth order Butterworth filter.

The discrete-time domain signal is demodulated by taking the absolute value of the
non-stationary signal points, to produce xr[n]. By taking the Hilbert Transform of this
rectified signal, we can produce the signal, xi[n], which enables the creation of the complex
analytic signal, defined as z(n) and shown in Equation (2).

z[n] = xr[n] + jxi[n] (2)

The final step to calculate the envelope signal is to take the magnitude value of the
complex analytic signal, as described in Equation (3).

EA[n] = (x2
r [n] + x2

i [n])
1
2 (3)

where EA[n] represents the envelope signal.

3.2. Feature Compression

Feature compression was applied to both the discrete-time STFT- and EA-generated
spectral feature sets referenced in Sections 3.1.1 and 3.1.2. For the STFT features, dimen-
sionality reduction from 512 down to 25 spectral features was applied in order to extract
the most useful features to train the learning model algorithm. In addition, dimensionality
reduction simplifies the complexity of the computations so that more optimal and accurate
estimations could be obtained. This was to avoid the well-known phenomena often defined
as the curse of dimensionality [70,71]. This term describes the inherent problem caused by
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the exponential increase in volume associated with adding extra dimensions to a Euclidean
space [71].

Feature reduction was achieved using a filter band approach as described in Equation (4)
for both linear and non-linear sized bands. The linear bands, L[m, k], consisted of equidis-
tant bands applied evenly to 512 spectral features, whereas the non-linear approach, O[m, k],
comprises a one-third octave band filter being applied. The one-third octave band filter
places a higher emphasis on the lower end of the frequency spectrum by having smaller
bands that increase non-linearly in size as the frequency increases.

Y[m, k] = X[m, f ]× H[ f , k] (4)

where the feature vector Y[m, k] is the result of a matrix multiplication of X[m, f ], the av-
erage STFT values of each discrete time-sample, and H[ f , k], a matrix comprised of ones
and zeros strategically placed according to the desired filter parameters. The feature vector
Y[m, k] is equal to L[m, k] when linear filtering is used, and Y[m, k] is equal to O[m, k] when
one-third octave band filtering is used.

Two distinct H[ f , k] matrices were chosen and tested, allowing for linear and non-
linear banding. The linear band feature reduction technique was achieved by filtering the
frequency amplitude spectrum of each independent time-sample into 25 equidistant bands
ranging from 0 to 12,800 Hz. The non-linear feature reduction approach uses a one-third
octave band filter scale to segment the frequency spectrum into 25 octave bands in the scale
0 to 12,800 Hz.

For the signal envelope features, EA[n], three feature compression techniques were
explored using a linear and one-third octave band scale. The first involves the time-series
values for each of the 25 filter bands being transferred to the frequency domain by means
of the Fast Fourier Transform (FFT). The sum of the frequency powers, in decibel scale, is
calculated to create feature vectors comprising of 25 features for each of the discrete-time

vibration signals, F
{

EAL

}
and F

{
EAO

}
. The second technique is comprised of summing

all the signal envelope time-series points for each of the 25 filter band vectors, EAL and
EAO. The third approach used the signal energy value by calculating the square of the
signal envelope values and summing together for each of the 25 filter band, EA2

L and EA2
O.

3.3. Wear-State Temporal Models

When analysing the horizontal vibration signal from the bearing’s external race,
a degradation trend can be identified in the signal amplitude values in the discrete-time do-
main. The degradation trend can be identified as having a non-linear increase in amplitude
as the bearing failure stage is approached. In this study, five temporal wear-state classes
were used to characterise the RUL of the seven bearings under test.

Two different wear-state models, one linear and one non-linear, were considered and
tested to determine the optimum scale to determine the RUL of the components accurately
and robustly. The linear wear-state model divides the data into five equidistant temporal
classes, as illustrated by Equation (5), where each temporal class represents a 20% portion
of the bearing’s overall lifetime. In contrast, the non-linear wear-state approach uses
five classes that are strategically spaced to add greater granularity or compression to the
class boundaries towards the latter stages of the bearing’s life. This is achieved as follows:
the first 63% of the bearing’s lifetime is allocated to class 1 (healthy), the second class
consists of the 86% of the bearing’s lifetime and so on as presented in Equation (6).

αi =

(
1
5

)
× i (5)

βi = 1− e−i (6)

where αi and βi define the linear and non-linear temporal class boundaries, respectively,
and the index i = {1, 2, 3, 4} corresponds to those class numbers. Note: α5 = β5 = 1 as the
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boundaries are normalised with respect to time.
Figure 5 shows a graphical representation of the linear and non-linear wear-state

class boundaries.

Figure 5. Linear and non-linear wear-state class boundaries, αi and βi, respectively.

3.4. Classification

Supervised ML algorithms were used to detect trends and patterns in the pre-processed
data and classify the health wear-state of the bearing test samples. Two widely used classical
methods of ML were studied—that of support vector machines (SVM) and k-Nearest
Neighbour (k-NN).

3.4.1. Support Vector Machines

A support vector machine (SVM) is a supervised ML algorithm. The SVM algo-
rithm is used to classify pre-labelled test cases (targets) by analysing the training cases
(predictors) and finding a separator between classes. The use of SVM-classification algo-
rithms has been recorded to achieve highly accurate results in high dimensional feature
spaces [52,53,55,72,73]. Another key benefit that the SVM algorithm option offers is mem-
ory efficiency. Only a small subset of the training features, the support vectors, are required
to calculate the location of optimised hyperplanes between wear-state classes.

The pre-labelled training data, also referred to as the predictor features, is mapped
to a higher-dimensional feature space, so that data points can be categorised as shown in
Figure 6. This mapping process is often referred to as kernelling, as the transformation can
be achieved through the application of various kernel functions. The predictor features are
transformed in such a way that the separator can be formed as a hyperplane, which can be
considered as a line function representing the largest separation, or margin, between classes
(wear-states). The data points whose positions lie closest to the calculated hyperplane
are identified as support vectors. To achieve the most accurate SVM prediction model,
the hyperplane should be at the maximal distance possible from the nearest support vectors.

This distance from a support vector to the hyperplane is identified as the margin.
The classification of target instances is achieved by inputting the unseen, feature data
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values, without their corresponding wear state label, into the hyperplane function shown
in Equation (7).

wTy + b = 0 (7)

where w represents the weight vector, y is the input vector and b is the bias. The result
determines whether the data point is an instance of the class above or below the hyperplane.

Figure 6. Experimental procedure for selecting the training and testing signals for the different
ML approaches.

This means that only a fraction of the overall predictor feature points are processed for
calculation unlike other ML methods, such as Decision Trees, Logistic Regression, Naive
Bayes and k-NN classification, which require all feature points to be included in each
calculation. This significantly reduces the complexity of calculations while increasing the
efficiency and speed of producing RUL estimations. The biggest challenge associated
with the SVM classification algorithm as a prediction model is its tendency to over-fit
data. Over-fitting would be most prevalent when the feature number (dimensionality) is
high relative to the number of predictor instances. To counteract this, numerous bearing
test-cases with large numbers of time-samples are used to train and test the performance of
the SVM classification algorithms.

The performance of six different kernel functions were investigated and compared
in this study. Kernel options used to map the data into a higher dimensional feature
space included Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian and Coarse
Gaussian functions.

3.4.2. k-Nearest Neighbour

The k-Nearest Neighbour (k-NN) classification algorithm is one of the most widely
used supervised ML methods for categorising unknown signals into a discrete set of
classes [49–51]. The k-NN method is used to classify target instances based on their
similarities to predictor features (training data). The most similar predictor cases are
referred to as the “neighbours”, hence, the title associated with the classification method.

Classification is achieved by first defining a value of k. The optimal k value is depen-
dant on the input data. Choosing a low k value often produces an over-fitted prediction
model, which produces inaccurate predictions on out-of-sample target instances. A higher
k value makes the prediction model too generalised as the classes with more predictor
instances become prioritised as the target instance. The optimal k value may only be deter-
mined through trial and error, using multiple values to compare accuracy results. The next
step to achieve a RUL prediction using the k-NN framework involves calculating the dis-
tance from the features of the target instance from all other predictor instance features. This
distance metric can be calculated in a number of ways, including Euclidean, Mahalanobis,
City block and Minkowski distances.
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As we are dealing with distance metrics to determine classification, it is important that
each of the features used are standardised before training the prediction model. Min–max
normalisation is applied to each feature to put all training data into the 0–1 scale. The target
instance is then normalised using the same min–max values as the training data.

The same min–max value is used for the normalization process to eliminate the
occurrence of data dredging, the statistical inference performed after looking at the complete
dataset. The k nearest observations in the training data that are nearest to the unknown
target data point are selected as the “neighbour” points. A case is classified by determining
the mode class value of its neighbours, with the case being assigned to the class most
common amongst its k nearest neighbours measured by a distance function.

Six methods of k-NN classification were used to obtain RUL predictions for the bear-
ings, including Fine, Medium, Coarse, Cosine, Cubic and Weighted k-NN. The specified
parameters varied in each method are presented in Table 3.

Table 3. k-NN method parameters.

k-NN Method Distance Weightings kValue

(Fine) Euclidean 1
(Medium) Euclidean 10
(Coarse) Euclidean 100
(Cosine) Cosine 10
(Cubic) Cubic 10

(Weighted) Weighted 10

4. Experimental Procedure

This section describes the experimental procedure, which can be summarised under
three main strands: the ML method recipes, the round robin framework and the perfor-
mance metrics.

4.1. ML Method Recipes

The experimental procedure for this research involved varying the following param-
eters as described in the previous section: (a) feature extraction using either STFT of the
discrete-time domain signal or the envelope of the vibration time-series data, (b) feature
selection using full spectra from 0 to 12,800 Hz X[m, f ], linear bands L[m, k] or one-third
octave bands O[m, k] as feature vectors, (c) the wear-state classification model using either
linear, α, or non-linear, β, temporal class boundaries, (d) model training and testing using
a SVM or k-NN method approach. In the case of SVM kernelling six function options
including: linear, quadratic, cubic, fine, medium and coarse Gaussian, were applied to
convert the input signals to a higher dimensional feature space. Six classification methods
for determining the target class for the k-NN algorithm were investigated including fine,
medium, coarse, cosine, cubic and weighted.

4.2. Round Robin Framework

All seven bearing test cases were incorporated into each RUL estimation process in a
round robin framework that seeks to maximise the data set as well as mitigate problems
relating to over-fitting. The experimentation process involved allocating six bearing signals
as training datasets to teach the ML algorithms. The seventh bearing test-case was used for
testing purposes. Once RUL estimations were obtained for each of the out-of-sample test
signals, the bearing was added back to the in-sample testing pool, and the next sequential
bearing was transferred to the testing pool. The ML prediction model was retrained, and
this was iterated until RUL estimations had been obtained for all seven bearing test cases.

The incorporation of this framework to train and test the performance of each predic-
tion algorithm greatly reduces over-fitting as we are only using out-of-sample test signals.
All model training data comprises of signals from a completely different bearing for each
test case. This gives an extremely accurate interpretation of how the models would perform
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in a real-world application using signals from different bearings used to train the models in
every case.

The classification process involves dealing with a multi-class and multi-label clas-
sification model, which comprises five temporal wear-state classes to be estimated for
thousands of consecutive time samples. A moving-average (MA) filtering technique is
incorporated to smooth out any undesirable whipsawing or erratic transitioning between
the five temporal wear-state classes. The MA technique involves taking a window length
of nine discrete-time samples, consisting of the current target prediction, the previous four
predicted targets and the following four predictions. The mode of the nine predicted values
is then assigned to the current target sample. In a real-time application, these nine samples
comprise a 40 s temporal time period. This short time period is extremely negligible over a
bearing’s lifetime, which is typically years for a real system.

4.3. Performance Metrics

The performance of each ML approach investigated was analysed by computing the
Jaccard Index [74,75], Equation (8) and multiplying by a factor of 100 to obtain a percentage
accuracy value.

J(z, ẑ) =
|z ∩ ẑ|
|z ∪ ẑ| (8)

where z represents the true class of a time-sample and ẑ represents the class prediction
from the ML algorithm.

The Mean Absolute Error (MAE) was calculated for each of the classification models
and feature selection options [76,77]. Using Equation (9), the absolute error between the
predicted target instances and the real expected values was calculated for each time-sample.
This resulted in a natural number in the range 1 to 4, as we are dealing with five wear-state
classes and the maximum error a prediction could possibly be classified as would be
four classes away from the expected real class value. The error for each individual time-
sample was summed and divided by the total number of test-samples to calculate the MAE.
These MAE values for each classification model were then normalised by dividing each
MAE result by 4 and are compared in the tables below.

MAE =
1
M

M

∑
m=1
|zm − ẑm| (9)

where M represents the total number of target instances to be classified, z represents the
true class of a target instance and ẑ represents the class prediction from the ML algorithm.

5. Results

This section presents the results obtained from the proposed ML framework for
RUL classification.

5.1. Linear Wear-State Classification Approach

The linear wear-state classification accuracy and MAE error results achieved using the
STFT features extracted from the discrete-time signals are presented in Table 4. In the case
of the SVM classification method, the lowest accuracy results were recorded at 27.5% for
the one-third octave band feature set using a fine Gaussian kernel function. The highest
classification performance achieved was 59.5% using the one-third octave band feature
selection and a coarse Gaussian kernelling method.

For the k-NN classification method, the lowest classification performance recorded was
39.9% for the linear band feature set using fine k-NN. The highest classification accuracy
achieved was 54.2% by the one-third octave band features with cosine k-NN. The MAE
results indicate that the coarse Gaussian kernel using the one-third octave band features
was also the best-performing model with the lowest MAE score. The lowest error scores of
0.17 were achieved by both the cubic and cosine k-NN models.
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The results of the experiment using the signal envelope-derived features and linear
wear-state classification are presented in Table 5. In the case of the SVM model, the lowest
performance was recorded at 30.4% accuracy for the one-third octave band FFT features
using a fine Gaussian SVM classifier. The highest classification performance, on the other
hand, was achieved at 62.5%, for the one-third octave band summed envelope features
using a Linear SVM kernel function.

For the k-NN classification results, the lowest performance was recorded at 44.2%
accuracy for the squared one-third octave band features from a fine k-NN classifier. The
highest classification accuracy was achieved at 57.9% for the squared linear band features
using a coarse k-NN classifier. The MAE results indicate that the linear, coarse and medium
Gaussian kernel functions using the summed one-third octave band features were the
best-performing model with the lowest MAE score. The coarse k-NN model proved to be
the best option from the MAE values also, proving to be the most accurate in both Jaccard
Index and MAE aspects.

Table 4. Linear wear-state classification results (%) and MAE (normalised) for STFT feature sets,
where G denotes Gaussian.

k-NN

Features Fine Medium Coarse Cosine Cubic Weighted

F
{

x[n]
}

53.7|0.16 48.5|0.17 48.0|0.17 32.3|0.39 50.4|0.16 56.7|0.14

L[m, k] 48.7|0.18 50.6|0.17 43.7|0.22 33.1|0.36 48.2|0.17 55.1|0.14
O[m, k] 57.1|0.15 51.2|0.17 51.1|0.17 27.5|0.40 56.8|0.14 59.5|0.13

k-NN

Features Fine Medium Coarse Cosine Cubic Weighted

F
{

x[n]
}

41.5|0.23 43.8|0.22 44.7|0.19 45.1|0.20 43.7|0.21 43.0|0.22

L[m, k] 39.9|0.23 41.6|0.23 45.0|0.19 45.0|0.21 43.9|0.22 41.7|0.23
O[m, k] 52.2|0.19 51.5|0.18 53.4|0.17 54.2|0.17 50.7|0.19 51.8|0.18

Table 5. Linear wear-state classification results (%) and normalised MAE for envelope analysis (EA),
where G denotes Gaussian.

SVM

Features Linear Quadratic Cubic Fine G Medium G Coarse G

F
{

EAL

}
47.9|0.20 48.5|0.18 42.0|0.22 36.9|0.32 51.9|0.17 51.2|0.16

EAL 55.3|0.15 50.6|0.19 37.2|0.28 46.8|0.23 61.8|0.12 59.9|0.12
EA2

L 47.3|0.20 32.9|0.32 42.0|0.23 47.6|0.18 56.9|0.14 54.2|0.15

F
{

EAO

}
56.1|0.15 50.9|0.17 54.8|0.15 30.4|0.38 60.4|0.13 53.9|0.14

EAO 62.5|0.12 54.7|0.16 50.9|0.18 41.6|0.28 56.7|0.15 58.3|0.12
EA2

O 53.6|0.17 37.9|0.28 32.0|0.31 37.1|0.23 59.9|0.14 53.6|0.15

k-NN

Features Fine Medium Coarse Cosine Cubic Weighted

F
{

EAL

}
46.9|0.20 47.2|0.20 46.0|0.19 46.8|0.22 47.0|0.20 47.5|0.20

EAL 51.8|0.18 52.9|0.18 55.6|0.15 50.7|0.18 53.0|0.17 53.0|0.18
EA2

L 55.6|0.15 57.0|0.15 57.9|0.14 55.5|0.15 56.7|0.15 56.1|0.15

F
{

EAO

}
53.4|0.18 51.8|0.17 51.0|0.17 51.0|0.17 51.3|0.18 52.2|0.17

EAO 48.4|0.22 49.4|0.21 46.9|0.22 47.4|0.22 48.6|0.22 49.7|0.21
EA2

O 44.2|0.25 44.6|0.24 43.4|0.25 42.6|0.25 44.2|0.26 44.4|0.25
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5.2. Non-Linear Wear-State Classification Approach

The results achieved using non-linear wear-state classes and STFT features are pre-
sented in Table 6. For the SVM experiments, the lowest performance recorded was 53.9% for
the linear band features using a cubic kernel function SVM model. The highest performance
of 73.6% was achieved by the one-third octave band features using a medium Gaussian
kernel function.

In the case of the k-NN experiments, the lowest performance recorded was 60.1% from
the linear frequency band features with the Fine k-NN. The highest performance accuracy
of 73.2% was achieved using the one-third octave band features with Coarse k-NN. This
was also the highest classification performance achieved overall for the STFT analysis
feature study.

The normalised MAE results for the STFT spectral features using SVM classification
models indicate that the Medium and Coarse Gaussian kernel function using the one-third
octave band features was also the best-performing model with the lowest normalised
MAE score. Similarly for the k-NN experiments, the one-third octave using Coarse k-NN
achieved the lowest error score.

Table 6. Non-linear wear-state classification results (%) and normalised MAE for STFT data, where
G denotes Gaussian.

SVM

Features Linear Quadratic Cubic Fine G Medium G Coarse G

F
{

x[n]
}

66.8|0.12 61.6|0.18 59.1|0.19 63.2|0.14 65.6|0.13 65.4|0.11

L[m, k] 59.1|0.15 59.7|0.19 53.9|0.23 63.2|0.15 60.4|0.15 65.1|0.11
O[m, k] 71.2|0.11 68.8|0.15 62.8|0.17 62.4|0.15 73.6|0.10 68.4|0.10

k-NN

Features Fine Medium Coarse Cosine Cubic Weighted

F
{

x[n]
}

64.0|0.16 65.0|0.15 66.7|0.11 66.9|0.15 64.8|0.15 64.5|0.15

L[m, k] 60.1|0.18 62.0|0.17 64.8|0.11 63.2|0.15 63.2|0.17 61.0|0.17
O[m, k] 69.4|0.13 68.9|0.12 73.2|0.10 69.5|0.12 68.7|0.11 69.7|0.12

The non-linear wear-state results for the Signal-Envelope-derived features using are
presented in Table 7. For the SVM models, the lowest performance recorded was 9.5%
for the squared one-third octave band features using a cubic kernel function, whereas
the highest performance of 73.1% was achieved for the summed one-third octave band
envelope features using a linear SVM kernel function. In the case of the k-NN classification
results, the lowest performance recorded was 62.0% for the squared one-third octave band
features using a Fine k-NN classifier.

The highest performance accuracy was 74.3% for the one-third octave band FFT
features using a cosine k-NN classifier. This was also the highest classification performance
achieved overall for the Envelope Analysis k-NN study and importantly for all of the
experimental studies reported in this work. The normalised MAE results using the signal
envelope derived spectral features applying SVM classification models indicate that the
Linear kernel function using the one-third octave band features were the best-performing
model with the lowest MAE score of 0.09.

The Cosine k-NN model proved to be the best options for the non-linear temporal
classes, with an error score of 0.08, which was also the lowest overall error score across all
four experimental studies presented. Accordingly, these best MAE values also correspond
with the best classification accuracy achieved, which is not unexpected.
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Table 7. Non-linear wear-state classification results (%) and normalised MAE for envelope analysis
features, where G denotes Gaussian.

SVM

Features Linear Quadratic Cubic Fine G Medium G Coarse G

F
{

EAL

}
63.7|0.13 63.5|0.17 60.4|0.19 63.9|0.15 67.8|0.12 63.3|0.12

EAL 65.9|0.11 64.8|0.16 57.8|0.19 66.0|0.16 72.0|0.09 68.5|0.11
EA2

L 62.7|0.13 14.7|0.68 27.7|0.38 66.9|0.13 69.1|0.11 68.1|0.12

F
{

EAO

}
71.2|0.20 65.5|0.30 67.5|0.31 65.2|0.27 73.0|0.21 68.2|0.21

EAO 73.1|0.09 68.1|0.13 56.7|0.23 60.4|0.18 66.3|0.11 68.9|0.12
EA2

O 66.7|0.11 36.2|0.41 9.5|0.48 60.9|0.15 70.2|0.11 70.3|0.11

k-NN

Features Fine Medium Coarse Cosine Cubic Weighted

F
{

EAL

}
67.5|0.15 65.2|0.15 68.3|0.13 64.1|0.16 65.4|0.15 65.0|0.15

EAL 69.8|0.14 71.6|0.13 72.5|0.10 70.7|0.13 71.8|0.13 71.7|0.13
EA2

L 73.1|0.12 73.0|0.11 73.5|0.10 72.4|0.10 73.2|0.11 72.8|0.11

F
{

EAO

}
74.1|0.09 73.0|0.08 72.0|0.08 74.3|0.08 72.0|0.08 73.3|0.08

EAO 66.0|0.15 64.4|0.13 67.0|0.12 63.0|0.14 63.7|0.13 64.4|0.13
EA2

O 62.0|0.16 63.3|0.14 63.1|0.13 66.0|0.15 63.1|0.15 63.0|0.15

6. Discussion

The results presented in Section 5 highlight the best- and worst-performing supervised
ML approaches for both the linear and the non-linear wear-state classes that were investi-
gated. The SVM-based algorithm approach that employed one-third octave band-based
features was found to yield the best performance for the linear wear-state classes. This
was the case for both STFT- and EA-based features, achieving scores of J = 59.5% with
MAE = 0.13 for O[m, k] using SVM (Coarse G) and J = 62.5% with MAE = 0.12 for EAO
using SVM (Linear), respectively, as shown in Tables 4 and 5, for the linear wear-state
classification.

Again, for the non-linear wear-state classification the SVM (Medium G) based algo-
rithm performed extremely well using the O[m, k] STFT features by achieving scores of
J = 73.6% with MAE = 0.10 as shown in Table 6. Using the same octave band feature set, the
k-NN (Cubic) approach had comparable performance coming in at slightly less accuracy at
J = 73.2% with the same MAE = 0.10, as shown in Table 6. In the case of the EA features for
non-linear wear-state classification, the SVM (Linear) achieved J = 73.1% with MAE = 0.09,
see as shown in Table 7. However, the k-NN (Cosine) had superior performance using

the spectral-based EA features, F
{

EAO

}
, achieving J = 74.3% with MAE = 0.08. This was

the best performance achieved for all the ML approaches over this entire investigation,
with the best classification accuracy and the lowest MAE.

In order to better analyse and interpret the results more closely, confusion matrices are
presented for the best-performing approaches for both the linear and non-linear wear-state
classification approaches investigated. Accordingly, these confusion matrices correspond
to the approaches that have their values highlighted in bold font in Tables 4–7 as discussed
previously. At the class level, these confusion matrices enable the classification results to be
examined, and they allow the MAE to be quantified and better appreciated—for instance,
regarding how many samples from class 1 were incorrectly classified as class 5.

The confusion matrices shown in Figure 7 allow us to see the classification performance
for each class by observing the percentage score along the diagonal. It is noted that the vast
majority of classification inaccuracy (MAE) tends to be predicting the neighbouring class,
which is significant, while this information was captured collectively for the entire class
set using the MAE metric for ML approaches; however, these confusion matrices offer the
granularity to identify which specific classes were the most challenging to estimate.
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All of the ML recipes presented performed very well on class 1, the max and min
range being 92.6% to 89.0% in comparison to the max and min range for class 5 of 68.1%
to 41.6%. The ML recipe with the best performance overall at 62.5% with MAE of 0.12
for the linear wear-state classification was that of the EAO features with a SVM (Linear)
algorithm, this is shown in matrix (c) of Figure 7. This particular ML recipe achieved the
highest classification for class 4 at 65.1% and was second best in class 1, 3 and 5, which
ultimately led to it achieving the best overall score.

Similarly, as shown in Figure 8, the classification performance for class 1 for the non-
linear wear-state classes was good; however, the range was wider, with max and min
values of 95.5% and 78.9%, respectively. Whereas in class 5, the max and min range was
from 63.2% to 39.3%. The best performance overall at 74.3% with MAE of 0.08 for the
linear wear-state classification was the ML recipe that comprised of the EA2

L features with
k-NN (Coarse) algorithm, this is shown in matrix (d) of Figure 8. This ML recipe strong
performance in class 1 and average performance in class 2 and 3 with poor performance in
class 5.

However, the performance in class 4 at 25.7% significantly outperformed the other
ML recipes shown, and this lead to it scoring the best overall. These trends in individual
class performance also be viewed in Figure 9, without the benefit of visualising where
the incorrectly classified test cases have been predicted. These points along with a mean
value correspond to the diagonal values for the confusion matrices in Figures 7 and 8.
The high performance of class 1 for both the linear and non-linear wear-state class options
is identifiable as well as the decreasing trend as the classes approach the failure stage of the
bearings under test.

Figure 7. Confusion matrices of the best-performing ML recipes for the linear wear-state classes:
(a) O[m, k] with SVM (Coarse G), (b) O[m, k] with k-NN (Cosine), (c) EAO with SVM (Linear) and
(d) EA2

L with k-NN (Coarse).
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Figure 8. Confusion matrices of the best-performing ML recipes for the non-linear wear state classes:
(a) O[m, k] with SVM (Medium G), (b) O[m, k] with k-NN (Coarse), (c) EAO with SVM (Linear) and

(d) F
{

EAO

}
with k-NN (Cosine).

Figure 9. Classification accuracy for the individual classes (1 to 5) for (a) linear wear-state classes
and (b) non-linear wear-state classes, which corresponds to the diagonal of the confusion matrices in
Figures 7 and 8, respectively.

Prior work by Sutrisno et al. [78], Singleton et al. [79]a nd Lei et al. [80], presented ML
methods that achieved percentage accuracy scores of 76.2%, 67.20% and 77.44%, respec-
tively, using the PRONOSTIA bearing dataset. However, these proposed methods utilised
a framework where only bearings S. 01 and S. 02 were used for training the algorithm,
and the remaining five bearings were used for testing. The round-robin experimental
framework presented in this paper presents the mean percentage accuracy of all seven bear-
ing signals whereas the prior work only presented the mean of five signals. Furthermore,
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the MAE performance metric was used for analysis purposes to ascertain the severity of
the misclassifications.

Feature subset compression using the non-linear one-third octave-based filtered for
both linear and non-linear wear-states performed very well in both cases. This can be
attributed to placing a higher emphasis on the lower portion of the spectra for feature
extraction. From a feature-engineering perspective, this was shown to offer more valuable
diagnostic trend information for characterising the health condition of the bearings under
test [11].

Importantly, this reduces the multivariate dimensionality [70,71] of the feature space
in a more optimal way compared with linear filtering as the results demonstrated by
yielding superior classification performance. Moreover, using a non-linear wear-state
model approach to classification is more suitable as the ageing mechanisms typically follow
an non-linear exponential trend; hence, we can see significantly higher performances
achieved. Clearly, a trade-off exists as if the size of class 1, is too large with respect to
the others, then the suitability of the RUL framework for taking timely action, such as
equipment maintenance and critical parts replacement diminishes.

As the subsequent classes would therefore be too short in time, the severity of degra-
dation between these classes would occur rapidly. Our non-linear exponential model
described in Equation (6) strikes a suitable balance and was found to work extremely well
in this proposed approach.

The highest overall classification scores were achieved using the Cosine k-NN classifier.
This was achieved across all seven bearing test-cases using the round robin framework
and, hence, demonstrates how the proposed ML methodology performs on unseen raw
vibration signals. However, these k-NN and SVM ML algorithms are heavily reliant on
the depth of the training data, which is common in the field of supervised learning and
hence makes these methods prone to producing over-fitted prediction models. While this
paper introduced a valuable and robust approach for RUL estimation, future work might
investigate applying this proposed method on larger data-sets.

The dataset used here in this research was limited in terms of the total number speci-
mens aged and captured using vibration signals In addition, the level of accelerated ageing
is perhaps too rapid, which led to a high proportion of abrupt failure modes occurring
approximately 43% of the time. These have a completely different degradation trend to
the gradual ageing mechanisms; hence, this places limits on testing the true efficacy of the
ML frameworks and recipes due to model over-fitting. If the datasets were significantly
improved by increasing the number of specimens and reducing the level of accelerated
ageing, this would offer the potential to explore ML approaches that employ advanced
deep learning using neural networks.

In testing the versatility and robustness of the proposed ML method recipes on differ-
ent bearing types and sizes under different speed and load conditions, work could explore
vibration data gathered from research testbeds where the shaft speed changes. This will
require developing extensive experimental campaigns to create more advanced datasets
that better reflect typical real-world operating conditions.

7. Conclusions

Traditionally, condition-based monitoring (CbM) of electric and rotating machines
has focused heavily on two primary areas, the detection and the diagnosis of fault modes.
More recently, research efforts have investigated the more challenging area of prognosis to
determine the remaining useful life (RUL) of the machine under test. This paper introduced
a valuable machine learning (ML) approach to estimate the RUL of rolling element bearings,
which are a core component of rotating machines.

The proposed ML recipes and approaches comprise of signal processing techniques
and ML algorithms applied to real-world vibration signals, which were acquired from
the outer-race of bearings degraded over time using an accelerated ageing test-rig. The
paper reports the results for linear and non-linear wear-state models using novel feature



Appl. Sci. 2022, 12, 4136 19 of 22

engineering derived from Short-Time Fourier Transform (STFT) and Envelope Analysis (EA)
representations. In addition, two different classification algorithm approaches, k-Nearest
Neighbour (k-NN) and Support Vector Machines (SVM), were investigated and compared.

This work achieved classification accuracy results of up to 74.3% with a mean absolute
error (MAE) of 0.08, which demonstrates the method’s efficacy for performing the task of
RUL. This ultimately offers a robust and low complexity approach that is highly valuable
for advanced predictive maintenance purposes in industry.
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