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Abstract: In the course of this research, the potential of activated carbon from rice husk was examined
as being a phenol removal medium from an aqueous solution in a fixed-bed adsorption column. The
activated carbon was characterized through FESEM (Field-Emission Scanning Electron Microscopy)
and BET (Brunauer–Emmett–Teller) surface area. According to the FESEM micrograph and BET
surface area, RHAC (rice husk activated carbon) had a porous structure with a large surface area of
587 m2·g−1 and mean diameter of pores of 2.06 nm. The concentration effects on the influent phenol
(100–2000 mg·L−1), rate of flow (5–10 mL·min−1), and bed depth (8.5–15.3 cm) were examined. It
was found that the capacity of bed adsorption increased according to the increase in the influent
concentration and bed depth. However, the capacity of bed adsorption decreased according to the
increase in the feed flow rate. The regeneration of activated carbon column using 0.1 M sodium
hydroxide was found to be effective with a 75% regeneration efficiency after three regeneration cycles.
Data on adsorption were observed to be in line with many well-established models (i.e., Yoon–Nelson
and Adams–Bohart, as well as bed depth service time models).

Keywords: activated carbon; breakthrough curve; column study; phenol removal; rice husk

1. Introduction

Phenol is an important industrial pollutant that is toxic and causes severe and long-
term impacts on living things. Being exposed to reduced phenol dozes could potentially
be problematic, causing conditions like dermatitis, as well as blocking in respiratory sys-
tem [1–3]. Phenol is certainly essential as an environmental investigation medium as it
was preferred mostly to use as the contaminant model. Moreover, much information on
its devastation as well as removal exists, especially regarding treatment of wastewater [4].
Wastewater from various industrial sectors, for instance coal transformation, oil, petrochem-
ical, pulp, pesticide and pharmaceutical, as well as industries of dye, are considered as the
principal phenol and phenol derivatives sources [4–6]. Numerous practices were debated
throughout previous studies with regard to phenol removal from water and wastewater, for
instance microbial retrogression [7], oxidation of chemicals [8–11], extraction of solvent [12],
membrane separation [4,12], and adsorption [13,14]. In most of the pre-mentioned research,
adsorption has been commonly-used technology for removing water pollutant [1], and a
powerful way of removing contaminants from wastewater. Essentially, the most common
adsorbent used for adsorption is commercially produced activated carbon, which is a
carbon-rich substance demonstrating a distinct pore composition, significant surface area,
and decent structure [3,15]. The surface chemistry and pore structure of activated carbon
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affect the adsorption process. The porosity of carbonaceous material is considered an
important factor in adsorption processes of organic compounds from aqueous solutions.
It has been reported that the adsorption capacity of small molecules, such as phenol, on
the inner surface of carbon correlates with the content of micropores and BET surface area,
while for mesoporous activated carbons, the substituent group in the phenol and nature
of the carbon also controlled the phenol adsorption [3,5,15]. Nevertheless, the expensive
regeneration value of activated carbon restricts its use; in addition, the carbon’s breakable
nature is utilized for the adsorption of organic materials, producing carbon fines [1]. Agri-
cultural, industrial, or municipal waste usage as adsorbents for the production of activated
carbon suggest different common values in a way that makes the process more appealing.
Furthermore, this kind of waste biomass can be utilized as a carbon precursor in order to
study the pollution challenges associated with landfilling of such wastes, and could be
a new element for biomass managing industries [3,16]. Many components have already
been researched with a view to produce economical activated carbon, like banyan root [3],
date pits [16], terminalia arjuna nuts [17], coconut shells [18], palm shells [19], jackfruit peel
waste [20], bagasse and rice husk (RH) [21], vetiver roots [22], coconut shell [23], RH [24],
sugarcane bagasse [25], Lantana camara [26], and sugar cane bagasse and sunflower seed
hull [27].

Rice is among the main foods eaten worldwide. Furthermore, it produces huge waste
husk quantities. RH (rice husk) is stated as being the most convenient absorbent for variable
pollutants [28,29]. For every 4 tons of rice produced, a generation of 1 ton of waste RH is
recorded [30]. RH consists of 32.2% cellulose, 21.4% hemicelluloses, and 21.3% lignin. The
cellulose, hemicellulose, and lignin form a very stable matrix structure. The cellulose–lignin
matrix burns away due to carbonization, resulting in the formation of high porosity, being
full of cavities, and having almost perfect pore shapes [27]. Converting RH into activated
carbon could potentially lead to the development of a particularly good adsorbent with
a high removal efficiency. Zinc chloride (ZnCl2) is a crucial chemical agent used as an
activator. It is powerful dehydration reagent, which supports material carbonaceous
decomposition and encourages the aromatization and charring of carbon, thus restraining
the creation of tar and increasing the yield of carbon [31]. Numerous researchers have
set activated carbon through ZnCl2 activation of many carbonaceous sources [27,31–33].
Throughout this study, the phenol adsorption with rice husk activated carbon (RHAC)
was examined using adsorption column studies. The crucial design parameters, like flow
rate, influent phenol concentration, and bed depth, were evaluated by utilizing a fixed-bed
column at laboratory scale. The phenol adsorption development curves were assessed
making use of the pre-mentioned stablished models (Yoon–Nelson and Adams–Bohart,
along with bed depth service time (BDST)). A model that describes the fixed bed adsorption
dynamics was, hence, presented, so that, eventually, a correlation relationship between the
model and the investigational figures was examined.

2. Materials and Methods
2.1. Chemicals

The chemicals employed in this study were phenol (with a purity percentage of
99.99%), sodium hydroxide (NaOH), hydrochloric acid (HCl), and ZnCl2. These chemicals
were handled and analytically graded by Merck, Darmstadt, Germany.

2.2. Preparation of Chemicals Activated Carbon

The RH utilized for setting up and carbon activation was provided by a field owned
by “Pusat Benih Padi Felcra Berhad-FELCRA” Paddy Seed Company located in the state
of Perak in Malaysia. The preparation entailed washing the RH many times in distilled
water, in order to remove soluble impurities, 24 h drying up on an oven at 105 ◦C, and then
milling and sieving to 125–250 µm size of particles. A chemical activation process using
ZnCl2 has also been applied for the raw material activation purpose. In order to decrease
ash content within the sample, the RH was pending to reflux with 1 M NaOH solution
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for 1 h. The used ZnCl2 amount was set to provide ratio of imbibition (activating agent
mass: dried RH) of 1:1. A horizontal tubular furnace (model TSH17/75/450-2416-2116)
was used to heat the mixture under pure N2 gas at a rate of 10 ◦C. min−1 to the ultimate
carbonization degree of heat, then held for 1 h at a carbonization temperature of 600 ◦C.
The ratio of imbibition and carbonization temperature were selected upon our previous
published work [34]. The activated carbon was then washed with 3 M HCl at 23 ± 0.5 ◦C
for an hour. After the acidic solution was drained, the sample was washed with distilled
water several times to remove the residual chemicals. The washed sample was then dried
at 105 ◦C for 24 h.

2.3. Activated Carbon Characterization

The formulated adsorbent was characterized by surface area plus the size of pore’s
distribution, in terms of porosity as well as morphological structure using EDX (energy
dispersive X-ray) and FESEM. In order to identify the organics of the adsorbent, a detailed
characterization was carried out using XRD (X-ray diffraction).

2.4. Adsorption Column (Fixed Bed)

Experiments concerning the column were conducted via a glass column (at lab scale)
packed with RHAC with a 1.6 cm internal diameter and a 50 cm length. A supportive
wool was fixed in the glass and, to ensure a good distribution of the liquid, the column
was closed. Further, to obtain a particular adsorbent bed height, the column was stuffed
with 5.0, 7.5, and 9.0 g of RHAC (equivalent to 8.50, 12.75, and 15.30 cm of bed depth,
respectively). At certain concentrations (100, 400, 700, 1000, and 2000 mg·L−1), phenol
solution was thrust downward within the sorbent column at a convenient flow rate (5.0,
7.5, and 10.0 mL·min−1) by a Charles Austen pump (Model CAPEX L3, Byfleet, United
Kingdom). The column effluent samples were collected at consistent durations and then
evaluated using a chromatography for high performance liquid (HPLC Agilent 1100 series,
Waldbronn, Germanysupported with a detecting system based on a diode array (DAD).
The tests were achieved at a 23± 1 ◦C without any pH adjustment. All kinetic studies of the
column were repeated once more, and then mean values were considered for the analysis.

2.5. Fixed-Bed Column Analysis Breakthrough

The breakthrough time (tb) and the exhaustible time (te) were acquired through ap-
plying a measure of the fixed-bed breakthrough curves, when Ct/C0 = 0.1 and Ct/C0 = 0.9,
respectively. The ultimate uptake capacity (qtotal , mg) for a specified concentration of the
inlet and the rate of flow is equivalent to the acquired under-the-plot area for the concentra-
tion of the adsorbed phenol, and can be determined through the following formula [35,36]:

qtotal =
QA
1000

=
Q

1000

∫ t=ttotal

t=0

(
C0 − Ce f f

)
dt (1)

where Q, A, and ttotal represent the flow rate (mL·min−1), the area below the curve, as well
as flow total time (min), respectively. C0 is the concentration of the influent phenol, while
Ce f f represents the effluent phenol concentration (mg·L−1). The effluent volume (Veff) is
computed by Equation (2), as follows [37]:

Ve f f = Q× ttotal (2)

The column’s equilibrium uptake
(
qeq
)

(mg·g−1) is described in Equation (3) as being
the overall adsorbed phenol volume (qtotal) per each gram of adsorbent (m) at the total flow
end time [38], as follows:

qeq =
qtotal

m
(3)
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2.6. Desorption Studies

It is crucial to consider the regeneration of the adsorbent material, as it is significant in
economic development. The current study was intended to accomplish phenol (adsorbate)
elution from an aqueous solution through the use of 0.1 M NaOH, taking into account
identical settings of a flow rate of 8 mL·min−1, adsorbent bed height of 8.5 cm used for
preloading of adsorbent, and a concentration of phenol feeding of 1000 mg·L−1. After
the elution, distilled water was conveyed via the column for bed washing purposes until
the wash effluent’s pH settled at nearly 7. The column was loaded once again with a
phenol concentration of 1000 mg·L−1 within conformable regeneration conditions. Studies
on regeneration of the column, as well as reuse, were applied for three sequences of
adsorption–desorption. The efficiency of regeneration was determined by Equation (4), as
follows [39]:

Regeneration e f f iciency (%) =
(qe,exp)r
(qe, exp )o

× 100 (4)

where (qe, exp )r is the adsorptive capacity of the regenerated column (mg·g−1) and (qe, exp )o
is the original capacity of the virgin adsorbent (mg·g−1).

2.7. Adsorption Column Modeling

Various kinetic models with different levels of complexity and accuracy were proposed
and reported; they normally predict or describe breakthrough curves of column adsorption
studies accurately. In this section, three different adsorption models were studied. Each
model was different from the other in terms of type of adsorption isotherm, inclusion or
exclusion of chemical reaction, significant or negligible mass transfer resistance, chemical
reaction kinetics, and the type of rate law used if nonequilibrium is assumed [35,40]. The
governing equations for each model are presented.

2.7.1. Model of Yoon–Nelson

The Yoon–Nelson model is based on the assumption that the rate of decrease in
the probability of adsorption of adsorbate molecule is proportional to the probability of
the adsorbate adsorption and the adsorbate breakthrough on the adsorbent. The Yoon
and Nelson model is not only less complicated than other models, but also requires no
detailed data concerning the characteristics of adsorbate, type of adsorbent, and the physical
properties of the adsorption bed [37]. The Yoon–Nelson equation’s linear expression for a
sole constituent can be shown in Equation (5), as follows [37]:

ln

(
Ce f f

C0 − Ce f f

)
= kYN t− τ kYN (5)

where kYN represents a constant for the rate (given in min−1) in addition to τ, which is the
time, required for 50% adsorbate development (given in min).

2.7.2. Model of Adams–Bohart

The model of Adams–Bohart is certainly an experimental formula constructed upon
the supposition that the adsorption rate is relative to the capacity of the adsorbent’s residual,
and the adsorbate concentration. Often, such model is utilized to highlight the early phase
of adsorption within the breakout curve. The expression is given as Equation (6), as
follows [37]:

ln
(Ce f f

C0

)
= kAB C0 t− kAB N0

Z
V

(6)

where kAB stands for the kinetic constant (L·mg−1·min−1), N0 presents the concentration of
saturation (mg·L−1), Z represents the column bed depth (cm), and V is the linear velocity,
which is determined as (flow rate/column’s e section area (cm·min−1)).
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2.7.3. BDST Model

The model of BDST depends physically on measuring the bed capacity at several
values of breakthrough. This basic model disregards the resistant mass transfer of the
intra-particles, as well as the external film resistance so that the adsorbate is adsorbed
directly onto the surface of adsorbent. Considering such hypothesis, the model of BDST
properly achieves and yields worthwhile modeling formulae for system parameters change.
An altered version of the formula that indicates the service time at breakthrough (t) as
being a static function concerning the process elements is the model of BDST [35,40,41].
The model of BDST is illustrated by Equation (7), as following:

t =
N′0

C0V
Z− 1

C0K
ln
(

C0

Cb
− 1
)

(7)

where t represents the column’s service time (h), N′0 represents the adsorption capacity
(mg·L−1), V represents the linear velocity of flow for the bed feed (cm·h−1), K represents
a constant value for adsorption rate (L·mg−1·h−1), and Cb represents the desired concen-
tration of solute at breakthrough (ultimate acceptable limit concentration, mg·L−1). The
BDST formula was effectively applied to characterize the adsorption of heavy metals using
phosphate-treated RH [41] and copper ions on RH [35]. The formula of the Adams–Bohart
equation, given in Equation (7), could be applied to determine the column’s service time
(t) of a bed depth Z having the values of N′0, C0, and K, which, essentially, can be assessed
for laboratory columns operated over a range of velocity values (V). Applying t = 0 while
solving Equation (8) for Z produces the following equation:

Z0 =
V

KN′0
ln
(

C0

Cb
− 1
)

(8)

where Z0 represents the least height of column required to output the effluent concentration
Cb, which is, moreover, recognized as the critical depth of bed. A basic form of the BDST
model is given as below:

t = aZ + b (9)

where

a = slope =
N′0

C0V
(10)

and

b = intercept = − 1
C0K

ln
(

C0

Cb
− 1
)

(11)

With the view to associate the isotherm cogency with kinetic formula more definitely,
the mean percent error (APE) with a base on the differences among the investigational data,
plus the model’s generated data will be applied through Equation (12), as follows [42]:

APE (%) =
∑N

i=1
∣∣(Aexp − Acal

)
/Aexp

∣∣
N

× 100 (12)

in which Aexp and Acal present the experimental, as well as determined, amounts, respec-
tively, while N is data point’s number.

3. Results
3.1. Physical Morphology of the Surface

The FESEM procedure was followed in order to examine the physical morphology of
the surface for RH, as well as the sample of activated carbon. Figure 1a–d summarizes the
FESEM/EDX mapping of the adsorbents. There were substantial variations between the
RH surface morphology and the sample of activated carbon. The morphological aspects of
the RH external epidermis presented an efficient arrangement that bears a resemblance to
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rolling hills, and is porosity-free (Figure 1a), while the activated carbon sample’s surface
was completely occupied by cavities, as porous structures were formed after chemical
activation (Figure 1b).
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Figure 1. FESEM and EDX images of (a,c) rice husk (RH) and (b,d) rice husk activated carbon (RHAC)
magnified 500 times.

Figure 1c,d shows the EDX images of the RH and RHAC. The EDX analysis demon-
strated that C, O, Cl, and Zn were the only four elements observed on the surface of RHAC,
with contents of 94.16%, 3.92%, 1.50%, and 0.41% (atomic percentage), respectively, and
respective corresponding mass percentages of 88.78%, 4.93%, 4.17%, and 2.12%. The C, O,
and Si contents within the RH were 58.89%, 34.98%, and 6.13% (atomic percentage), respec-
tively, demonstrating respective equivalent mass percentages of 49.15%, 38.89%, and 11.96%
(Figure 1c). To acquire a better perception of the textural properties of these adsorbents,
and the size of pores, as well as surface area distribution, analyses were conducted.

3.2. Isotherms of Nitrogen Adsorption and Physical Properties

The surface area of BET, volume of pores, diameter of pores, and microporosity of
the RH and RHAC are tabulated (Table 1). The resultant surface area produced by RH
was small, whereas the RHAC had a large surface area owing to its highly developed
microporous structure. The surface area of the RH increased by approximately 82.2 times
from 7.14 m2·g−1 to 586.59 m2·g−1. The RHAC had high microporosity of 67.6% with
a pore diameter of 2.06 nm, which produced an effective microporous adsorbent. This
adsorbent’s morphology also exhibited that it was porous (Figure 2).
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Table 1. Characteristics of rice husk (RH) pore’s texture and rice husk activated carbon (RHAC).

Parameter RH RHAC

Surface area (m2·g−1) 7.14 586.59
Micropore area (m2·g−1) a 1.44 415.80

Micropore volume (cm3·g−1) a 0.000 0.204
Total pore volume (cm3·g−1) b 0.006 0.301
Average pore diameter (nm) c 3.080 2.055

Microporosity (%) d 0.00 67.60
a Applying the model of Barrett–Joyner–Halenda; b A total pore volume for single-point adsorption; c Average
adsorption’s pore width (4V/A by BET)); d Microporosity given as (volume of micro-pore /total volume of
pore) × 100%.
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The observed surface area expansion of the BET was a result of micro-pores presence,
as demonstrated by the adsorption escalation at little relative pressures (P/P0 less than 0.1),
as appears in the nitrogen isotherm for the adsorption–desorption shown in Figure 2. In
accordance with the International Union of Pure and Applied Chemistry classification [43],
the RHAC adsorbent exhibited type I, which is a typical microporous configurations in
which the ultimate adsorption is realized at relative pressures (P/P0) near to unity.

3.3. Identification and Structural Analysis of Rice Husk Activated Carbon

The X-ray diffraction of the RHAC is shown in Figure 3a. From this figure it was
found that the X-ray diffraction patterns of the RHAC show a broad ‘hump’ between 15
and 35 ◦θ diffraction angles, while lacking any defined peaks. This pattern is similar to the
X-ray diffraction pattern of silicic acid (Figure 3b) reported by Nakbanpote et al. [44]. This
suggests that the organics of this sample is characteristic of amorphous silica, which cannot
be detected by X-ray diffraction. The results indicated that for the RHAC, the structure of
silicon dioxide did not change from an amorphous structure to a crystalline structure, such
as quartz, critobalite, or tridrimite.
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3.4. Studies of Fixed-Bed Column
3.4.1. Concentration Effect of the Influent Phenol on the Curve of Breakthrough

The breakthrough curves at variable concentrations of influent phenol are presented
in Figure 4. It was revealed that the process of adsorption rapidly reached the stage of
saturation and the breakthrough time deteriorated according to the increase in the concen-
tration of influent phenol. The influent phenol concentration’s increase caused a shorter
breakthrough along with higher adsorption capacity. Table 2 shows that the time for break-
through decreased from 153 min to 35 min, whereas the equilibrium uptake (qeq) increased
from 17.49 mg·g−1 to 45.75 mg·g−1 as the inlet concentration increased from 400 mg·L−1 to
2000 mg·L−1. This occurred because, at lesser inlet phenol concentrations, curves of break-
through scattered; hence, a slower breakthrough occurred. Sharper curves of breakthrough
were observed once the influent concentration has boosted [45]. Additionally, a minor
concentration gradient produced gentler conveyance owing to the diffusion coefficient’s
reduction or the coefficients of mass transfer. As the concentration of inlet elevated, the
breakthrough curve’s slopes and shorter times are obtained [45,46].
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Table 2. Data on column and their acquired parameters at different influent phenol concentrations,
rates of flow, and bed depths onto rice husk activated carbon (RHAC) (temperature = 23 ± 1 ◦C;
pH = 5.58).

C0
(mg·L−1)

v
(mL·min−1)

Z
(cm)

tb
(min)

ttotal
(min)

qtotal
(mg)

qeq
(mg·g−1)

Veff
(mL)

400 10.0 8.50 153 193 87.45 17.49 1930
1000 10.0 8.50 40 90 110.85 22.17 900
2000 10.0 8.50 35 60 228.95 45.79 600
1000 7.5 8.50 60 130 135.75 27.15 975
1000 5.0 8.50 84 149 152.05 30.41 745
1000 10.0 12.75 106 188 223.28 29.77 1880
1000 10.0 15.30 125 195 283.41 31.49 1950

3.4.2. The Rate of Flow Effect

The curves of breakthrough at different phenol’s rates of flow are demonstrated in
Figure 5. Breakthrough occurred faster as the flow rate increased. The breakthrough time
and qeq decreased from 84 min to 40 min and from 30.41 mg·g−1 to 22.17 mg·g−1, as the rate
of flow increased from 5 mL/min to 10 mL/min−1, respectively (Table 2). At a low influent
rate of flow, phenol required more time to connect with RHAC, thereby causing a higher
capacity of adsorption within the column. Nevertheless, the adsorbent at a higher linear
rate of flow was saturated early; due to the minimized time of contact, a huge volume of
phenol was adsorbed onto the adsorbent. Hence, there was a mis-distributed liquid into
the column, which led to a decreased solute diffusivity amongst the absorbent’s constituent
parts [35,40]. Moreover, the reason was due to the reduction of external mass transfer as a
result of an increase in the flow rate as phenol is easily transported to and from the beds
surface by diffusion. Until the point of breakthrough, the treated volume was efficiently
reduced as the rate of flow increased. Thus, the bed’s service time has changed accordingly.
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3.4.3. The Bed Depth Effect

Curves of breakthrough at different bed depths are displayed in Figure 6. They
demonstrated that their development usually take place faster at a reduced bed depth, and
that the breakthrough slope decreases upon the increase in bed depth, which usually leads
to an expanded zone of mass transfer. Table 2 shows that qeq was boosted from 22.17 mg·g−1

to 31.49 mg·g−1 as the bed depth increased from 8.5 cm to 15.3 cm, respectively. The
slope of breakthrough curve declined following the increase in the bed depth, which
led to an expanded zone of mass transfer. At the ultimate bed depth, a higher uptake
occurred due to the adsorbent’s surface area growth, leading to additional sorption sites
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adherence. Pollutant delayed breakthrough then led to a volumetric intensification within
the processed solution [28,40].
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3.5. Study of Desorption

The desorption cycle profile of phenol is shown in Figure 7. The curves of desorption
from cycles 1 to 3 exhibited a comparable asymmetrical form along with a fast increase in
concentration succeeded by a flatter decrease. It was observed that desorption cycles took
2 h, after which further desorption was insignificant. In the first cycle, the eluent’s total
volume at 2 h was 588 mL. The phenol ultimate concentration was acquired at 7, 6, and
4 min contact times and noted as 8282, 5861, and 5562 mg·L−1 for the first, second, and
third cycle, respectively. In spite of the small volume of eluting solution, it contained a high
concentration, which contributed to the processing simplicity, revival, and reuse of phenol.
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The regenerated RHAC was reused for further adsorption cycles. Figure 8 presents
the curves of breakthrough produced for the cycles of adsorption. The breakthrough
time (tb) remained almost constant throughout the three cycles of sorption, which has
noticeable significance for the feasible implementation of RHAC as phenol bio-sorbent.
This is because RHAC entails persistent use of the bio-sorbent without an obvious lack
of sorption process. Furthermore, no adsorbent swelling occurred, as specified by the
constant column’s bed depth [47]. The maximum uptake of phenol brought in a substantial
decrease from 22.17 mg·g−1 to 16.71 mg·g−1 after the three cycles. The regeneration
efficiency was 89.06% throughout the first cycle, then declined to 75.34% at the third cycle.
The regeneration efficiency reduction occurred as some adsorbate ions were linked to the
adsorbent via robust interconnection [47].
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3.6. Curve of Breakthrough Modeling
3.6.1. Yoon–Nelson Model Application

An ordinary hypothetical model established by Yoon–Nelson was utilized to examine
the phenol’s breakthrough behavior within a fixed-bed column. The kYN (a constant for
rate) and τ (required time for 50% phenol breakthrough) values were acquired using
Equation (5). Such values were implemented to determine the curve of breakthrough. The
kYN and τ values are presented in Table 3. As expected, τ decreased and kYN increased as
the concentration in phenol inlet, along with the rate of flow, increased. Furthermore, as
the bed depth increased, τ increased and kYN decreased. The notional curves were matched
against their equivalent experimental ones in Figure 9. It can be noticed that the resulting
curves of breakthrough from the experimental data are similar to the those examined by the
Yoon–Nelson model at different rates of flow, primary concentrations, and bed depths. The
model provided higher (R2 > 0.977) and lower APE values varying from 4.09% to 12.99%
(Table 3).
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Table 3. The Yoon–Nelson model parameters at dissimilar conditions.

C0
(mg·L−1)

Q
(mL·min−1)

Z
(cm)

kYN
(min−1)

τ
(min) R2 τexp

(min)
APE
(%)

1000 5.0 8.50 0.077 126.59 0.977 124 12.64
1000 7.5 8.50 0.069 97.81 0.992 100 4.89
1000 10.0 8.50 0.095 69.39 0.980 65 12.99
400 10.0 8.50 0.142 170.58 0.988 173 9.51

2000 10.0 8.50 0.239 46.67 0.992 45 4.73
1000 10.0 12.75 0.070 137.86 0.994 138 4.09
1000 10.0 15.30 0.077 170.21 0.989 165 11.02
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3.6.2. The Adams–Bohart Model Application

The sorption model of Adams–Bohart was applied to the investigational data as a
way to define the primary breakthrough curve’s portion. This method concentrates on the
assessment of variables that describe the properties, for instance, the sorption’s maximum
capacity (N0) and kinetic const. (kAB) by the Adams–Bohart model. The N0 and kAB val-
ues were determined from Equation 6, as shown in Table 4. The kAB value decreased in
accordance with the increase in the bed depth, as well as influent concentration of phenol.
However, it increased as the rate of flow increased. On the other hand, the N0 value in
all circumstances showed no substantial change. Moreover, the model provided a high
R2 > 0.975. A comparison between predicted curves against their corresponding exper-
imental ones was conducted as presented in Figure 10. There was clearly considerable
consistency between the values (experimental vs. predicted), thereby indicating that the
model of Adams–Bohart was valid for concentrations up to 0.5, above which big contradic-
tions could be observed among the plotted curves (experimental–predicted) regarding the
adsorption of phenol in the RHAC column. Although the model of Adams–Bohart deliv-
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ers a basic and comprehensive methodology for running and assessing sorption-column
experiments, it encounters a limited validity to the level of the employed conditions [48].

Table 4. The Adams–Bohart model’s parameters under various circumstances.

C0
(mg·L−1)

Q
(mL·min−1)

Z
(cm)

kAB × 104

(L·mg−1·min−1)
N0 × 10−4

(mg·L−1) R2

1000 5.0 8.50 1.14 3.808 0.975
1000 7.5 8.50 0.59 4.887 0.981
1000 10.0 8.50 1.31 4.039 0.982
400 10.0 8.50 1.68 5.421 0.979

2000 10.0 8.50 1.52 5.776 0.997
1000 10.0 12.75 0.59 5.796 0.994
1000 10.0 15.30 1.07 5.096 0.999
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3.6.3. The BDST Model Application

The t–Z lines at Ceff/C0 of 0.10, 0.60, and 0.88 values are presented in Figure 11. The
affined BDST constants that occur in accordance to the slopes and lines intercept, such
as K and, were determined using Equations (7)–(11); their results are shown in Table 5.
The K value describes the extent to which the fluid stage turned into the solid one. In the
case that K is large, even a small bed would avert breakthrough; though, as K declines,
an increasingly deeper bed is essential to avert breakthrough [49]. The capacity of BDST
adsorption (N′0) is a crucial constant for evaluating the efficiency of adsorbent; a powerful
adsorbent is typically characterized by higher N′0 values [49]. The lowest height of column
(Z0) essential for effluent concentration (Cb) of 0.1 mg·L−1 production was determined by
Equation (8). As shown in Table 5, as the Ceff/C0 value improved, the constant (K) and
the bed’s capacity of adsorption/ a unit bed volume (N′0) improved, while the minimum
column height (Z0) decreased. The R2 values were observed between 0.9299 and 0.9975,
which specified the BDST model soundness for this method. BDST model constants could
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be useful to increase the progression in any other rates of flow as well as concentrations
with no more experimental runs.
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Table 5. Service time model parameters for bed depth used for phenol adsorption (C0 given as
1000 mg/L; Q given as 10 mL/min).

Ceff/C0 K (L·mg−1·h−1) N
′
0 × 10−3 (mg·L−1) Z0 (cm) R2

0.10 0.0108 62.048 4.0842 0.9975
0.60 0.0164 62.048 2.7089 0.9299
0.88 0.0171 74.673 2.1481 0.9665

4. Discussion

Techniques that aim at characterizing FESEM and BET were followed in order to
investigate the structural features and surface areas of the RH and RHAC. Figure 1a
demonstrates that the outer epidermis of the RH sample was wrapped with a uniform
fluted texture. The sample of RHAC had a microporous structure with a large surface area
and many adsorption active spots (Figure 1b). The analysis of EDX revealed that the RH
and RHAC samples had comparable C and O elemental configurations; nonetheless, they
had dissimilar ratios by weight (Figure 1c,d). The elemental composition of RH showed
a higher carbon content, which makes it a convenient raw material for activated carbon
preparations. Carbon represents the largest part of RHAC, whereas a complete absence of
silica was observed within the RHAC, and existed merely in the RH. The carbon content of
the RHAC was 94.16%, which was higher than that of the RH (49.15%), while the RHAC
surface area was 586.59 m2·g−1. The larger RHAC surface area observed was due to the
increase in interspaces among the layers of carbon of the RHAC as a result of the ZnCl2
action; microspores existed in the adsorbent [6]. The nature of the boost in the RHAC
microporosity was, likewise, due to the areas left by ZnCl2 during carbon activation process.
This occurred as a result of the frequent washing process, which aimed to eliminate the
surplus ZnCl2 linked to the RHAC. Additionally, ZnCl2 brings about swelling, considering
cellulose as a major compound in RH; ZnCl2 imposes electrolytic action to the cellulose
molecular structure. The swelling action caused by ZnCl2 on the sidelong can break the
bonds of the molecules of cellulose, which leads to an intensification in intermicelle and
intramicelle voids of RHAC [6]. Therefore, a large surface area was observed for RHAC.
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Priya et al. [6] reported related findings with a greater surface area of activated carbon
treated with ZnCl2.

5. Conclusions

In this study, RHAC has been on an aqueous solution and assessed to be very powerful
adsorbent used for removing phenol. The morphological features of RHAC have demon-
strated a highly porous adsorbent compared with RH. RHAC demonstrated a surface area
(586.6 m2·g−1), total volume of pores (0.3 cm3·g−1), and microporosity (67.6%) that greater
than RH. The phenol uptake within a column of fixed-bed was reliant on the concentra-
tion of the influent phenol, the bed depth, and rate of flow. The capacity of adsorption
increased as the influent concentration and bed depth increased, but reduced as the flow
rate increased. The process of column sorption was improved at a higher concentration of
influent phenol and minor rate of flow, in addition to greater bed depth. The models of
Adams–Bohart, BDST, and Yoon–Nelson were properly utilized to predict the curves of
breakthrough, thereby proving that they were appropriate for the RHAC column design. A
high percentage of phenol desorption from consumed activated carbon implied that the
activated carbon could be redeveloped to be used. RH can efficiently be utilized in order to
equip activated carbon for treating phenol at cost effectiveness.
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