
Citation: Song, J.; Xu, C.; Feng, C.;

Wang, F. An Explicit Finite Element

Method for Saturated Soil Dynamic

Problems and Its Application to

Seismic Liquefaction Analysis. Appl.

Sci. 2022, 12, 4586. https://doi.org/

10.3390/app12094586

Academic Editor: Marek Krawczuk

Received: 26 March 2022

Accepted: 21 April 2022

Published: 30 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Explicit Finite Element Method for Saturated Soil Dynamic
Problems and Its Application to Seismic Liquefaction Analysis
Jia Song 1,2,* , Chengshun Xu 2, Chaoqun Feng 2 and Fujie Wang 1

1 School of Civil Engineering, North China University of Technology, Beijing 100144, China; wfj0528@163.com
2 The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University

of Technology, Beijing 100124, China; xcs_2017@163.com (C.X.); fcq_bjut@163.com (C.F.)
* Correspondence: sjandrew@163.com; Tel.: +86-88803940

Abstract: An explicit finite element method is proposed to solve the u-p-formed dynamic equation
of saturated porous media. In this method, a special discretization is implemented to discretize the
global computational domain into local node systems of the individual nodes, and the dynamic
equation of each local node system corresponding to each node is discretized by the completely
explicit integration method in the time domain. By cycling through all the nodes, the dynamic
responses of the global computational domain are obtained. In addition, a viscoelastic artificial
boundary is added in the method. In numerical examples, the proposed FEM is verified by the
good agreements between the results obtained from the proposed method and the analytical and
numerical solutions of existing methods, respectively. After being embedded in OpenSees software,
the proposed method is implemented into analysis of the seismic responses of liquefiable site.

Keywords: fluid-saturated porous media; u-p formulation; spatial discretization; explicit finite
element method

1. Introduction

Fluid-saturated porous media is a widespread saturated soil, which is a combination
of soil skeleton and fluid filled in the pores. The porous media theory and computational
schemes have an important influence in geomechanics. Specifically, porous media analyses
govern the physical behavior of cohesive soils consolidation and failure [1–4] and cohe-
sionless soils [5,6] response when subjected to static and dynamic loading. The mechanical
properties of the pore fluid and the fluid–solid couple interaction due to the relative move-
ment between the pore fluid and the soil skeleton [7,8] will both directly affect the overall
mechanical properties of the saturated porous media; in particular, the saturated sand
is prone to liquefaction under dynamic loading [9]. Previous seismic investigations all
indicated that ground failure and lateral large deformation due to soil liquefaction are the
main causes of damage to the structure [10–17].

The macroscopic mechanical properties of saturated porous media are much more
complex than single-phase media, so it is necessary to establish the equations to describe
the mechanical behavior of the soil skeleton and pore water, respectively, and to consider
the fluid–solid coupling interaction. In 1956, Biot [18] proposed a wave propagation theory
of saturated porous media based on a quasi-static consolidation model, considering the
inertial effects of the soil skeleton and pore fluid [19]. On that basis, Zienkiewicz et al. [20]
rewrote the equations by using different simplifying assumptions, such as the u-U-p, u-U,
u-p, and u-w models. Among them, the u-p formulation is a mixed equation of the vector
displacement u and the scalar pore pressure p. Compared with the full vector formulation
of the dynamic equation (e.g., u-U), the u-p equation has fewer degree of freedom and
can be directly solved for the fluid pressure variables without the need of secondary
calculations. It is suitable for describing the dynamic problems of saturated porous media
under low-frequency loading.
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Usually, the dynamic equations of saturated porous media can be solved by the
analytical method only under a few special boundary conditions and load forms [21].
Therefore, numerical methods represented by finite element method (FEM) are the main
methods for solving the dynamic problems of two-phase media. In the time domain, the
integration methods can be categorized into implicit methods and explicit methods, such
as the Newmark method [22], the Wilson-θ method [23], the generalized-α method [24,25],
and the central difference method. The u-U and u-w formulation are often solved by using
the staggered explicit–explicit [26,27], explicit–implicit [28,29] and implicit–implicit [28]
methods. However, the implicit–implicit or explicit–implicit scheme is basically used to
solve the u-p formulation of saturated porous media. This is because in the u-p formulation,
the fluid phase equation is formally a diffusion equation in terms of pore pressure p and is
usually solved by an implicit integration method. For example, Park [30] and Zienkiewicz
et al. [31] established unconditionally stable staggered implicit–implicit solution procedures
for the u-p dynamic equations of two-phase media. Huang and Zienkiewicz [32] improved
the Zienkiewicz method by introducing a pore pressure correction method, which obtains
both displacement and pore pressure through the estimated-corrected value calculation.
Since the u-p formulation is a mixed form of dynamic equations, using the same order of
shape functions of displacement and pore pressure would lead to instability of the results.
To overcome this problem, Zienkiewicz et al. [33] divided the calculation of acceleration in
one time step into two parts before spatial discretization, and proposed an explicit–implicit
algorithm for the case of zero permeability assumption to effectively avoid the instability
of the mixed formulations calculation. By introducing a parameter δ, Huang et al. [34] gave
an implicit–implicit algorithm of the u-p formulation under zero permeability assumption,
resulting in computational stability. Pastor et al. [35] proposed a fractional step algorithm
based on velocity and pore pressure, allowing the shape functions of the same order for
both displacement and pore pressure. To reduce computation and ensure computational
stability in a relatively large time step, an iterative stabilized fractional algorithm [36] and
an iterative pressure-stabilized fractional step algorithm [37] were proposed successively
based on the algorithm of Pastor et al. Park and Tak [38] proposed an FEM-based stable
algorithm that combines multiple time steps, remeshing, and subiteration. Soares et al. [39]
divided the soil into solid and fluid subdomains and established an uncoupled model for
each subdomain and solved each model separately. The dynamic equilibrium equation of
the solid phase was calculated using the implicit Newmark method. For the liquid phase,
a wave equation of pore pressure in scalar form was established by using its equilibrium
equation and the fluid continuity equation, and it was calculated using the explicit Green–
Newmark method. The coupling interaction between solid–fluid two phases, which had
not yet been considered due to the use of uncoupled models, was achieved by applying
interface forces on the two subdomains. This algorithm was finally proved unconditionally
stable. By diagonalizing both mass and fluid compressibility matrices, Xu et al. [40]
proposed a fully explicit iterative integration method with high efficiency. Considering the
low computational efficiency of using constant time step in the temporal computation of
the FEM, Tang et al. [41] used the mixed error of soil displacement and pore pressure as
a criterion for adjusting the time step, and proposed an adaptive time-stepping method
for calculating the fluid–solid coupling interaction or liquefaction problems based on the
FEM-FDM method.

In this paper, an explicit FEM for solving the u-p equation of saturated porous media is
proposed. In the space domain, a spatial discretization is employed that divides the whole
computational domain into local node systems for all nodes, i.e., the dynamic responses of
any node are related only to its surrounding nodes. In the time domain, combined with
a fully explicit integration method for the u-p equation [40], the displacement and pore
pressure responses of the soil in any time step are directly calculated using the results
from the previous two time steps. In addition, the proposed method is combined with the
viscoelastic local artificial boundary [42] to establish an effective FEM with decoupling
characteristics for solving the wave problem of saturated porous media. In the end, two
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examples are verified the proposed method, and the method is embedded into OpenSees
software to analyze the seismic liquefaction of the saturated sand.

2. Wave Equations of Saturated Porous Media in u-p Form

Zienkiewicz et al. [20] proposed the u-p formulation for fluid-saturated porous media,
with the following governing equations:

LTDLu− α∇p− ρ
..
u = 0 (1)

∇T .
u−∇Tk∇p +

1
Qb

.
p = 0 (2)

where u is the displacement of solid-phase soil skeleton, p is the pore pressure, α is the
compressibility coefficient of soil skeleton, ρ is the density of two-phase media, k is the
dynamic permeability coefficient, and Qb is the compressibility coefficient of pore fluid.

In two-dimensional case, ∇T =
[

∂/
∂x

∂/
∂y
]
; D =

 λ + 2G λ 0
λ λ + 2G 0
0 0 G

, and

LT =

 ∂/
∂x 0 ∂/

∂y
0 ∂/

∂y
∂/

∂x

, where λ and G are the Lame constants of the soil skeleton.

3. Explicit Finite Element Method for the u-p Formulation

Taking the two-dimensional (2D) plane strain problem of saturated porous media
as an example, the entire computational domain Ω is discretized into a plane domain
represented by 2D four-node elements. The shape functions of u, p, fu, and fq at any point
in element e are defined as follows:{

ue = Nuue; pe = Nppe
fe
u = Nufue; f e

q = Npfqe
(3)

where Nu and Np are the shape functions of displacement and pore pressure in element e,
as shown in Equation (4), ue and pe are the displacements and pore pressures inside the
element e, respectively, fe

u and f e
q are the external forces and flow rates inside the element

e, and ue, pe, fue, and fqe are the nodal displacements, pore pressures, external forces, and
flow rates, respectively, in element e, as shown in Equation (5). Nu =

[
Nu1 Nu2 Nu3 Nu4

]
; Nui =

[
Nuix 0

0 Nuiy

]
, (i = 1, 2, 3, 4)

Np =
[

Np1 Np2 Np3 Np4
] (4)



uT
e = [uT

1 , uT
2 , uT

3 , uT
4 ]; uT

i = [uix, uiy], (i = 1, 2, 3, 4)

pT
e = [pT

1 , pT
2 , pT

3 , pT
4 ]

fT
ue = [fT

u1, fT
u2, fT

u3, fT
u4]; fT

ui = [ fux, fuy], (i = 1, 2, 3, 4)

fT
qe = [ f T

q1, f T
q2, f T

q3, f T
q4]

(5)

Finite element discretization of Equations (1) and (2) is performed using the Galerkin
method [43] to obtain the following Galerkin weak form of the u-p equation:

∑
e

¨

Ωe

[
NT

u LTDLNuue −NT
u∇Nppe + ρNT

u Nu
..
ue

]
dΩ = ∑

e

˛

Γe

NT
u fuedΓ (6)

∑
e

¨

Ωe

[(
∇Np

)TNu
.
ue + k

(
∇Np

)T(∇Np
)
pe +

1
Q

NT
p Np

.
pe

]
dΩ = −∑

e

˛

Γe

NT
p fqedΓ (7)
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where Ωe is the computational domain of any element and Γe is the domain boundary of
this element.

3.1. Spatial Discretization

The dynamic responses of node k only are associated with the responses of the neigh-
boring nodes. On that basis, taking the 2D plane strain problem as an example, the whole
computational domain is discretized into local node systems for all nodes [44], as shown
in Figure 1. For node k1 at the corner of the computational domain, the four nodes of
element 1 adjacent to node k are renumbered as nodes 1 to 4; similarly, for the node k2 on
the boundary and the node k3 located inside the computational domain, the local node
systems are renumbered by the method shown in Figure 1. In the computational domain,
for the local node system composed of any node, an individual finite element equation
of the local node system is constructed and is computed in time domain. The dynamic
responses for the whole computational domain are obtained by cycling all the nodes.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18 
 

T T T T T T
1 2 3 4

T T T T T
1 2 3 4

T T T T T T
1 2 3 4

T T T T T
1 2 3 4

= [ ]   ;       [ , ] ,   ( = 1, 2, 3, 4)

= [ ]

= [ ]  ;     [ , ],  ( = 1, 2, 3

 

 

, 4)  

 = [ ]

u u u u u u =

p

f f f f f

 

  

  f  =   

  f









, , ,

, , ,

, , ,

, , ,

e i ix iy

e

ue u u u u ui ux uy

qe q q q q

u u i

p p p p

f f i

f f f f
 

(5)

Finite element discretization of Equations (1) and (2) is performed using the Galerkin 
method [43] to obtain the following Galerkin weak form of the u-p equation: 

N LDLN u N N p N N u N f
Ω Γ

 − + Ω = Γ    
e e

T T T T T
u u e u p e u u e u ue

e e
ρ d d∇

 
(6)

( ) ( ) ( ) 1N N u N N p N N p N f
Ω Γ

 
+ + Ω = − Γ 

 
    

e e

T T T T
p u e p p e p p e p qe

e e
k d d

Q
∇ ∇ ∇

 
(7)

where Ωe  is the computational domain of any element and Γe  is the domain boundary 
of this element. 

3.1. Spatial Discretization 
The dynamic responses of node k only are associated with the responses of the 

neighboring nodes. On that basis, taking the 2D plane strain problem as an example, the 
whole computational domain is discretized into local node systems for all nodes [44], as 
shown in Figure 1. For node k1 at the corner of the computational domain, the four nodes 
of element 1 adjacent to node k are renumbered as nodes 1 to 4; similarly, for the node k2 
on the boundary and the node k3 located inside the computational domain, the local node 
systems are renumbered by the method shown in Figure 1. In the computational domain, 
for the local node system composed of any node, an individual finite element equation of 
the local node system is constructed and is computed in time domain. The dynamic 
responses for the whole computational domain are obtained by cycling all the nodes. 

 
Figure 1. Local node systems. 

According to Figure 1, it is assumed that there are n adjacent elements for node k, and 
each element has four nodes. Based on Equations (6) and (7), the finite element equations 
of the local node system of node k are expressed as follows: 

Figure 1. Local node systems.
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n

∑
L=1

4

∑
j=1

ML
kj

..
uL

j +
n

∑
L=1

4

∑
j=1

KL
kju

L
j −

n

∑
L=1

4

∑
j=1

QL
kj p

L
j =

n

∑
L=1

fL
k,u (8)

n

∑
L=1

4

∑
j=1

SL
kj

.
pL

j +
n

∑
L=1

4

∑
j=1

HL
kj p

L
j +

n

∑
L=1

4

∑
j=1

(
QL

kj

)T .
uL

j =
n

∑
L=1

f L
k,q (9)

where L represents the influence of the adjacent element L on node k, and j = 1–4 represent
the influence of the four nodes of the element L on node k. The matrices in the above
equations are defined as follows:

ML
ij =
´ 1
−1
´ 1
−1 ρNuiNuj|J|dξdη

KL
ij =
´ 1
−1
´ 1
−1 NT

uiL
TDLNuj|J|dξdη

QL
ij =
´ 1
−1
´ 1
−1 NT

ui∇Npj|J|dξdη

HL
ij =
´ 1
−1
´ 1
−1
(
∇Npi

)T k
(
∇Npj

)
|J|dξdη

SL
ij =
´ 1
−1
´ 1
−1 NT

pi
1

Qb
Npj|J|dξdη

fL
i,u =

´
ΓL NT

u Tsdr

f L
i,q = −

´
ΓL NT

p qsdr

(10)
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where M is the mass matrix of saturated porous media, K is the stiffness matrix of the solid
phase, Q is the coupling matrix, S is the compressibility matrix of the fluid phase, H is
the permeability matrix of the fluid phase, fu and fq are the external load of and the flow
rate, respectively, Ts is the distributed force on the boundary of element L in the x and y
directions, and qs is the flow rate perpendicular to the boundary of element L.

In fact, Equations (8) and (9) are an alternative expression of Equations (6) and (7).
Equations (6) and (7) are the global equations established by assembling the coefficient
matrices of the global computational domain. In comparison, Equations (8) and (9) are
the equations established for the local node system. The dynamic responses of the whole
domain are obtained by cycling all nodes in the computational domain and solving the
equation of local node system of each node. Therefore, for the dynamic problem with large
degree of freedom, the dimension of equation of the local node system is very small and
computational efficiency is higher.

3.2. Explicit Integration Method in Time Domain

To increase the computational efficiency, the finite element Equations (8) and (9) are
computed using the explicit integration method [40] in time domain. The equations of the
local node system of node k at the t + 1 time step can be expressed as:

ut+1
k = 2ut

k−ut−1
k +∆t2 1

Mdk

n

∑
L=1

fL,t
k,u +∆t2 1

Mdk

n

∑
L=1

4

∑
j=1

QL
kj p

L,t
j −∆t2 1

Mdk

n

∑
L=1

4

∑
j=1

KL
kju

L,t
j (11)

pt+1
k = pt

k + ∆t
1

Sdk

n

∑
L=1

f L,t
k,q −

1
Sdk

n

∑
L=1

4

∑
j=1

(
QL

kj

)T(
ut

j − ut−1
j

)
− ∆t

1
Sdk

n

∑
L=1

4

∑
j=1

HL
kj p

L,t
j (12)

where the lumped mass matrix Me
dk and the lumped fluid compressibility matrix Se

dk of element
e are processed by the same diagonalization method [40], as shown in Equations (13) and (14).

(Me
dk)ij =

{
a
(
Me

k
)

ii = a
´

Ve
ρeNT

i NidVe (j = i)

0 (j 6= i)
,

ne

∑
i=1

(Me
dk)ii = a

ne

∑
i=1

(Me
k)ii = WeId = ρe AeId (13)

(Se
dk)ij =

{
b(Se

k)ii = b
´

Ve

1
Qe

b
NT

i NidVe (j = i)

0 (j 6= i)
,

ne

∑
i=1

(Se
dk)ii = b

ne

∑
i=1

(Se
k)ii = VeId =

1
Qb

AeId (14)

where Me
k and Se

k are the consistent mass matrix and the consistent fluid compressibility
matrix of element e, a and b are corresponding scaling coefficients, We and Ve are the mass
and compressive deformation of element e, respectively, Ae is the area of element e, and Id
is unit matrix.

4. Implementation of the Explicit Finite Element Method in OpenSees

The FEM been embedded in the open-source OpenSees software. The calculation
does not require solving simultaneous equations but rather solving three uncoupled equa-
tions corresponding to the three DOFs (ukx, uky, p) of the node. The dynamic equations
AX = B [45,46] can be computed in OpenSees by selecting a suitable algorithm and integrator.
The explicit temporal integration method UPExplicitdifference, the algorithm UPExplic-
itNR, and the equation solver ExplicitLinSOESolver are also added, respectively, and
FourNodeQuadUP element for diagonalizing the mass matrix M and fluid compressibility
matrix S of elements are added in the software.

The equivalent equations of Equations (11) and (12) are expressed as follows:

K̃k ṽt+1
k = F̃k (15)

where
F̃k = Fk −Rk −Mk

..
ṽ

t
− Ck

.
ṽ

t
(16)
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K̃k =

[
Mdk 0

0 −Sdk

]
, Ck =

[
0 −Qk
−QT

k −Hk

]
, Fk =

{
ft
uk
− f t

qk

}
(17)

ṽt+1
k =


ut+1

k
∆t2

pt+1
k
∆t

,
.
ṽ

t
=

{
ut−ut−1

∆t

pt

}
,

..
ṽ

t
=


ut−1−2ut

∆t2

− pt

∆t

 (18)

where K̃ in Equation (15) is a diagonal matrix. The dynamic responses of node k are
calculated by only the three equations corresponding to the three DOFs (uxk, uyk, pk) in
Equation (15): 

Mdk,x ṽt+1
k,x = F̃k,x

Mdk,y ṽt+1
k,y = F̃k,y

−Sdk ṽt+1
k,p = F̃k,p

(19)

Equation (19) is the equivalent form to Equations (11) and (12). The displacements
and pore pressure of the node k at time t + 1 are obtained by Equation (19).

ut+1
k,x

ut+1
k,y

pt+1
k

 =


∆t2 · ṽt+1

k,x

∆t2 · ṽt+1
k,y

∆t · ṽt+1
k,p

 (20)

The dynamic responses of the global domain at any time can be obtained by solving
of Equation (19) of all nodes. The computational flowchart of the proposed explicit FEM in
OpenSees is shown in Figure 2. In space domain, the proposed algorithm UPExplicitNR is
used to construct individual finite element equation of the local node system, and results of
the whole system are obtained by cycling all the nodes based on UPExplicitNR. In time
domain, the explicit temporal integration method UPExplicitdifference is used to compute
the results in every time step.
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The proposed algorithm has a much lower computational efficiency than implicit
methods for problems with a small DOFs. However, for the problems with a large DOFs or
strong nonlinear problems, the proposed method does not require the solving of simultane-
ous equations, only computing three decoupled equations for each node, and no nonlinear
iterative computation is performed within a suitable time step. Therefore, the efficiency of
the proposed method is improved significantly, and the computational memory is saved.

5. Viscoelastic Artificial Boundary

For the problems of wave propagation in saturated porous media, a viscoelastic
artificial boundary for the u-p equations is adopted. It is expressed as follows:

fuBl = −K∞
BluBl − C∞

Bl
.
uBl −Q∞

Bl pBl (21)

fqBl = H∞
Bl pBl + S∞

Bl
.
pBl (22)

where ∞ denotes the exterior domain, Bl is the node l on the boundary, fuBl and fqBl are
the stress and flow velocity of the node l on the boundary, respectively, and uBl and pBl
are the displacement and pore pressure of the node l on the boundary, respectively. The
coefficients in the above equations are expressed as follows:

K∞
Bl = WT Ll

[
K∞

BN 0
0 K∞

BT

]
W; C∞

Bl = WT Ll

[
C∞

BN 0
0 C∞

BT

]
W;

Q∞
Bl = WT Ll

[
Q∞

B
0

] (23)

H∞
Bl = Ll H∞

B S∞
Bl = LlS∞

B (24)

where Ll is the length corresponding to node l on the boundary, and W is the coordinate
transformation matrix for transforming the local coordinates to the global coordinates. The
parameters in the above equations are specifically

W =

[
lrx lry
l⊥x l⊥y

]
(25)

K∞
BN =

λ + 2G
2r(1 + A)

; K∞
BT =

G
2r(1 + A)

(26)

C∞
BN = BρCr

P1; C∞
BT = BρCr

S (27)

Q∞
B = α; H∞

B =
k

2r(1 + A)
; S∞

B =
k

Cr
P1

(28)

In Equation (25), lrx = cos(r, x) is the cosine of the angle between the positive direction
of the local r axis and the positive direction of the global x-axis. Other parameters in
Equation (25) are defined similarly to lxy. A = 0.8 and B = 1.1.

The artificial boundary condition as shown in Equations (21) and (22) actually changes
only the diagonal values of the coefficient matrix corresponding to boundary nodes in local
node system. Assume that there are m nodes on the boundary in the local node system of
node k. Equations (21) and (22) are substituted into Equations (8) and (9) to obtain the finite
element equations considering the viscoelastic artificial boundary:

Mdk
..
uk +

m

∑
l=1

C∞
Bl

.
uBl +

(
n

∑
L=1

4

∑
j=1

KL
kju

L
j +

m

∑
l=1

K∞
BluBl

)
−
(

n

∑
L=1

4

∑
j=1

QL
kj p

L
j −
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Compared to Equation (8), Equation (29) has an additional damping term and can be
solved by an explicit integration method [47], and the equations of the local node system of
node k at the t + 1 time step can be expressed as:

ut+1
k = ut

k +
∆t2

2
1

Mdk

n
∑

L=1
fL,t
k,u +

∆t2

2
1

Mdk

(
n
∑

L=1

4
∑

j=1
QL

kj p
L
j −

m
∑

l=1
Q∞

Bl pBl

)
− ∆t2

2
1

Mdk

(
n
∑

L=1

4
∑

j=1
KL

kju
L
j +

m
∑

l=1
K∞

BluBl

)
+∆t

2
1

Mdk

m
∑

l=1
C∞

Blu
t
Bl −

∆t
2

1
Mdk

m
∑

l=1
C∞

Blu
t−1
Bl − ∆t2 1

Mdk

m
∑

l=1
C∞

Bl
.
ut

Bl + ∆t
.
ut

Bk

(31)

pt+1
k = pt

k +
∆t

Sdk + S∞
Bk

n

∑
L=1

f L,t
k,q −

1
Sd + S∞

Bk

n

∑
L=1

4

∑
j=1

(
QL

kj

)T(
ut

j − ut−1
j

)
− ∆t

Sd + S∞
Bk

(
n

∑
L=1

4

∑
j=1

HL
kj p

L
j +

m

∑
l=1

H∞
Bl pBl

)
(32)

where, the subscript Bk of
.
ut

Bk and S∞
Bk represents the corresponding value when the target

node k is also the node on the boundary.

6. Validation of Method and Comparison of Computational Efficiency

Example 1. The computational model for a one-dimensional (1D) semi-infinite domain of saturated
porous media is shown in Figure 3. The left and right sides of the model are impermeable boundaries,
and their horizontal displacement is fixed. The bottom of the model is assigned a viscoelastic artificial
boundary, and the top surface of the model is a free drainage boundary applied with a constant
uniform load of 1.0 Pa. The material parameters of the model listed in Table 1 [21,48] as Material
No. 1 are taken from the reference [21,48]. The analytical solutions, as the reference solutions, for
the 1D problem of saturated porous media proposed by Simon et al. [21].
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Figure 3. Numerical model for 1D saturated porous media.

In Figure 4, the numerical solutions and analytical solutions are compared at three
dimensionless time parameter τ = 20, 40, and 60, respectively. The numerical solutions of
the displacement and pore pressure of the 1D soil column are in relatively good agreement
with the analytical solutions. In addition, the numerical and analytical solutions of the
displacement and pore pressure dynamic time-history responses at nodes 5 m and 45 m
from the center of the load are compared in Figure 4, which shows consistency between the
two results. The comparison results verify the accuracy of proposed method.
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Table 1. Parameters of linear elastic saturated soil.

Basic Material Parameters

Parameter Value

ES 3000 Pa Young’s modulus
ρ 0.306 kg/m3 Density of two-phase media
ρf 0.2977 kg/m3 Density of fluid-phase
n 0.333 Porosity
ν 0.2 Poisson’s ratio
k 0.004883 m3s/kg Dynamic permeability coefficient

λ 833.3 Pa Lame’s constants of the soil
skeleton

G 1250 Pa Shear modulus

Variable material parameters considered in the example

Parameter Parameters No. 1 No. 2

Kf 0.3999 × 105 Pa 0.6106 × 105 Pa Bulk modulus of pore fluid
Ks ∞ 0.5005 × 104 Pa Bulk modulus of soil skeleton

Qb 0.1201 × 106 Pa 0.1385 × 105 Pa
Compressibility coefficient of

pore fluid

Wave propagation velocity in saturated soil

Parameter
Actual wave velocity

No. 1 No. 2

Cp 635.12 m/s 176.15 m/s P wave velocity
Cs 63.92 m/s 89.69 m/s S wave velocity
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Figure 4. Comparison of numerical and analytical solutions for the 1D model of saturated porous media.
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Example 2. Computational efficiency is compared in this example. A 2D computational model
with size of 50 m × 50 m is shown in Figure 5. The top surface of the model is set as a drainage
boundary and is subjected to a uniformly distributed sinusoidal load, and each of the other three
sides are set as artificial boundaries. Three target nodes (1, 2, and 3) are selected for analysis. The
material properties are listed in Table 1 as Material No. 2. Xu’s method and Newmark method are
used to compare the responses and computational efficiency with the proposed method, respectively.
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Figure 6 shows the displacement and pore pressure time-history curves of the target
nodes. The red and blue curves in the figure represent the results obtained from the
proposed method and the Xu’s method [40], respectively. The results of the two methods
have a good consistence. The consistency further validates the proposed method.
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Figure 6. Dynamic responses of the 2D model for saturated porous media.

By refining grids of the model in Figure 5, the total computational times of the
proposed method and Newmark [31] method are compared in Figure 7. The model is
discretized into approximately 1000, 2000, 3000, 4000, and 5000 nodes, respectively. Com-
parison of the computation time of the two algorithms show that when the model has a
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relatively small number of nodes, the implicit Newmark method leads to much less com-
putation time than the proposed method, because it is unconditionally stable and allows a
relatively large time step. However, as the number of nodes increases to approximately
3000, the total computation time of the two methods is basically similar, and the compu-
tational efficiency of the proposed method is significantly improved. When the number
of nodes increases to approximately 4000, the computational efficiency of the proposed
explicit method is far higher than the implicit Newmark method, and such an advantage
becomes more significant as the number of nodes continues to increase.
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7. Analysis of Nonlinear Problems
7.1. Finite Element Model

Figure 8 shows the 2D model of a liquefiable site, which is composed of a 15 m dense
sand layer, a 15 m liquefiable loose sand layer, and an 8 m-dense sand embankment from
bottom to top. The seawater has a depth of 2 m. The top surface of the model is set as a
drainage boundary. To simplify the model, the horizontal and vertical displacements at the
bottom of the model are fixed, and the horizontal displacements of the left and right side
boundaries are also fixed.
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The Wolong station seismic record of the Wenchuan earthquake is selected as the input
motion. It has a peak acceleration of 0.3 g. The acceleration time history curve is shown in
Figure 9. Attention is fixed on the numerical results at 6.2 s, 16.6 s, and 30 s, respectively.
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The saturated soils are simulated using the quadrilateral plane strain element element
quadUP [49,50]. The parameters of soil elements are listed in Table 2. Each node of the
element has three DOFs, corresponding to horizontal displacement, vertical displacement,
and pore pressure, respectively. In view of using a 2D plane strain model to simulate a 3D
problem, the out of plane thickness of the model is set to be 1.0 m. The constitutive model
of saturated soil chooses the PressureDependMutiYield02 (PDMY) command [51,52], with
the material parameters [49] listed in Table 3.

Table 2. Soil element parameters.

Loose Sand Layer Dense Sand Layer

Element thickness 1.0 m 1.0 m
Vertical gravitational acceleration −9.81 m/s2 −9.81 m/s2

Liquid-phase undrained bulk modulus 4.4 × 106 kPa 7.3 × 106 kPa
Horizontal permeability coefficient 1 × 10−4 m/s 1 × 10−5 m/s

Vertical permeability coefficient 1 × 10−4 m/s 1 × 10−5 m/s

Table 3. Material parameters of the model.

Parameters Loose Sand Layer Dense Sand Layer

Density ρ 1.7 ton/m3 1.9 ton/m3

Reference shear modulus Gr 3.57 × 104 kPa 2.59 × 104 kPa
Reference bulk modulus Br 8 × 104 kPa 6 × 104 kPa

Friction angle φ 33.5 31
Octahedral peak shear strain γmax 0.1 0.1

Pressure coefficient n 0.5 0.5
Dilatancy angle φPT 25.5 31

Shear contraction coefficient c1 0.045 0.087
Shear contraction coefficient c3 0.15 0.18

Dilatancy coefficient d1 0.06 0.0
Dilatancy coefficient d3 0.15 0.0

Number of yield surface 20 20
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Table 3. Cont.

Parameters Loose Sand Layer Dense Sand Layer

Shear contraction coefficient c2 5 5
Dilatancy coefficient d2 3 3

Liquefaction coefficient l1 1 kPa 1 kPa
Liquefaction coefficient l2 0.0 0.0

Initial void ratio e 0.6 0.6
Cs 1 0.9 0.9
Cs2 0.02 0.02
Cs 3 0.7 0.7

Standard pressure 101 101

7.2. Numerical Results and Analysis

The seismic responses of the saturated porous media are analyzed by the proposed
method and the implicit Newmark method, respectively. Figure 10 shows the time history
curves of horizontal and vertical displacements at measuring points D1–D4. The horizontal
displacement and vertical displacement at each measuring point gradually increase with
time and gradually decrease with burial depth, and reach the maximum of 0.1 m and 0.12 m,
respectively, at the top of the embankment. In addition, the time history curves of both
horizontal and vertical displacement show the stepwise increase in amplitude, respectively,
at 6.2 s and 16.6 s.
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Figure 11 shows the excess pore pressure time history curves at measuring points
W1–W4. These curves exhibit basically the same variation trends, and their peaks occur at
basically consistent time points. The amplitude of pore pressure at each measuring point
gradually increases with the increase in the burial depth. The excess pore pressure of the
dense sand layer reaches a maximum value of 75 kPa.

Moreover, Figures 10 and 11 compare the results of the proposed method and the
implicit Newmark method. The comparison shows that the numerical results of each
measuring point obtained by the two methods agree well, indicating the correctness of the
proposed method.

To observe the overall lateral deformation and settlement of the site, Figure 12 shows
the contour plots of horizontal displacement of the site at 6.2 s, 16.6 s, and 30.0 s, as well as
the contour plots of vertical displacement at 30 s. The deformation in the figure is magnified
30 times. As can be seen from the figure, the horizontal displacement at the nodes on the
left and right sides of the embankment is the largest; the embankment gradually collapses
under the earthquake, causing the embankment soil to move toward both sides, with the
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maximum horizontal and vertical displacements reaching 0.13 m and 0.19 m, respectively,
at 30 s.
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gradually collapses under the earthquake, causing the embankment soil to move toward 
both sides, with the maximum horizontal and vertical displacements reaching 0.13 m and 
0.19 m, respectively, at 30 s. 
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Figure 13 shows the contour plots of pore pressure ratios of the ground soil. The
loose sand layer near the drainage boundary liquefies at 6.2 s and 16.6 s. As the decrease
in the input acceleration, the pore water is drained upwards, and the soil particles are
redistributed. The soil tends to a stable state.
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Figures 12 and 13 also compare the contour plots of displacement and pore pressure
ratio computed by the proposed method and the implicit Newmark implicit method,
respectively. The soil deformation patterns obtained by the two methods are similar, and
the magnitudes of displacement and pore pressure computed by the two methods are
basically consistent, further validating the correctness of the proposed method.

8. Conclusions

An explicit FEM for solving the dynamic responses of saturated porous media is
proposed based on the u-p formulation. In spatial domain, the global system is divided into
the local node systems of all nodes, which means that the responses of each node only are
related to the responses of the surrounding nodes. In time domain, the local node system
of each node can be discretized by a completed explicit integration method, and further be
simplify into three independent equations corresponding to each DOF of the node. The
dimension of FE equations of each local node system is small and is solved fast. By cycling
through all the nodes, the dynamic responses of the global computational domain can be
obtained. In this way, the proposed method has the high efficiency for solving larger DOFs
problem and strong nonlinear problem of the fluid-saturated porous media. Moreover,
a viscoelastic artificial boundary is added to the method, and changes only the diagonal
values of the coefficient matrix corresponding to boundary nodes and does not change the
form of each coefficient matrix corresponding to each local node system. Additionally, the
proposed method is validated by comparing with the analytical and numerical solutions of
existing methods, and it has high computational efficiency. In the end, the application to
the seismic responses of liquefiable site indicates that the proposed method is an effective
method for solving the dynamic problems of saturated porous media.

In this method, a complete explicit integration method with only first-order accuracy
is chosen. However, based on the same spatial discretization, other suitable integration
methods with high order accuracy can also be used in the FE method, such as the integration
method used in the viscoelastic artificial boundary section. In addition, the computational
efficiency of the proposed method only is verified by comparing with implicit Newmark
method. The generality of the proposed needs to be confirmed for various types of analyses
and comparisons.
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