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Abstract: With the development of navigation globalization and ship dehumanization, the contra-
diction between the increasing demand for ship behavior supervision and limited traffic service
resources is obvious, and the frequent occurrence of accidents at sea is a problem. The monitoring of
abnormal ship behavior is an important link in maritime transportation. With the popularization of
the automatic identification system and increasing research in the maritime field, the AIS is widely
used in the management of ship static information and the real-time sharing of dynamic information.
The generated moving ship trajectory data provide a new opportunity for research into abnormal
ship behavior and its detection. In light of the current situation of abnormal ship behavior research,
we detected abnormal ship behavior from the point of view of spatial information and thematic
information based on moving ship trajectory data. Therefore, this study first modeled the cognition
of abnormal ship behavior. Then, based on the cognition of group ship behavior rules, we used a
method based on graph structure learning to mine maritime routes from the perspective of ship
spatial information. Next, we used Rayda’s criterion to detect the anomalous behavior of ships
in space. Then, based on the isolation forest algorithm, we detected and described the abnormal
behavior shown by ship thematic information. The experimental results show that the framework
proposed in this paper can effectively detect the abnormal behavior of ships.

Keywords: AIS data; maritime trajectory; trajectory data mining; anomaly detection

1. Introduction

Maritime transportation is favored and being rapidly developed due to its advantages
of large freight volumes, low cost, low energy consumption, and low required investment.
With the continuous innovation of shipbuilding technology, there are more than 4 million
ships sailing within the coastal waters of China every year [1]. Maritime transport un-
dertakes 90% of the work of world trade and transportation [2]. Therefore, it can be said
that the development of seaborne trade is a barometer of the development trend of the
global economy [3]. At the same time, China’s national policy vigorously supports the
development of the maritime transport industry. In 2013, President Xi Jinping proposed the
cooperation initiatives to build the “New Silk Road Economic Belt” and the “21st Century
Maritime Silk Road” [4]. In 2016, China also issued the “Outline of the Development Plan
for the Yangtze River Economic Belt” to promote the orderly and free flow of economic
factors and build a new bidirectional corridor based on land and sea with the outside world.
Therefore, the supervision of maritime traffic is crucial.

However, with the continuous development of the maritime shipping industry and
continuous application of the integrated system of various marine services, the number
of marine traffic accidents is also increasing. According to the “Transportation Safety
Production Accident Report (2019)”, a total of 197 marine traffic accidents occurred during
this period, resulting in the deaths of 115 people and the loss of up to 12 Gt of goods.
Marine traffic accidents usually result from abnormal ship-related behaviors. In order to
better supervise maritime safety, one needs to detect abnormal ship behaviors.
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In order to ensure safety in navigation, the AIS base station came into being. Interna-
tional Convention for Safety of Life at Sea (SOLAS) regulation V/19 stipulates that all ships
of 300 gross tonnage and above engaged in international voyages, cargo ships of 500 gross
tonnage and above not engaged in international voyages, and all passenger ships (regard-
less of size) should be fitted with automatic identification systems (AISs). The requirement
came into effect for all ships on 31 December 2004 [5]. An AIS is a self-reporting information
system mainly designed for collision avoidance that uses VHF radio information to track
and monitor ship movements by exchanging position, heading, and speed information with
other AIS-equipped ships and AIS base stations in the vicinity [6]. There are 27 categories
of AIS message types, which can be divided into three types: static information, dynamic
information, and voyage-related information [7]. However, this study focuses on the use of
the dynamic information and static information of ships to further explore the law of ship
behavior. The static attributes include the vessel’s IMO number, vessel name, Maritime Mo-
bile Service Identity (MMSI), callsign number, and size and type of the vessel. The dynamic
attributes include the ship position, time stamp, speed over ground (SOG), course over
ground (COG), and other information [8]. Meanwhile, vessels have different punctuation
intervals due to differences in static information, dynamic information, and voyage-related
information during the course of their journeys.

The AIS system provides data support for the analysis and modeling of maritime
traffic and enhances the feasibility of research into abnormal behavior detection for ships.
Ship behavior is not the specific behavior of a ship but refers to the mode and law of
similar actions of ship groups, which not only depend on human consciousness, thinking,
decision making, and manipulation but are also affected by the characteristics of the ship
and the surrounding environment [9]. Existing research has not effectively combined the
characteristics of ship behavior to discriminate abnormal patterns. Since the occurrence of
marine accidents can usually be attributed to the abnormal behavior of ships, the charac-
teristics of marine accidents in this study were abstracted from three dimensions—spatial
attributes, temporal attributes, and thematic attributes—to obtain the data expression of
the abnormal behavior of ships. For example, on 14 May 2021, the accident investigation
report of the Maritime Safety Administration of the People’s Republic of China showed
that a ship drifted 2 km away from its original route due to a wind disaster and then finally
capsized and sank. Based on the AIS data, it can be observed that the spatial position of
the ship deviated from the trajectory point group after the wind accident. The schematic
diagram is shown in Figure 1. Therefore, it is feasible and necessary to detect abnormal
behavior of ships based on AIS data. On the one hand, it can reduce the workload of
maritime surveillance operators and improve the efficiency of maritime surveillance [10].
On the other hand, it has guiding significance for the relevant departments to formulate
management measures such as the planning of navigation routes and maritime traffic
control. Additionally, it has great socioeconomic and environmental benefits.

The purpose of this study was to model and mine the typical motion patterns by
analyzing the behavior of ships at sea and to detect and evaluate the abnormal behavior
of ships based on the AIS data in the framework of the discovery patterns from the
perspectives of spatial attributes and thematic attributes to comprehensively express the
maritime traffic situation. First, we extracted the information of the maritime routes based
on the AIS data extension main graph structure learning strategy to generate a data-driven
representation of the real navigation routes. Then, we detected and evaluated abnormal
ship behavior based on Rayda’s criterion and the isolated forest algorithm for the spatial
attributes and thematic attributes, respectively.

The remainder of this paper is organized as follows. Section 2 is a review of the relevant
research. Section 3 introduces the study area and the data and describes the detection
method for abnormal behavior based on AIS data. Section 4 provides the experimental
results and analysis. Section 5 summarizes the content of this article and puts forward
future outlooks.
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Figure 1. Schematic representation of the spatial offset of trajectory points. Given the motion
trajectories of three moving objects and the fact that p1 is in a low-density region during motion, it
can be suspected that there is a spatial offset of p1.

2. Related Work

Most of the existing studies have reviewed the abnormal behavior of ships based
on research methods from their respective fields. Classification according to the research
methods can help to elucidate the relevance and continuity of the method in the field, but
because the research methods are prone to repeated use, and the existing methods tend
to be complex and comprehensive, it is impossible to review the progress of the research
with a single method. Therefore, we chose a classification method based on the results
of the study to classify the abnormal behavior of ships. According to the literature, the
research on abnormal behavior detection for ships can be divided into the following four
categories according to the results: only spatial position abnormalities, spatial position
and thematic attribute abnormalities, specific situation abnormalities, and no specific
experimental results, with only a description of the detection framework instead.

Soleimani et al. [11] compared the input trajectory with the approximate optimal
path generated by the A* algorithm to obtain the ship’s abnormal score for the spatial
position. This method belongs to unsupervised learning, which can effectively deal with
large datasets. Rong et al. [12], based on the Douglas–Peucker algorithm and density-
based clustering algorithm, abstracted the ship route into leg sections and turning sections
and then probabilistically characterized marine traffic based on the lateral distance of the
trajectory points and other attributes. Pallotta et al. [2] used unsupervised incremental
learning to cluster and visualize routes and then used the knowledge of the routes to
trajectory points for route classification and anomaly detection. Xiong et al. [13] used the
multi-kernel non-parametric estimation method to estimate the probability density of the
motion patterns of ferry vessels and set the criterion of abnormality to detect a ferry with
abnormal behavior. Laxhammar [14] trained the Gaussian mixture model by taking the
ship point space information and the attribute information as eigenvalues and marked the
outliers by calculating the probability of the new trajectory points generated by the trained
model. Ristic et al. [8] used the kernel density estimation method to extract the ship motion
pattern from the real AIS data and identify the abnormal points. Bomberger et al. [15] used
the incremental learning method based on a fuzzy neural network to forecast and evaluate
the position of a ship. Smith et al. [16] combined the Gaussian method and extreme value
theory to identify abnormal behavior in the trajectory flow, such as deviation, mooring, and
wandering. Venskus et al. [17] performed unsupervised learning on the trajectory flow data
obtained by the sensor based on the SOM network to detect abnormal ship movements in
maritime traffic.

Lei [6] proposed a comprehensive anomaly detection framework, MT-MAD, to mine
the spatial characteristics, sequence characteristics, and behavior characteristics of the
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ship’s trajectory. Finally, the three features were combined with the cooperative value to
determine an abnormal situation for the ship. Shahir et al. [18] proposed an interactive
detection system based on the DBSCAN algorithm and Markov algorithm for the multi-ship
encounter problem. Based on the two-dimensional Gaussian distribution, Holst et al. [10]
carried out probability modeling for the normal ship-running trajectory and detected the
ship characteristics by establishing a model. Pallotta et al. [19] extracted abnormal ship
traffic by correlating the ship trajectory with the existing route and then scored the degree
of abnormality of the point with respect to the course, bow direction, and lateral distance of
the trajectory point. Osekowska et al. [20] represented the ship’s behavior using the charge
value and built a model to detect abnormal behavior of a ship by defining the relationship
between the ship’s movement mode and the change, accumulation, and distribution of the
charge value. The method proposed by Venskus et al. [21] is similar to the charge theory
proposed by Osekowska et al. [20], which uses the principle of a bionic animal pheromone
to detect the standard path of the ship and then uses it to detect the nonstandard movement
of marine traffic.

Since it is difficult to consider all the aspects in anomaly detection, it is necessary to
consider an anomaly in the context of the situation after it is detected [22]. For example, the
deviation of the ship may be a simple response to a particular scenario such as an iceberg
or hurricane [22]. Additionally, in some cases, seemingly normal and benign behavior, after
combination with the information of the scene, may turn out to be deceptive or concealed
abnormal behavior. Kraiman et al. [23] built a model based on a Gaussian mixture model
and self-organizing neural network and used the ship attribute information and related en-
vironmental information as input data for abnormal behavior detection. Riveiro et al. [24]
used an interactive data mining module including SOM, GMM, and Bayesian theory to
build the model and judge the abnormal behavior of a ship. This method can obtain
situational knowledge and artificial feedback online as well as use visual means to continu-
ously improve the model update. Mascaro et al. [25] learned the data by generating static
and dynamic Bayesian networks and added meteorological factors and ship interaction
information to enhance the learning ability of the model. Finally, the average scores of
12 abnormalities and the difference between the score and normal behavior were obtained.
Radon et al. [26] combined “context information”, including marine environmental factors
such as the wind direction and speed, to discriminate abnormal results based on the den-
sity clustering algorithm and finally interpreted an abnormal situation through the prior
knowledge of experts. The study of Jakob et al. [27] focused on the detection of pirate threat
behavior, combining environmental factors and ship attribute characteristics to create a ship
movement model based on game theory, the Nash equilibrium principle, and reinforcement
learning for the ship route and attack simulation evaluation.

Riveiro et al. [22] expounded on and discussed methods of marine anomaly detection
based on four aspects—marine traffic data, methods, systems, and users—and put forward
strong insights for future development. Laxhammar et al. [28] evaluated two commonly
used methods of maritime anomaly detection: the Gaussian mixture model and adap-
tive kernel density estimator. They stated that both methods have certain limitations.
Therefore, a clustering method combining scenario information and ship motion attribute
features was proposed at the end of the article, but this was not verified by experiments.
Arguedas et al. [29] created a multi-layer interactive platform called Blue Hub and pro-
posed several spatiotemporal mining techniques to enhance situational awareness. The
authors opined that there is still much work to be conducted in the consolidation of past
studies. Jasinevicius et al. [30] used a rule-based fuzzy expert knowledge graph to monitor
the port safety system. The system combined the characteristics of ship attributes, person-
nel, and cargo risk factors to detect and identify the behavior of a ship, but this was not
verified by experiments.

From the review of the research on abnormal behavior detection for ships, we can
observe the following problems: (1) most of the existing studies have defined the “abnormal
behavior of ships” in their respective fields without elaborating on the reasons for these
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definitions; (2) while previous studies have usually been based on using historical data
to extract relevant knowledge about the behavior of ships, existing studies have focused
more narrowly on the behavior of ships on specific routes; and (3) the existing research
on detection is not comprehensive, with the research methods only considering the single
attribute characteristics of the ship and not a fusion of characteristics. Some studies still
only identify normal or abnormal conditions in a binary fashion, not considering the degree
of abnormality for the impacting factors.

In this study, the existing research was combined with the actual geographical envi-
ronmental factors for a single ship’s motion behavior to create a relatively comprehensive
framework for detecting abnormal behavior. Based on the graph structure learning method
and the tree linking strategy, we detected the structure of maritime routes to represent the
ship’s travel route. The extracted network structure characteristics maintained the real
geographic mapping between nodes and could reduce the storage requirements for the
maritime routes. Then, using each segment as a unit, the probability characteristics of the
trajectory points were detected from the perspectives of spatial attributes and thematic
attributes, and the score value for the degree of abnormality of the trajectory points was
obtained to evaluate the ship’s motion mode.

3. Materials and Methods

The research method presented in this study consisted of three parts: the general
situation of the research area and preprocessing of the research data, the detection of
abnormal behavior of a ship based on spatial attributes, and the detection of abnormal
behavior of a ship based on thematic attributes. For the second part, there were two phases:
(1) the extraction of maritime routes based on AIS data and (2) the detection of abnormal
behavior for ships using spatial attributes based on Rayda’s criterion. For the third part,
there were two phases: (1) nearest route matching and (2) the detection and scoring of the
abnormal behavior characteristics of the ship’s thematic attributes based on the isolation
forest algorithm. The framework of this study is shown in Figure 2.
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3.1. Overview of Study Area and AIS Data Preprocessing
3.1.1. Overview of the Study Area

There is a large number of sea-going ship trajectories. In order to mine the characteris-
tics of the ship’s behavior pattern, we partitioned the ship based on its location.

China is located in the east of the Asian continent, facing the Pacific Ocean. The
Bohai Sea, Yellow Sea, East China Sea, and South China Sea are the four sea areas under
the jurisdiction of the People’s Republic of China. Marine Regions integrates and serves
geographic information from the VLIMAR Gazetteer and the MARBOUND database and
proposes a standard of marine georeferenced locations, boundaries, and regions. Based on
this website, we downloaded the boundary data of the global sea area and intercepted the
boundary data of the four major sea areas of China as the data of our research area.

3.1.2. AIS Data Preprocessing

In 2002, the International Maritime Organization (IMO) approved the automatic
identification system (AIS). The AIS has become an indispensable tool for maritime safety
detection in the world [31]. The AIS data can be transmitted to the relevant equipment
through the satellite receiving system or the shore-based receiving system for storage.
There are four types of AIS messages: static messages, dynamic messages, voyage-related
messages, and safety-related messages [8]. Since the dynamic and static information can
reflect the ship’s kinematics information and fixed information at the data level, we filtered
the key fields, and the information is shown in Table 1.

Table 1. AIS data message content.

AIS Data Type AIS Data Message Content

Static Maritime Mobile Service Identification (MMSI), International Maritime
Organization (IMO), callsign, ship width, ship type, ship draught, navigation port

Dynamic Position, timestamp, speed over ground (SOG), course over ground (COG)

Using the National Water Transport Information Service Platform and the China
Port Network, we obtained the navigation data for all vessels of fishing boats, cargo
ships, oil tankers, passenger ships, and engineering ships in Zhejiang Province from
25 October 2021 to 24 November 2021. The AIS data arise from the integration of multiple
sensor devices. The quality of the AIS data is uneven due to maritime route congestion,
navigation equipment failure, and tampering, which may lead to bad data, duplicate data,
and missing data. Therefore, we needed to preprocess the crawler data.

We preprocessed the AIS data in four aspects: map matching, data cutting, data
deletion, and data completion:

1. Map matching. Map matching is essentially a process of matching trajectory points
with maps. The geographic coordinate system for the AIS data is WGS84. However,
due to the data encryption problem for the data crawler, we needed to perform
artificial offset correction by comparing them with the WGS84 map.

2. Data deletion. In order to ensure the accuracy of the research, it was necessary to
delete illogical data. We directly deleted data in the following cases: (1) trajectory
data whose MMSI was null or whose length was not 9, (2) duplicate AIS data, (2) the
trajectory of a vessel sailing in a foreign sea area bordering on China, as the study only
considered vessels sailing within China’s sea areas, and (4) the intersection points of
the track segments whose lengths of the adjacent track segments were all greater than
the average length of all the segments of the target track.

3. Data cutting. As the data obtained by the crawler are accidental, it was possible for
multiple navigations to mark a single voyage, so we cut the ship track from the spatial
and time angle.

4. Data completion. (1) After completion of the data cleaning and cutting, since the
offshore environment is unstable, and the probability of shore-based satellite dot drift
is high, we chose the Kalman filter algorithm for processing the ship trajectory data.
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on the one hand, it can eliminate abnormal points for the distance offset, and it can
effectively smooth the trajectory, making it more in line with the mapping features of
the real world. (2) For the continuity of the follow-up study, we then interpolated the
trajectory data. For the problem of data completion, we chose the Lagrange first-order
interpolation algorithm and the Lagrange second-order interpolation algorithm to
complete the trajectory according to the concave–convex trajectory points until the
interval condition of the trajectory segment was satisfied. (3) Since some dynamic
attributes appeared as null locus points after interpolation, the attributes of the vessel
locus points were calculated and completed according to the actual situation.

After the above preprocessing operation, we finally obtained 15,660 trajectories of
1839 ships, resulting in a total of 1,975,379 trajectory points. The schematic diagram of the
study area is shown in Figure 3. The sketch maps before and after trajectory data processing
are shown in Figure 4.
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3.2. Detection of Abnormal Ship Behavior Based on Spatial Attributes
3.2.1. Maritime Route Extraction Based on AIS Data

The situation is also more complex for sea lanes, which are not constructed like roads
on land and are, by contrast, subject to dynamic changes due to external factors such as
climate, currents, and accidents. Detection of the maritime routes will help to provide
the newest routes and traffic information for ships. In order to model the ship behavior
pattern more precisely, we first extracted the structure of the maritime routes based on the
AIS data.

Although the AIS data have the advantages of fast updates and a very large geographi-
cal range, due to their puncture reception problem, they are also characterized by poor data
quality and data density in different regions of great difference. These issues are also a great
challenge for the renewal and normalization of sea lanes. Therefore, we used the extraction
method for road networks for offshore road networks [32]. This method generates a road
network from trajectory point data based on the principal graph structure learning and tree
linking strategy. It does not depend on data pretreatment, and the noise, low sampling rate,
and non-uniformity of the density of the data’s distribution can be minimized, allowing
the robust extraction of the feature structure of the maritime traffic routes.

It was considered that most ships would travel close to the centerlines of the routes
(i.e., the centerline of our final generated road map would be consistent with the peak
point of the trajectory point), so we could express the geometric topology of the real-world
maritime routes approximately in the form of an undirected graph G. In this study, the
structure of the maritime routes was abstracted into the following form:

G0 = (V0, E0, W0) (1)

where V0 represents the node of the graph, E0 represents the edge of the graph, and W0
represents the connection matrix of the graph in Equation (1). After inputting a set of
trajectory points, we hoped to obtain the best map that could fit the set of trajectory points,
namely Gopt =

(
Vopt, Eopt, Wopt

)
. Considering that the maritime route is usually a smooth

straight line or curve, the optimal main graph should meet the following two conditions:
(1) the distance from all the points to the figure shall be as short as possible, and (2) the
edges of the graph are straight or rounded, all the edges are as small as possible, and the
main graph representing the basic maritime routes shall be as regular as possible. We found
that the reversed graph-embedding technology could satisfy the above two conditions to
obtain the best main graph.

In order to better understand the reversed graph-embedding technology, we need to
understand what the graph-embedding technology is. The graph-embedding technique is a
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feature transformation operation that constructs the relationship of input spatial data from
the perspective of a graph and then reflects the flow pattern structure of the data. Laplacian
Eigenmaps is one of the common graph-embedding methods. The main idea of Laplacian
Eigenmaps is that if two sets of data i and j are very close to each other, they should be
as close as possible in the target subspace after dimension reduction. The structure of the
maritime routes is a kind of “graph” structure, so our task was to use a “graph” to fit the
structure of the maritime routes (i.e., to embed and then express the road network structure
in the form of a graph). Suppose that X = {x1, x2, . . . xN} represents the input spatial
trajectory point data. The point set of potential space Y = {y1, y2, . . . yN} denotes the node
of G = (V, E, W) and can fully express the data distribution characteristics of X. Therefore,
we need to learn the mapping mechanism HG so that the point HG(Y) after mapping has
a similar distribution with X. The reversed graph-embedding technology can realize the
searching of the mapping relationship. The basic assumption is that if Yk and Yk′ have
higher similarity (distance), then the mapped HG(Yk) and HG(Yk′) should also have higher
similarity; that is, the second condition we proposed above for constructing the optimal
master graph is satisfied. In order to maintain the flow structure, we needed to optimize its
objective function Q, similar to the Laplacian Eigenmaps:

Q(Y, HG, W) = ∑(k,k′) wk,k′ ||HG(yk)− HG(yk′)||22 (2)

where W is the weight matrix of the graph from the potential space.
While we met the second condition that we found the road network, we needed to

meet the first condition; that is, the sum of the distances of all the points to the best main
graph Gopt needed to be minimized. Therefore, we added the calculation of the fitting index,
which was represented at the data level by minimizing the distance between each input
data point xi and the center of the cluster HG(yk) to which it belonged. Since xi may have
no membership, a regularization term needed to be added to the right side of the objective
function. The final loss function formula is as follows. The data-fitting term guarantees the
spatial proximity of the nodes of the final main graph and the original trajectory points,
and the penalty term guarantees the smoothness of the main graph after calculation:

J(X, Y, HG) =
N

∑
i=1

K

∑
k=1

Pi,k[
∣∣∣ ∣∣x i − HG(yk)

)∣∣∣|22 + δ log Pi,k] (3)

where P denotes the membership matrix and Pi,k denotes the probability of xi with HG(yk).
Based on the assumption of inversed graph embedding and the assumption of the

fitting index calculation method, the method of learning the graph structure from spatial
data can be transformed for optimizing the following objective function, and HG(y) can be
expressed by C:

F(C, P, W) = ∑N
i=1 ∑K

j=1 wi,j||Ci − Cj||22+γ∑N
i=1 ∑N

j=1 Pi,j[
∣∣∣ ∣∣x i − Cj

)∣∣∣|22 + δ log Pi,j] (4)

We used iterative decomposition to obtain the final value of C. First, C was initialized
to solve P and W. Based on the obtained P and W cycles, C was solved until the change
value of the objective function was less than the threshold value, and the cycle was stopped.
Finally, we obtained the C value that satisfied the conditions. Specifically, we needed the
best set of nodes for the main graph Gopt. The pseudocode of the algorithm is shown in
Algorithm 1.

Based on the above algorithm, we obtained the main graph structure of the original
trajectory points. However, since the main map we calculated was based on MST, there
were some dangling edges, so we used the ArcGIS toolbox topology editing tool to perform
topology correction on the generated route map and obtain the final structure of the
maritime routes.
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Algorithm 1: Principal graph algorithm

Input: Trajectory points and parameters: X,γ,σ, e
Output: the principal graph: C, Wopt

1. Initialize: C = X
2. Repeat:

3. Calculate P: Pi,j =
exp

(
−
∣∣|xi−cj|

∣∣2
2
/σ
)

∑N
j=1 exp

(
−
∣∣|xi−cj|

∣∣2
2
/σ
) , ∀i, j;

4. Calculate Wopt: construct MST for C;

5. Update C: C = XP
(
2γ−1L + D

)−1;
6. Until: abs(F(i + 1)− F(i)) < e

3.2.2. Detection of Spatial Abnormal Behavior of Ships Based on Rayda’s Criterion

The basic assumption of Rayda’s criterion is that a group of detection data contains
only random errors, the calculated standard deviation of which determines an interval
according to a certain probability and considers that errors beyond this interval are coarse
errors and should be eliminated. Due to the influence of environmental factors and the
navigation price, the ship usually follows specific route information. Therefore, we assumed
that a ship was traveling on its planned route, and the lateral distance between the ship
and the route should meet the needs of a normal distribution; that is, the probability
that the ship belonged to the route could be calculated by using the normal probability
density distribution function. Therefore, we could detect the yaw behavior of the ship by
calculating the Gaussian distribution of the ship’s lateral distance. Shown in Figure 5 is an
illustration of the maritime routes and trajectory points displayed by real data.
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Figure 5. Distribution of ship trajectory points along the maritime routes.

It can be observed from Figure 5 that the lateral distance of the ship’s trajectory points
conformed to the characteristics of a Gaussian distribution. Additionally, the characteristic
of a Gaussian distribution is that the standard deviation of a set of data averages can reflect
the distribution of this set of data values. Therefore, it was feasible to detect the ship’s
spatial displacement based on Rayda’s criterion. Rayda’s criterion takes k (k = 1, 2, 3)
times the standard deviation as the threshold value. A value beyond this range can be
judged as abnormal if it does not belong to the category of random errors. The value of
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the multiple of the standard deviation can be adjusted according to the required situation
in practical applications. There is an inference in experimental science that when a set of
data is normally distributed, almost all the values are within three standard deviations of
the mean. The percentages within one standard deviation, two standard deviations, and
three standard deviations from the mean can be expressed as 68.27%, 95.45%, and 99.73%,
respectively. Based on this inference, this study detected abnormal trajectory points based
on the ship’s spatial information.

The pseudocode for Rayda’s criterion is shown in Algorithm 2.

Algorithm 2: Rayda’s criterion

Input: Trajectory points x, standard deviation multiple k
Output: outlier set y

1. Calculate the mean num x of xi(i = 1, 2, . . . , n)
2. Calculate the standard deviation of xi based on x: δ =

√
∑n

i=1(xi − x)/(n− 1)
3. If |xk − x|> kδ :
Then, put xk into y

3.3. Detection of Abnormal Ship Behavior Based on Thematic Attributes
3.3.1. Nearest Route Matching

Matching the maritime routes to the ship trajectory points can match the current
trajectory points to the nearest and most suitable route segments. On the one hand, this
may provide data support for the amplification of a maritime route. On the other hand,
since different segments of routes have different traffic states, more fine-grained detection of
ship patterns can be performed based on the characteristics of the maritime route segments.

Considering the actual situation of the sea lane network, we segmented the sea lane
network in a clockwise direction using the ArcGIS tool with the road intersection as the
node. Finally, a unique identifier was assigned to the route segments after the segment.
After the completion of route segmentation, the nearest route segment of each trajectory
point was calculated according to the principle of the minimum distance and assigned as
an attribute to the trajectory point.

3.3.2. Anomaly Detection Based on the Isolation Forest Algorithm by Using Thematic Attributes

The work described in Section 3.2 mainly detected abnormal behaviors based on the
spatial attributes of ships and then introduced the detection of abnormal behavior for
ship thematic attributes based on the isolation forest algorithm. The existing method of
detecting abnormal behavior usually provides results of 0–1; that is, the result is abnormal
or non-abnormal, but it does not provide a score for the abnormal behavior of the target.
Therefore, we chose the isolation forest algorithm to obtain the anomaly score for the
input dataset.

Isolation forest is composed of multiple isolated trees, and it divides and detects
outliers in a layer-by-layer manner based on the characteristic of “few but different” out-
liers [33]. We divided the thematic attributes into two feature sets: an instantaneous
attribute feature set and average attribute feature set. The instantaneous attribute features
include the speed over ground and the variation of the course over ground, which were
used to describe the instantaneous changes in the ship’s behavior. The average attribute
feature set includes the average velocity and average acceleration attributes in the ship
thematic attribute feature to describe the changes related to the time period of the ship
in the process of traveling. In the conventional isolation forest construction, a random
selection of features is used, and a partition value is selected randomly and iteratively
to build an isolation tree until the dataset is iteratively segmented and until one of the
following conditions is met: (1) the isolation tree has been constructed to a tree height,
(2) there is only one node on a node of the binary tree, or (3) all the sample features on
the node are identical. It can be observed that in that process of isolation, a normal point
usually belongs to the deep end of the tree, and an abnormal point is usually located near
the root of the tree. Therefore, we defined the total path length from the parent node along
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the corresponding path to a leaf node as the degree of the abnormality of the leaf node. In
a feature dataset containing n pieces of data, its average length path in multiple trees is
as follows:

c(n) = 2H(n− 1)− 2(n− 1)
n

(5)

where H(i) is the harmonic number. Since c(n) is the average of h(x) after n is provided,
we can normalize it for h(x). The normalized exception score formula is as follows:

s(x, n) = 2
−

E(h(x))
c(n) (6)

In the formula, s denotes the abnormal score obtained after training n pieces of data.
E(h(x)) is the average of the isolation tree h(x). The following evaluation criteria can be
obtained from the formula:

1. The data are abnormal when s approaches 1;
2. The data are more normal when s is far less than 0.5;
3. If the score of the entire set of data is around 0.5, there is no significant outlier in the

set of data.

Considering that different attributes represent different types of ship motion, we used
the entropy weight method to integrate the abnormal scores generated by the isolation
forest. The entropy weight method determines the objective weight according to the
magnitude of the index variability. On the one hand, this has a smaller computational cost.
On the other hand, it belongs to the objective weighting methods and is more suitable for
the same data-driven type of isolated forest algorithm. The final composite score is the
abnormal score of the input feature set. The flow chart for ship anomaly detection based on
isolation forest is shown in Figure 6.
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4. Results and Discussion

This chapter describes the analysis and verification of the proposed method based
on simulated data and real data, respectively. On the one hand, this part of the study
compared the proposed method with classical and frontier methods based on simulation
data to evaluate the performance of the method. On the other hand, based on real data,
this study explored the effectiveness of the proposed method by interactive visual analysis.

4.1. Simulated Experiments

In order to verify the effectiveness of the method, based on the definition of abnormal
ship behavior, this study simulated the ship trajectory point from the perspective of spatial
and thematic attributes. Based on the ship spatial attributes and four special attributes, a set
of normal trajectory point data in accordance with a Gaussian distribution was fitted. Based
on the fitting results, three times the standard deviation was added to the abnormal data,
and finally, a set of trajectory point data with an abnormal behavior label was obtained.
Finally, we simulated about 1000 track points, of which the abnormal data accounted for
about 5%. The spatial anomaly representation of the simulation data is shown in Figure 7,
and the anomaly representation of the thematic attributes is shown in Figure 8.

This part of the study separately explored and analyzed the feasibility of the proposed
method for detecting spatial anomalous behavior and thematic attribute anomalous behav-
ior. For the detection of abnormal behavior for spatial attributes, we chose the classical
anomaly detection algorithm of the Gaussian mixture model (GMM) and frontier ship
anomaly detection algorithm [6] of maritime trajectory modeling and anomaly detection
(MT-MAD) as the contrast method. For the detection of abnormal behavior for thematic at-
tributes, we chose the classic anomaly detection algorithm density-based spatial clustering
of applications with noise (DBSCAN) and the frontier abnormal ship behavior detection
algorithm based on the DBSCAN algorithm and Markov algorithm proposed by Shahir [18]
as the comparison method. At the same time, we selected the values of accuracy, recall,
precision, and F-score as the evaluation indicators.
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Figure 8. Simulation data for abnormal behavior of ship thematic attributes.

The accuracy is the most intuitive measure of the model, and it is calculated as the
number of results judged correct divided by the number of all the participants. The
precision is calculated as the ratio of the number of samples correctly retrieved to the total
number of samples retrieved. The recall is calculated as the ratio of the number of samples
correctly retrieved to the number of samples that should be retrieved. The F-score can
comprehensively reflect the changes in precision and recall and can be used to effectively
evaluate the effectiveness of the model.

The test results for the performance of each method are shown in Tables 2 and 3.

Table 2. Effectiveness of our method in abnormal behavior detection for ship spatial attributes.

Methods Accuracy Recall Precision F-Score

Our method 0.988 0.780 0.975 0.867
GMM 0.733 0.820 0.142 0.243

MT-MAD 0.984 0.740 0.949 0.831

Table 3. Effectiveness of this method in abnormal behavior detection for ship thematic attributes.

Methods Accuracy Recall Precision F-Score

Our method 0.989 0.950 0.809 0.874
DBSCAN 0.995 0.520 0.347 0.416

Shahir’s method 0.987 0.950 0.792 0.864

In order to verify the rationality of the proposed method, we compared the results of
different algorithms from the perspective of spatial attributes and thematic attributes. It can
be observed from Tables 2 and 3 that the method proposed in this paper was accurate for the
simulation dataset compared with the traditional classical algorithm, and it was effective in
comparison with the frontier method. From the results of the table, we can observe that the
classical method had a higher accuracy but a lower F-score. Due to the imbalance between
the positive and negative samples, the accuracy index had a larger defect, so we could not
select a single accuracy evaluation method. Recall and precision are a pair of contradictory
performance measures, while the F-score can compare the performance of a comprehensive
approach. It can be observed that the method proposed in this paper had a higher F-score
value than the front-end method, which verifies the effectiveness of the method proposed
in this paper.

4.2. Experimental Results for Real Datasets

In this section, we describe the use of the above-mentioned introduction framework to
assess the degree of object suspicion from a ship’s spatial and thematic attributes to detect
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anomalies with the real data. In the first step, we extracted the network structure of the
maritime routes based on the principal graph structure learning and tree linking strategy,
and then we detected the abnormal attributes of ship space with Rayda’s criterion. The
second step was to determine the anomaly score for the distribution of thematic attributes
for the maritime routes based on the isolation forest algorithm.

China’s vast sea areas and numerous ports constitute a complex route network in the
coastal waters of China. The number of ports in each sea area was counted according to the
boundary of the sea area. The number of ports in each sea area is shown in Table 4.

Table 4. Statistics on the number of ports in the sea area.

Name of Sea Area Number of Tracks

East China Sea 10,746
Bohai Sea 870
Yellow Sea 820

South China Sea 206

In order to excavate more representative lanes, two sea areas with the most travel
records were chosen as the target areas: the East China Sea and the Bohai Sea. In order
to avoid skewness in the data, the ship trajectories before the first three ports in the East
China Sea and the Bohai Sea were selected as the experimental data, which are the ports of
Xihoumen, Majishan, and Liuheng in the East China Sea and the ports of Changxingdao,
Bayuquan, and Caofeidian in the Bohai Sea. Figure 9 shows the trajectory data we selected
to travel to and from these six ports.
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4.2.1. Detection of Abnormal Ship Behavior Based on Spatial Attributes

The density of the experimental datasets is not uniform in space, and the span is wide
in space. A ship always goes to the destination according to a similar driving path, so its
movement pattern usually shows the special characteristics of a ship cluster. Based on the
method proposed in the third section, we extracted the maritime routes based on the dataset
and obtained good results. The experimental results were based on the hyperparameters,
including the maximum number of iterations—γ and σ—which affect the efficiency of the
code operation, the fitting error, which is the degree of the edge close to the data center,
and the degree of fitting, which is the degree of the generated edge burr. Through much
exploratory analysis, we set the parameter of the maximum number of iterations to 20,
γ to 1, and σ to 0.05. The detection results for the routes are shown in Figure 10.
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Figure 10. Maritime route extraction results.

Some de facto standardized sea routes are generally followed, taking into account
factors such as travel prices and traffic control. Therefore, the distance between the point of
the ship’s trajectory and the maritime routes—that is, the ship’s lateral distance—should
satisfy a Gaussian normal distribution. In order to verify this hypothesis, we visually
displayed the lateral distance of the experimental data in the form of a histogram, as shown
in Figure 11.
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Figure 11. Lateral distance distribution of ship trajectory points.

It can be observed from Figure 11 that the ship lateral distance satisfies a normal
distribution. Therefore, the probability that the ship belongs to this route can be calculated
using the normal distribution probability density. On the data level, the outliers were
represented as points with distinct differences from other data points in some attribute
features, so we could detect the yaw behavior by calculating the Gaussian distribution
of the lateral distance of the ship; that is, if the probability of belonging to the route was
lower than a certain threshold, we could consider that it did not follow the channel features
to some extent. We selected Rayda’s criterion, used in anomaly detection to detect the
abnormal points. After the experimental verification, we set the triple standard deviation
as the threshold for the judgment standard. We detected six abnormal trajectories with a
spatial attribute offset. The detection results are shown in Figure 12.

The experimental results show that this method can effectively detect the trajectory
points with spatial attribute deviation in the normal motion of a ship. However, this detec-
tion method is based on spatial attributes and does not take into account the characteristics
of a ship’s time-related subject attributes.
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4.2.2. Detection of Abnormal Ship Behavior Based on Thematic Attributes

Based on the above experiments, we obtained the maritime route structure of the
input ship trajectory data. Then, we used the intersection as the breakpoint to segment the
channel network, and the results after segmentation are shown in Figure 13.

In light of the time and space constraints on the navigation of ships, the data density
distribution of different maritime route segments was not uniform; that is, the sample
sizes of some route segments were large, and those of some route segments were small.
Considering that ships often exhibit different motion characteristics on different routes
in the course of running, we considered the partial route data of the biased data as the
input of the experimental data for feature anomaly detection. We counted the number of
trajectory points of each segment, and the statistical results are shown in Figure 14.

As shown in Figure 14, it can be seen that the route segments with the IDs 12, 17, and
18 had more trajectory points, so we selected the route segment with the most trajectory
points, segment 12, as the experimental route segment.

We selected the thematic attribute features of the ship, including the speed over ground,
the variation of the course over ground, the average speed, and the average acceleration
and used different combinations as model inputs to obtain abnormal scores for different
attributes. The higher the score, the more abnormal the attribute of the point. First, we used
the above four quantiles as the threshold to separate the characterization and detection of
the abnormal scores of four attributes as shown in Figure 15.

In order to further verify the effectiveness of the algorithm, we classified the subject
attributes into two large categories according to the time variance of the experimental data.
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The first category was used to express instantaneous changes of the ship with the speed
over ground and the variation of the course over ground, and the second category was
used to express the slow change characteristics of the ship over time with the average speed
and average acceleration. We used the entropy weight method to assign the weights of
the attributes and finally obtained the anomaly scores of each point based on the thematic
topic attribute characteristics. The physical meaning of the composite score can be used
to describe the degree of the anomaly of the ship at that point in time. We used the above
four quantiles as the threshold to detect the abnormal scores for the two types of composite
topic attributes, and the results are shown in Figure 16.
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Figure 15. Spatial distribution of abnormal ship behavior detection scores based on thematic at-
tributes. (a) The spatial distribution of the detection score for abnormal ship behavior with the
thematic attribute of the instantaneous speed over ground. (b) The spatial distribution of the de-
tection score for abnormal ship behavior with the thematic attribute as the variation of the course
over ground. (c) The spatial distribution of the detection score for abnormal ship behavior with
the thematic attribute as the average speed. (d) The spatial distribution of the detection score for
abnormal ship behavior with the thematic attribute as the mean acceleration.

It was found that the outliers accounted for about 0.49% of all the point sets when the
combined thematic attributes were the speed over ground and the variation of the course
over ground. When the combined thematic attribute features were the average velocity
and average acceleration, outliers accounted for about 0.46% of all the point sets. In order
to verify the rationality of the detection results, we further discovered and explained the
detected abnormal points according to the characteristic values of the adjacent attributes
and the geographical environmental characteristics of the ship points.

We selected the vessel with the MMSI number 413,459,270 for a period of trips from
29 October 2021 to 31 October 2021 for the combined thematic attribute characterized as the
speed over ground and the variation of the course over ground to illustrate the detection
results. The ship was in the Caofeidian port on its way to the Xihoumen port, and in the
time period from 1:48 a.m. on 30 October 2021 to 2:56 a.m. on 30 October 2021, it was in a
hovering state for a long time due to unknown factors and was traveling at a lower speed
and with a variable steering angle. By 3:00 a.m. on 30 October 2021, its end-hovering state
began to continue, so its instantaneous speed and the amount of change in the steering
angle showed an increase, as shown in the test results. Its position at the end hovering had
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a higher abnormal score. At the same time, an abnormal condition for the spatial position
attribute in this time period was detected for the ship. The variation of that characteristic
of the travel topic and the geographic map status of the high point of the abnormal score
are shown in Figure 17.
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Figure 17. The thematic attribute set is the schematic diagram of abnormal ship point detection with
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(b) The realistic mapping of the high anomaly score points in (a) in the geographic environment.

We selected the vessel with the MMSI number 412,328,140 from 9 November 2021 to
10 November 2021 for the combined subject characteristics of the average speed and aver-
age acceleration of the test results. The ship was scheduled to sail from Xihoumen port to
Bayuquan port. Through the experiment, we found that the ship appeared as an abnormal
point with a high abnormal score during the course of navigation. We drew the average
velocity and average acceleration of the segment for each feature after 0–1 normalization,
and we could directly observe a significant peak point. It was found from that map that
the location of the high abnormal score was near the Shandong Peninsula, at which point
it was completing the turning task. The data records show that it took 120 s to complete
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the turning task in the time period from 3:52 p.m. on 10 November 2021 to 3:54 p.m. on
10 November 2021. The linear distance between the points was 2299 m, and the instanta-
neous speed changed from 7.1 to 6.2. According to the actual geographical situation, it can
be considered that the sudden drop in speed caused by the turning task was in line with
the actual situation. The spatial location of the high anomaly score point in the geographic
environment is shown in Figure 18.
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5. Conclusions

The marine environment is complex and variable, and the unconstrained motion of
a ship’s trajectory increases the uncertainty of the data. Based on the characteristics of
the target, this study explored a ship’s motion behavior and further detected its abnormal
behavior based on the two aspects of spatial attributes and thematic attributes.

The factors affecting a ship during the course of travel, including the range price,
weather, traffic control, and geographical environment, usually follow the following factu-
ally standardized maritime lanes, so we extended the inversed graph-embedding technol-
ogy based on historical AIS data to detect and characterize the structure of the maritime
routes. Then, based on the extracted structure of the maritime routes, we detected the
departure of the ship from the route from the spatial attributes. Next, we refined the
data, grouped the ship trajectory groups according to the network structure based on the
maritime routes, and detected abnormal ship thematic attributes and scored their degrees
based on the isolation forest algorithm. Based on the AIS data for ship navigation between
the East China Sea and the Bohai Sea, we detected and scored the abnormal ship motion
with spatial attributes and thematic attributes. After detection, we were able to identify a
number of abnormal points with high scores. We combined these with the actual physical
environment of the trajectory points to find and explain them and then identified more
meaningful points and phenomena.

AIS data are an important tool for global sea state monitoring, but their regulation and
privacy remain to be discussed. Relevant maritime authorities believe that the privacy and
sovereignty of maritime vessels require the encryption of AIS data. At the same time, there
is a lack of research on the feature extraction and correlation of high-dimensional datasets,
such as those for the weather and the marine environment. The non-spatiotemporal
information of ships and the situational information in driving usually contain other
behavior patterns of ships. Therefore, considering the static information and environmental
information of ships could provide new ideas for the detection of abnormal ship behaviors.
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