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Abstract: In the industrial panorama, many processes operate under time-varying conditions. Adapt-
ing high-performance diagnostic techniques under these relatively more complex situations is ur-
gently needed to mitigate the risk of false alarms. Attention is being paid to fault anticipation,
requiring an in-depth study of prediction techniques. Predicting remaining life before the occurrence
of faults allows for a comprehensive maintenance management protocol and facilitates the wear
management of the machine, avoiding faults that could permanently compromise the integrity of
such machinery. This study focuses on canonical variate analysis for fault detection in processes
operating under time-varying conditions and on its contribution to the diagnostic and prognostic
analysis, the latter of which was performed with machine learning techniques. The approach was
validated on actual datasets from a granulator operating in the pharmaceutical sector.

Keywords: residual useful life prediction; contribution plot; performance estimation; prognosis;
diagnosis; fault detection

1. Introduction

The increasing complexity of production systems triggers the need for condition moni-
toring (CM) and condition-based maintenance (CBM) techniques that can be adapted to suit
specific requirements. This paper discusses a project aimed at optimizing the application
of CBM in industrial settings that operate under time-varying conditions, i.e., processes
whose standards change over time. Such processes are widespread in the current industrial
scenario, e.g., inconsistent characteristics of the processed product, unfixed quantities of
processed products throughout different production cycles, multiphase processes where
different operations are carried out by a single machine without a clear shift between
phases. Existing CM and CBM techniques are often limited to fixed operating conditions,
and their implementation in real settings is very challenging. Consequently, changes that
are inherent in the production process can often be mistaken for fault situations, thus
causing false alarms. Today, companies and researchers are ever more frequently focusing
on machine prognosis [1] in order to obtain a sufficiently large forecasting period before
a fault onset, so as to allow the execution of maintenance tasks aimed at preventing its
occurrence. This research investigates the application of multivariate statistical techniques,
focusing on canonical variate analysis (CVA) alongside with machine learning algorithms
for fault detection, diagnosis, and prognosis in time-varying conditions processes.

Ultimately, this research aims to define a maintenance model that incorporates the
main maintenance steps and areas, i.e., fault detection, diagnosis, and prognosis. The inte-
grated and synergistic management of all these areas not only enhances performance but
also ensures a simpler and more streamlined management. Furthermore, a highly debated
aspect in the maintenance field is that of the decision-making process. The importance
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of decision making and its correlation with fault detection and prognosis is noticeably
clear, and, for this reason, it should be always taken into account [2,3]. However, while
it certainly plays an increasingly important role in achieving effective maintenance sys-
tems, the definition of a structured decision-making process is particularly challenging.
In this regard, the authors believe that the contribution plots that increase the quality of
the prognosis analysis can be of invaluable support to the decision-making process for
maintenance activities. The role of contribution plots is particularly relevant, as it allows
obtaining effective and highly robust models. The decision-making process has significant
safety implications as well, especially in processes that are highly hazardous both for the
plant and the operator [1,4].

The research questions to be investigated, as the focus of this paper, are:
RQ1: is it possible to define a comprehensive methodology for the joint management of

fault detection, diagnosis, and prognosis, setting the focus of the analysis on the information
that can be extracted from the application of CVA?

RQ2: is it possible to implement an effective selection of the process variables to be
considered for the prognosis analysis, by analyzing the relationship between these variables
and the CVA health indexes?

A fault detection analysis on data gathered during different production intervals is
not effective, as varying conditions could change the variables that provide prognosis
information. Nevertheless, it is possible to carry out the selection of variables for prognosis
analyzing only one production interval. This is because the correlation logic between
process variables and degradation of the machinery remains unchanged between various
production intervals. Obviously, for subsequent prognosis models, it remains necessary,
currently, to train a model for each subinterval. So, this paper focuses on the study of the
prognosis model, and it is a continuation of a previous study regarding the applicability
of CVA for fault detection in processes operating under time-varying conditions, with the
focus on the process analyzed in this research [5]. The remainder of the paper is structured
as follows. Section 2 presents the related literature, Section 3 discusses the methodology,
and Section 4 outlines the case study, with particular attention to the prognosis model,
and the obtained results. The discussion of the obtained results, the conclusions, and the
suggestions for future research are summarized in Section 5.

2. Literature Review

The complexity of modern engineering systems and manufacturing processes is
rapidly increasing, and their reliability management becomes more and more challenging
in modern dynamic operational settings. In this context, the research area of CBM data
management is still immature, with many open challenges at different levels, due to the fact
that several CBM approaches are data driven [6] (Wiggelinkhuizen et al. 2008). Fault detec-
tion and diagnosis have always been the focus of analysis to maintain adequate production
standards, with multivariate statistical process control proving to be an excellent tool to
support these analyses [7] (Zhang et al. 2021). In recent years, the processes operating
under time-varying conditions, which are at the center of this research proposal, became
of great interest in the field of fault detection and maintenance [8–11]. In these processes,
the assumption of the linearity and static nature of the underlying processes represents
a risk in the application of multivariate statistical techniques. For this reason, there are
currently some limitations for CVA in such processes, with the consequent need, for exam-
ple, to implement changes to the traditional CVA. If properly managed or modified, CVA
proves to be high performing in this context [12,13].

It should be noted that CVA has achieved excellent results in many maintenance
applications, both in its original or modified forms [14–16]. The fundamental characteristic
of CVA is that it calculates linear combinations of the past and future values of the system
to maximize the correlation between them [17]. It is crucial to go beyond the assumption
that process variables are time independent. The dependence of process variables on time
is particularly relevant in processes that show a significant correlation between past and
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future instances, such as the ones used in the chemical sector. The idea of the variables’
time-independence is at the heart of many widely applied multivariate statistics techniques
for fault detection, such as principal component analysis. Consequently, unlike other
multivariate statistical techniques, CVA allows consideration of the time dependence of
variables during process monitoring, thus making this analysis extremely suitable for fault
detection in many contexts where the assumption of independence of processes from time
is not valid [18].

From the available literature, it was noted that topics concerned with residual useful
life and time to failure prediction are largely covered in research areas that involve aspects
of the degradation processes affecting a system. Similarly, the issue of predicting the
remaining useful life of equipment was found to be associated with research on priori-
tizing maintenance activities [19]. Since different degradation processes require different
approaches [20–23], a comprehensive review of these processes is fundamental to this
research, and future research should aim at developing more accurate models. In this
context, the use of machine learning is still an open topic, especially as far as residual useful
life and time to failure prediction are concerned. Examples are represented by the appli-
cation of support vector machine [24,25], random forests [26] or neural networks [27,28],
and incremental learning [29]. In the literature, the use of CVA is described in combination
with other techniques to predict the trend of degradation and the behavior of a system
after the onset of a failure [30,31]. However, in practice, prognosis analysis is more often
applied after a failure to monitor its progress. Considering the prediction of residual useful
life in support of the decision-making process, it can be said that the understanding of the
complex interactions between operating conditions and component capability is crucial to
estimate the degradation of a component and predict its remaining useful life, thus allow-
ing decision making that directly impact the results [32], even financially [33]. Predicting
the health status trend of a piece of machinery allows expansion of the topic and context
of decision making. It presents and reveals the possibility of adapting decision making,
evaluating it in different time horizons [34].

In general, according to the existing literature, it is possible to state that extremely
time-variable processes, regardless of the selected technique, are difficult to understand,
and the prognostic analysis implemented is clearly affected [35]. This issue is still con-
sidered an open point in the literature, since many contributions and approaches focus
only on the analysis of static operating conditions [36]. So, considering the management
of machinery degradation, a lot of research is emerging and developing, all supported
by an evident increase in the quality of sensors and monitoring techniques of machinery
conditions. In general, however, some limitations in this regard are still evident and to
be managed. One of these is the impossibility, in some contexts, to make run-to-failure
machines operate, resulting in the lack of a sufficiently large historical failure dataset for
subsequent analysis. This relates, then, to the need to focus prognosis analyses on spe-
cific variables that have greater predictive power with respect to degradation trends, so
that accurate prognosis analyses can be achieved, reducing the inclusion of unnecessary
information in the model [37].

In conclusion, the analyzed literature reveals the points of interest and innovation
of the proposed contribution. First of all, the topic of the prognosis and the residual
useful life of the machinery is still the starting point and the focus of extensive and heated
debates, with a growing need for new contributions to this matter. Secondly, the type of
process analyzed, i.e., an operating process under varying conditions over time, has many
interesting facets but also numerous difficulties in the management of maintenance and
data analysis, with greater repercussions on the topic of prognosis. This type of process,
given the countless implicit difficulties, is currently less debated and has obtained fewer
results than more linear and static processes. Ultimately, a final interesting point concerns
the considered technique, CVA, and the approach proposed. On one hand, the use of
CVA in this type of process is innovative because, as previously mentioned, multivariate
statistics techniques still have limitations in such contexts. On the other hand, the proposed
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approach is important for its dual role in fault detection and in the prognosis in conjunction
with contribution plots and machine learning. Considering the results obtained in the
previous contribution, the approach is innovative and even leaner than those that suggest
intrinsic changes to CVA.

The main contributions of this study to the research community are summarized
as follows:

(1) This study applies state-of-the-art process control and machine learning techniques to
a granulator operating in the pharmaceutical sector, with the developed models being
verified with real-world data, thus offering a practical solution to the monitoring of
the granulation process.

(2) Unlike existing studies where fault prognosis was carried out relatively independent
from fault detection, this study evaluates the influence of fault detection on prognosis
by adding a connecting step between the two. The results show that the CVA-based
contribution analysis can facilitate fault prognosis.

3. Methodology

This section briefly introduces the proposed methodology. Let YN = [y1, y2, . . . , yN ]
be the training set with N number of observations obtained from the machine; by applying

pk =
[
yt−p+1, yt−p+2, . . . , yt

]T and fk =
[
yt, yt+1, . . . , yt+ f−1

]T
at each time instance k of

YN , one can form the past and future matrices:

Yp =
[

pp, pp+1, . . . , pN− f+1

]
Yf =

[
fp, fp+1, . . . , fN− f+1

]
Then, the sample covariance and cross-covariance of the past and future matrices can

be estimated as

∑pp =
1

N − p− f + 1
YpYT

p

∑ f f =
1

N − p− f + 1
Yf YT

f

∑ f f =
1

N − p− f + 1
Yf YT

f

The goal of CVA is to find a set of linear combinations between the past and future
matrices such that the correlations between the two groups of linear combinations are
maximized. To do so, one can perform a singular value decomposition as follows:

H = ∑−1/2
f f ∑ f p∑−1/2

pp = UΣVT

Then, two monitoring indices T2 and Q can be derived as

T2 = ztzT
t , zt = VT∑−1/2

pp pt

Q = ztzT
t , zt = VT∑−1/2

pp pt (1)

When new data are available, one can calculate the monitoring indices T2 and Q,
and compare their values to the corresponding failure threshold for fault detection.

The details of the application of the methodology are presented in Section 4, with a step
by step description of the approach and related insights presented in Figure 1. For more
details about CVA, see [38].
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Figure 1. Methodology for the proposed model.

Focusing attention for a moment on the first step of the methodology, it is not part
of this article. This step has been detailed in another article [5]. As anticipated, the role
of this step is twofold: on the one hand, implementing a fault detection analysis pro-
vides the ability to identify anomalies that cannot be identified with prognosis analysis.
The purpose is then to support prognosis analysis with real-time data analysis, with the
aim of making joint maintenance management more robust. On the other hand, the health
indices calculated in this step are the input for the subsequent variable selection analyses
for prognosis analyses.

4. Case Study

The study presented in this paper can be defined as the continuation of research pro-
posed in a previous publication [5]. In the first stages of the prior research, a methodology
for managing the non-linearities of a process was proposed to allow its monitoring by using
a well-known multivariate statistics technique, i.e., CVA. As discussed in the introductory
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part of the paper, countless monitoring challenges arise in the processes that operate under
time-varying conditions, and, for this reason, in-depth research is necessary. Considering
the level of detail with which the fault detection application is described in the previous con-
tribution, the authors refer to that paper for further description of the implementation [5].
As previously mentioned, fault detection has a double role in this research:

• Input for the prognostic and decision-making step.
• Continuous process control to compensate for errors and inaccuracies in the prognostic model.

The production process considered in this contribution is a dataset from a real-world
industrial plant. This ensures that the case study is relevant for research. As asserted before,
the distinguishing features of the considered production process are the management and
the structure of the production process itself. The process does not operate continuously,
but it only runs in specific time windows, defined by managerial choices or necessary
maintenance interventions. The production intervals taken under analysis are:

• 2–12 January (A);
• 11–21 February (B);
• 4–15 May (C);
• 1–22 June (D);
• 29 July–17 September (E).

Another feature that exacerbates the process monitoring complexity is its division into
seven sub-phases, each having specific process characteristics and, consequently, specific
anomaly situations:

• p1 = Initializing;
• p2 = Conditioning;
• p3 = 1st Spray;
• p4 = Heating;
• p5 = 2nd Spray;
• p6 = Drying;
• p7 = Unloading.

There are 13 monitored parameters, and every data point d = {x1, . . . , x13} represents a
set of 13 measures, with a time rate of 1 min:

• x1 = Spray Percentage;
• x2 = Air IN Flow;
• x3 = Spray Flow;
• x4 = Air Pressure Spray;
• x5 = Microclimate Pressure;
• x6 = Cleaning Pressure;
• x7 = Air IN Temperature;
• x8 = Washing Air Temperature;
• x9 = Air OUT Temperature;
• x10 = Product Temperature;
• x11 = Cooling Temperature;
• x12 = Absolute Air IN Humidity;
• x13 = Relative Air IN Humidity.

The results obtained in the first phase of the project paved the way for the inclusion
of an additional section, with the aim to create a complete methodology that adds more
value to the implemented maintenance process. Currently, the previous research focuses
only on fault detection, i.e., real-time monitoring of the process to identify trends that
are not consistent with what is expected, and that are consequently identified as faults.
However, as mentioned at the beginning of the paper, in this study greater attention was
paid to the decision-making process. To achieve this goal, the methodology was divided
into two subphases:
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• A phase of process structure analysis in a state of failure to circumscribe its most
indicative and representative variables;

• Prognostic analysis of the failure based on information obtained in the previous phase
to predict the machinery’s useful life by monitoring only a subset of variables. This
allows for streamlining of the analysis process and to eliminate any noise in the model
caused by variables that are not representative of the failure.

Contribution plots were used to analyze the role of the variables related to failure.
The role of a contribution plot is to show the contribution of each process variable to
the calculated statistic, in this case, T2 and Q. In this way, when the statistic is out of
control, it is possible to identify which variable caused the anomaly. This analysis allows
circumscribing the variables that are relevant in the process monitoring, which are the
focal point of the following step of the prognosis. This allows not only streamlining of
the analysis by speeding up its execution but also elimination of unnecessary variables
that can create noise in the machine learning model leading to the achievable results.
This step can be attributed a double role. The prognostic analysis of the process allows
timely prediction of the time to failure, thus ensuring the implementation of maintenance
interventions with the aim of preventing the occurrence of a fault or limiting its extent.
Additionally, this analysis is always accompanied by a continuous and real-time monitoring
of the process to implement a possible precautionary fault detection, with the consequent
compensation for any possible errors in prognostic prediction. The analysis of the variables
representative of the fault ensures faster circumscription of the origin of the fault, and a
consequent implementation of rapid maintenance interventions, thus limiting the duration
of unwanted machine downtimes. In conclusion, it is possible to state that this phase clearly
plays a key role in the maintenance decision-making process. In a state of emergency, it
steers maintenance inspections, it predicts the machinery’s failure time, and it identifies a
subgroup of variables that are representative of the failure.

For the case study under analysis, the logic analysis used in this phase differed from the
one used in the fault detection phase. Despite the difficulties encountered in the latter due to
the non-linearities of the process, the fault detection phase did not influence the application
of the contribution plots. While the health thresholds and the relationship between health
status and failure change in different production intervals, the logic inherent in the process
remains unchanged. For this reason, the application of the contribution plots, aimed
at skimming the variables to be input to the prognosis model, was performed only on a
randomly selected production sub-interval, i.e., interval E. In addition, both the contribution
plots of T2 and Q were considered. However, to extrapolate the representability of the
variables, it was deemed sufficient to consider essentially only the contribution of T2, which
represents the state space. As regards the evaluation of the contribution plot of Q, it is
dependent on the considerations extracted from that of T2. The results obtained from the
application of the contribution plots are shown in Figures 2 and 3, which display only data
related to a fault state.

As can be seen in Figures 2 and 3, a contour plot was applied, i.e., a plot containing the
isolines of a Z matrix, with Z containing height values on the x-y plane. The term isolines
is widely used to describe images representing different levels of a certain value. Isolines
are “contour lines”, i.e., lines joining all the points presenting the same value of the chosen
variable. In the case under analysis, the contour lines represent the value of the influence
that a variable had on the value of the index considered in the specific graph. In this case,
the x-y plane is structured as follows:

• y-axis→ the process variables;
• x-axis→ dataset instances.

Furthermore, Z represents the value of the contribution of a process variable to the
value of the statistic, and like-colored lines represent an area with the same value of this
contribution. It should be noted that, to improve the readability of the obtained results,
the logarithm of the calculated contributions was graphed, thus helping to respond to
skewness towards larger values. The colored bars on the right side of the graphs represent
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the scale of the magnitude of the influence of a variable on the T2 value and on the Q value,
presented in Figures 2 and 3, respectively.
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After completion of the contribution plots analysis, six variables were selected for
the prognostics model: x2, x6, x8, x10, x12, and x13. The selection of the relevant variables
started from the analysis of the contribution plot results, and it was also based on several
considerations made about the process and about the relationships between the variables.
Clearly, both the x-axis and the y-axis move on discrete values. The y-axis can only take
on integer values representing the variables, and the x-axis represents a time sequence at
discrete intervals. What makes the view of the graph as if it were completely active is that
it represents a 2D view of a matrix of three values, thus actually representing 3D space.
By considering a 2D view of the isolines and choosing a “full” representation of the graph,
i.e., one in which the inside of the areas delimited by the isolines are colored, it is possible
to obtain the above-described view of a completely full graph. To facilitate the reading of
the graphs, the authors have inserted horizontal lines in Figure 2 which represent the active
zones of the graph for each of the considered variables. For convenience, in this paper such
lines have only been included in Figure 2, but the considerations made so far apply to the
contribution plot of Q (Figure 3) as well. Going into the details of the contribution plot
analysis, it is necessary to state that the authors started by analyzing only the contribution
plot for T2.
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During this analysis, the authors identified the areas where the lines added to the
graph, i.e., the ones representing active areas of the graph for the considered process
variables, intercepted one or more dark red areas. The colored bar shows that this is the
color representing the greatest influence of a variable on the value of T2, i.e., the first color
from the top of the colored bar. However, in case of the absence of dark red-colored areas,
the second level of intensity would have been used. The output of this first round of analysis
selected five variables, specifically x2, x8, x10, x12, and x13. The circles added within the
graph in correspondence with the dark-red zones represent areas of high influence of
variables on the T2 metric. It is interesting to note that two variables comprising several
areas with considerable intensity of influence on the T2 value, but not the greatest intensity
defined, are closely correlated with two of the selected variables, precisely x9 and x7.
The process variable x9 is linearly correlated with x10, and x7 is linearly correlated with x13.
Following this analysis of T2’s contribution plot, considerations were made about Q’s role.

Considering the insights extracted from the previous work [5], we proceeded in the
following way:

(1) The variables showing the strongest relationship with Q were identified.
(2) We analyzed which of these variables were activated in a disjointed manner with

respect to variables already identified with the T2 analysis.
(3) As a result of this analysis, variable x6 was further selected.

As can be noticed from the circled areas in Figure 2, in no less than two areas variable
x6 proves to be the most associated variable with the value of Q, while none of the variables
selected with the analysis of T2 were activated in the same way. The considerations
made for the analysis of T2 apply for the analysis of the contribution plot of Q as well.
The only difference lays in the chosen color bar. For the analysis of the contribution
plot of Q, the color representing a greater influence of the variable on the metrics is
yellow. For the sake of completeness, it should be noted that the authors implemented
a test for the prediction of the remaining useful life of machinery without the inclusion
of the last variable considered, i.e., x6, and the obtained the results were not acceptable.
According to the information obtained using contribution plots, i.e., the six variables
selected, five prognosis models were developed, one for each sub-interval considered.
While for the extraction phase of the process trend’s most representative variables the
sub-intervals were considered to have common characteristics, for the prognosis phase,
the subgroups were again considered as separate, in light of the experience acquired
through fault detection. To implement this phase, regression machine learning algorithms
were applied, specifically approaching the learning ensemble. As far as statistics and
machine learning are concerned, ensemble methods use multiple learning algorithms to
achieve better predictive performance instead of using constituent learning algorithms
alone. The methods selected for this phase consisted of decision trees. In retrospect, after
the analysis and after tests with other algorithms, it is possible to say that this category was
the one that guaranteed the best results.

Following numerous tests and numerous optimizations of the algorithms, the superi-
ority of the results achievable with the bagged trees was proven. Bagged trees have also
been proven to be suitable for prognosis in the presence of datasets that are not considered
to be large in size, making them appropriate for this study. In Bagging (Bootstrap Aggre-
gation) several models of the same type are trained on different datasets deriving from
an initial dataset obtained by random sampling with replacement, reducing the variance
of a decision tree. Firstly, several subsets of data are created from a randomly chosen
training sample with replacement. Then, each collection of subset data is used to train
its decision trees. Finally, the obtained result is an ensemble of different models, and the
average of all the predictions obtained from different trees is used. This process is more
robust than a process that uses single decision trees since individual decision trees tend to
overfit. Bootstrap-aggregated (bagged) decision trees combine the results of many decision
trees, thus reducing the effects of overfitting and improving generalization. Every tree in
the ensemble was grown on an independently drawn bootstrap replica of input data, and
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the observations not included in this replica are “out of the bag”. The number of features
was selected randomly for each decision split, so it is possible to assert that the algorithm
selected was the random forest algorithm [39]. The evaluation metrics considered were
as follows:

• R2: it is the coefficient of determination and represents the ratio of the variance in the
dependent variable that is predictable from the independent variables.

• MEAN SQUARED ERROR (MSE): it is a frequently used measure of the differences

between values predicted by a model and the values observed→ ∑n
i=1|yi−yi |

n

The first one, i.e., R2, provided an insight into the quality of the predisposed model,
as it allowed understanding to what extent it represents reality. The second one, i.e., MSE,
allowed giving greater weight to large mistakes rather than to smaller ones. This metric
was extremely important in the analysis under consideration, since the need to penalize
large errors was particularly relevant.

In conclusion, it should be noted that there was no parallelism between the results of
the two phases, i.e., the subgroup with the best results for fault detection was not the best
for the prognosis.

Prognosis Models

For the part concerning the prognosis, a model was developed for each of the consid-
ered sub-intervals, as previously conducted in the fault detection models [5]. Furthermore,
algorithm optimization was implemented to define the algorithm parameters. This means
that various combinations of parameters were tested in an automatic way to identify the one
that would allow obtaining the best achievable results. The metric taken into consideration
to select the best configuration was the MSE. In particular, the best setting was the one
that guaranteed the lowest value. As well as in the previous phase, the prognosis models
were developed using MATLAB. As previously mentioned, five bagged tree models with
different combinations of parameter settings were trained and tested, and three parameters
were optimized:

• Number of learners: Number of trees.
• Minimum leaf size: Minimum number of observations per tree leaf.
• Number of predictors to sample: Number of variables to be selected at random for

each decision split.

The number of iterations performed for the optimization of each model was 50, since
several experiments showed a flattening of the improvements. Table 1 presents the best
settings for all the considered models:

Table 1. Best settings for the algorithm in every considered interval.

Interval Number of Learners Minimum Leaf Size Number of
Predictors to Sample MSE

A 500 1 3 258.46
B 500 1 4 1504.6
C 500 1 5 463.42
D 500 1 5 433.46
E 85 1 6 843.12

The metrics selected for each interval were then used to predict the residual useful life
of the machinery in the five sub-intervals under consideration. The results obtained are
shown in Figures 4–6.
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Figures 4–6 represent the trends of the prediction of the RUL for all the analyzed
intervals. This highlights the relationship between the predicted value of the RUL on the
y-axis and the actual value of the RUL, on the x-axis. To analyze the obtained results,
in addition to the previously mentioned MSE value (see Table 1), the R2 metric was
considered. As previously described, this metric represents the extent to which the model
can accurately represent actual operational data. The closer the value is to 1, the higher the
model accuracy; on the contrary, values close to 0 represent an inaccurate model. The R2

values of all the intervals were as follows:

• Interval A: 0.94;
• Interval B: 0.96;
• Interval C: 0.98;
• Interval D: 0.93;
• Interval E: 0.97.

It was noted that the algorithm was able to satisfactorily approximate the actual
operations considered, demonstrating good predictions of the RUL. Although in some of
the analyzed intervals the results were slightly lower than relative to other cases, the overall
results were considered to produce substantially favorable outcomes. The lowest forecast
value obtained was 0.93. However, the analysis of forecasting trends allowed extrapolation,
strengthening the analysis of the results obtained. Evidence from Figures 4–6 reveals that
the number of errors detected was low relative to the total number of cases examined and
predicted. This observation offered important considerations on the combined use of fault
detection, diagnosis, and prognosis, and it also allowed evaluations to manage forecasting
errors. By looking at the presented data, it was observed that the errors reduced as the
prediction time window increased.

For this purpose, due to the need to break the dataset into sub-intervals both in the
fault detection phase and for the prognosis phase, it was not possible to define a univocal
threshold for all the sub-intervals. For example, an optimal threshold for interval C could
be 300, while the same threshold would be too large for interval A, where a 150 threshold
would be sufficient. The definition of such thresholds within the forecasting models allowed
a significant increase in the achievable results, which were already excellent. Furthermore,
another consideration that added further value to the achieved results was the fact that
most errors were caused by an underestimation of the residual useful life of the machinery.
This approach could be defined as “precautionary”, as it tends to direct towards early rather
than late maintenance. The cases of underestimation of the forecast are extremely small,
almost negligible. Finally, considering all the above analysis, it is possible to state that CVA
successfully contributes to improving the performance of the residual useful life prediction
model. Without the prior analysis of the dataset with CVA and the consequent application
of the contribution plots, the achievable results would have been different. An example of
the achievable results for the prognosis without CVA in interval C is shown in Figure 7.

After the optimization process, and without the prior application of CVA, the results
achieved for interval C were the following:

• MSE: 470.19;
• R2: 0.93.

As can be seen, there was an increase in the MSE, but the most striking result was the
worsening of the R2 index from 0.98 to 0.93. This last consideration was also evident in a
graphic analysis, comparing Figures 5 and 7, where it is clear that the model was less able
to predict and reproduce the trend of the residual useful life of the machinery. Even though
the results achievable without the application of CVA were excellent, with the application
of CVA it was possible to significantly improve the performance of the residual useful life
prediction model of the machinery.
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5. Discussion

Before discussing the results obtained in this research, it is useful to describe once
again CVA’s dual role in maintenance:

• The input of a prognosis model, which is used to predict the residual useful life of a
machine, thus allowing action before the onset of a fault;

• Real-time fault detection, which is used to monitor a machine continuously, thus
allowing identification of any unforeseen faults or, in general, to make up for any
inconsistencies and errors in the prognosis model.

The effectiveness of CVA in fault detection in a process such as the one considered
in this contribution was extensively discussed in a previous contribution [5]. The paper
not only made it possible to verify the applicability of CVA in this category of processes,
but it also laid the foundations for some important considerations. The most noteworthy
consideration is the one referring to the structure of the process itself, which needs some
special care to be successfully monitored with CVA. In line with what occurred with fault
detection, temporal segmentation of the dataset was used for the prognosis as well, meaning
that separate production intervals were considered as separate processes. The machine
learning model for the prediction of the residual useful life of the machinery was structured
with one model for each sub-interval.

As explained in the case study presented, the choice of the algorithm was the result
of an iterative process. Firstly, after comparing the different results achievable with the
different algorithms, decision trees were considered as the most appropriate choice. Sub-
sequently, to define the specific parameters of the regression algorithm, an optimization
process was chosen. The last step, based on the results of the optimization process, was to
apply the regression algorithms again to the five sub-intervals to validate their effectiveness
and extrapolate the results.

The results obtained, presented at the end of the case study, show promise of an
improved performance. As expected, not all the analyzed intervals reached the same
accuracy of forecast. It is also interesting to note that there was no consistency between
the results achieved for fault detection and those achieved for the prognosis. To be clearer,
the interval in which the best results were obtained for fault detection, for example, did not
coincide with the interval in which the best results were obtained for the prognosis.
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Furthermore, from the figures, it was noted that the obtained value could be further
increased by making a few adjustments. Firstly, the trends showed that by increasing the
forecast window, errors were reduced. Consequently, it is possible to state that with a
well-managed condition-based and predictive maintenance policy that extends the life
expectancy intervals, the results achievable with the presented model are undoubtedly
better than those obtained overall. This result is consistent with a failure anticipation policy,
rather than with a failure management policy. Forecasting the residual useful life of the
machinery with little advance notice does not allow for the ability to implement precau-
tionary maintenance interventions but only ensures better preparedness for its outbreak
and its management. Conversely, the management of short time and unexpected events
is left to fault detection models based on CVA, which ensures the real-time monitoring
of the model. Moreover, the model tended to underestimate rather than overestimate the
residual useful life of the machinery, thus allowing anticipation of maintenance operations.
It is possible to avoid situations in which the overestimation of the residual useful life
makes it necessary to resort to emergency maintenance operations identified through real-
time monitoring. The underestimation of the residual useful life leads to a more cautious
maintenance approach, thus remaining consistent with the desire for early intervention
on machinery. Real-time monitoring based on CVA ensures reflectively better protection,
and it allows for prompt identification of any errors in the determination of the prognosis
model and unexpected failure.

As far as the contribution plots are concerned, they had a dual role. As described
in the previous sections of this paper, they allowed isolation of the variables that were
most representative of the fault trends, making it possible to obtain even more efficient and
powerful models for the prediction of the machinery’s residual useful life. Moreover, as far
as emergency maintenance was concerned, i.e., the application of CVA for fault detection,
the contribution plots ensured an even higher reactivity during fault identification. They
allowed a quick demarcation of the variable(s) that caused the alert state. Consequently,
by linking the variable(s) obtained from the contribution plots to one or more system
components, it is possible to target maintenance work. In conclusion, the combination of
CVA and contribution plots have shown invaluable application for prognosis analysis.

6. Conclusions

This study presented the use of canonical variate analysis applied to a granulator
operating in the pharmaceutical sector for the purpose of fault detection. Moreover, to
facilitate fault prognosis, CVA-based contribution plots were employed to identify key
contributing variables for the detected fault, following which a machine learning model
was built to predict the RUL of the machine under faulty conditions. The results showed
that the CVA model successfully contributed to the improvement of the performance of the
residual useful life prediction.
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